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Abstract: Forests provide valuable resources for households in the Philippines, particularly in poor
and upland communities. This makes forests an integral part of building resilient communities. This
relationship became complex during extreme events such as typhoon occurrence as forests can be a
contributor to the intensity and impact of disasters. However, little attention has been paid to forest
cover losses due to typhoons during disaster assessments. In this study, forest damage caused by
typhoons was measured using harmonic analysis of time series (HANTS) with Landsat-8 Operation
Land Imager (OLI) images. The ∆Harmonic Vegetation Index was computed by calculating the
difference between HANTS and the actual observed vegetation index value. This was used to identify
damaged areas in the forest regions and create a damage map. To validate the reliability of the
results, the resulting maps produced using ∆Harmonic VI were compared with the damage mapped
from PlanetScope’s high-resolution pre- and post-typhoon images. The method achieved an overall
accuracy of 69.20%. The accuracy of the results was comparable to the traditional remote sensing
techniques used in forest damage assessment, such as ∆VI and land cover change detection. To
further the understanding of the relationship between forest and typhoon occurrence, the presence of
time lag in the observations was investigated. Additionally, different contributing factors in forest
damage were identified. Most of the forest damage observed was in forest areas with slopes facing
the typhoon direction and in vulnerable areas such as near the coast and hill tops. This study will
help the government and forest management sectors preserve forests, which will ultimately result in
the development of a more resilient community, by making it easier to identify forest areas that are
vulnerable to typhoon damage.

Keywords: typhoon-induced forest damages; harmonic series; forest monitoring; Google Earth Engine

1. Introduction

Forest conservation is essential to the economy of the Philippines and to reducing
the impacts of natural disasters. Economically, forests provide valuable resources to the
country as they contribute, together with agriculture and fisheries, to approximately 10%
of the country’s GDP [1]. Households, particularly poor and upland communities, depend
highly on forest resources as their sources of income and daily use [2,3]. Communities
with access to such resources have also experienced improvements in their socioeconomic
status [4]. Thus, maintaining livelihoods while preserving forest cover is an important part
of building a resilient community.

Relationships between forests and communities are complex during extreme events.
Forests protect against small-scale events, such as rainfall; however, they could fall victim
to disasters or become a contributor to the intensity and impact of the disaster [5]. Strong
winds that uproot trees also frequently occur during powerful typhoons and flooding
incidents, which exacerbates the damage. Moving after a disaster can be challenging due to
roadblocks caused by trees left behind as debris. Forests also have little impact on reducing
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flood peak flows in large-scale flooding events [6]. This makes proper forest management
and planning for disasters essential but very challenging.

The Philippines’ Leyte Region, which lies east of the Visayas Region, is one of the areas
most frequently struck by typhoons. Over the past decade, the region has experienced
multiple strong typhoons, including Typhoon Haiyan in 2013 and Typhoon Rai in 2021.
These two typhoons were the costliest in the country’s history, totaling approximately USD
3 billion in damage [7].

During such disasters, satellite data and remote sensing are indispensable tools for
providing useful and timely information for disaster damage assessment. Finding the best
vegetation index derived from satellite data to represent forest damage has been the focus of
most studies. Aosier et al. [8] evaluated the area of fallen trees caused by Typhoon Songda
in Hokkaido, Japan, by comparing the change (∆VI) in NDVI, Leaf Area Index (LAI), and
Normalized Difference Infrared Index (NDII) of the before- and after-typhoon images from
ASTER. Their study found that the NDVI was a much more sensitive indicator than the
NDII. By contrast, Wang et al. [9] compared five different vegetation indices’ ∆VIs, NDVI,
Enhanced Vegetation Index (EVI), NDII, LAI, and Fraction of Photosynthetically Active
Radiation (Fpar), derived from MODIS data in assessing the damage caused by Hurricane
Katrina at the De Soto National Forest in Mississippi, United States of America. They found
that the NDII was the best damage indicator among the VIs. To determine the robustness of
satellite-derived vegetation indices in monitoring typhoon-induced forest damage, Dong
et al. [10] compared the effectiveness of the NDII and Disturbance Index (DI) as damage
indicators by considering multiple typhoon events in Northeast China. They found that DI
had better accuracy than NDII. Peereman et al. [11] attempted to reconcile these previous
studies with other similar studies by assessing four different vegetation indices, NDVI,
NDII, EVI, and the Soil-Adjusted Vegetation Index (SAVI), to measure canopy damage
from five different typhoon occurrences in the Fushan Experimental Forest, Taiwan. They
found that VI sensitivity varied in detecting typhoon-induced changes depending on
canopy coverage and that there was no VI most sensitive to all typhoons. The authors
suggested that a combination of different VIs should be used to evaluate typhoon-induced
forest damage.

Machine learning (ML) has also been used in combination with remote sensing for
such analyses. Zhang et al. [12] compared the reliability of the VI assessment method
with the ML model random forest (RF) for measuring forest damage caused by Typhoon
Rammasun in Guangdong and Hainan provinces in China in 2014. Their results showed
that the VI method using NDII, NDVI, and EVI had a lower accuracy when compared to
RF, with the highest difference of 7% and the lowest difference of 4% in overall accuracy
(OA). Chen et al. [13] conducted a similar study by comparing the VI method with RF and
Support Vector Machine (SVM) for their forest damage estimation using a three-typhoon
occurrence event in 2016 in Hokkaido, Japan. RF and SVM performed better than VI, with
a difference of 3% in OA for both models. Even though VI performed worse in comparison
with ML in both studies, the difference was minimal considering the rigorous steps needed
to be implemented in the ML.

Research on mapping and quantifying damage in forests is challenging because of
the difficulty in obtaining accurate damage data for forests [14]. Analyzing historical data
when evaluating forest damage brought on by disasters can help with this. It can provide
context for the observed damages and, if integrated into the analysis and computations,
could result in better estimations. This is particularly important in the Philippines, where
different regions experience multiple typhoons annually.

Time lag is also an important factor when dealing with precipitation, as the response
time for each vegetation type varies and is not immediately observable, as shown by Cui
et al. [15] and Chuai et al. [16].

Satellite data, which is valuable, has some disadvantages. They suffer from noise and
data gaps caused by external conditions, such as clouds, which are very frequent in regions
such as the Philippines. One of the techniques that can address these gaps is harmonic
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analysis of time series (HANTS). It has been used in various remote sensing applications. It
has been used to model different attributes such as NDVI, Land Surface Temperature, and
canopy cover [17–21]. It has also been used to measure forest responses to disturbances by
relating these responses to changes in vegetation indices [22–24].

The aim of this study is to measure the impact caused by typhoons using remote
sensing to fill the gaps in forest damage assessment research. The objectives were as
follows: 1. Measure typhoon-induced forest damage. 2. Produce a forest typhoon-induced
damage map that identifies damaged hotspots in the region. 3. Identify the presence of
time lag and different factors related to forest damage. Through this, typhoon-susceptible
forest regions in the province can be identified, which can help guide the government
in developing appropriate forest management plans and typhoon responses for a more
resilient forest and, in turn, build a more resilient community.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The study area was the Leyte Region (Figure 1), located east of Visayas, Philip-
pines (10.85◦ N, 124.85◦ E). It has a total area of approximately 7300 km2 and a popu-
lation of 2.6 million in 2020 [25]. It comprises two provinces, Leyte and Southern Leyte;
58 municipalities; and four cities. Situated close to the Pacific Ocean, the region is bordered
to the east by Samar Island and the Leyte Gulf, to the west by the Camotes Sea, and to the
north by Biliran Island. Its topography is flat along coastal areas with mountainous interi-
ors. The forests in this region are dominated by evergreen and semi-deciduous trees [26].

Figure 1. Leyte Region (black line), overlayed with the classified forest regions (green), validation
scenes (red triangle), and typhoon Rai ground track (brown line) (add north arrow).

2.1.2. Typhoon Rai

On 14 December 2021, Typhoon Rai, also known as Super Typhoon Odette in the
Philippines, made landfall in the Philippine Area of Responsibility (PAR) and was classified
as a severe tropical storm with a maximum sustained wind speed of 100 km/h and a
pressure of 985 hPa [27]. The typhoon intensified to a Super Typhoon, reaching a wind
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speed of 280 km/h as it made landfall in the Southern Philippines. It caused severe and
widespread damage across multiple regions in the country, costing approximately USD
1.02 billion in damages, the 2nd costliest typhoon in history. The typhoon left the PAR on
December 18, displacing thousands of families and causing approximately 400 deaths [28].
The typhoon paths relative to the study area are shown in Figure 1.

2.1.3. Satellite Data
Landsat-8

The Landsat-8 Satellite was launched on 11 February 2013. The system was equipped
with the Operational Land Imager (OLI), composed of six multispectral bands ranging
from blue to shortwave infrared bands with a spatial resolution of 30 m. The satellite covers
an area of 185 × 180 km per scene and has a temporal resolution of 16 d [29].

In this study, Landsat-8 OLI Surface reflectance (SR) images from the Google Earth
Engine (GEE) were used as the main source of information for analysis. The dataset has a
wide temporal range, starting from 2013 to present. This would help in the better estimation
of undisturbed phenology needed in this study as it would give more samples through
different times. Moreover, Typhoon Haiyan, a typhoon with the same category as Typhoon
Rai, passed over the region in 2013. Using Landsat would let the event be included in
building HANTS and make the method more representative of the extreme events that
occurred in the region. The boundary utilized for processing the Landsat data in the GEE
was the Leyte Region, as depicted in Figure 1.

PlanetScope

PlanetScope is a constellation of more than 430 Dove and SuperDove satellites that
can cover the entire Earth daily [30]. Its images have a spatial resolution of 3–4.1 m and
spectral bands ranging from blue to near-infrared. Each scene has an approximate area of
280–360 km2 depending on the type of instrument used in the imaging [31].

PlanetScope images have been widely used by different studies for forest change detec-
tion application due to its high temporal resolution and high spatial resolution [32–37]. In
this study, subsets of PlanetScope images were used to build validation data through visual
interpretation to map the changes in the region before and after the typhoon. The distribution
of the images used is shown as red triangles in Figure 1. The city and municipality where
each scene was located, together with its coverage area, are listed in Table 1.

Table 1. PlanetScope scenes used for validation.

Location Acquisition Dates
(Pre- and Post Typhoon) Area (km2)

Albuera 4 December 2021, 12 January 2022 30.08

Baybay City 20 November 2021, 10 January 2022 17.55

Hilongos 20 November and 12 December 2021, 12 January 2022 48.86

Hindang 20 November 2021, 12 January 2022 30.91

Isabel 4 December 2021, 6 January 2022 7.18

Maasin City 25 October 2021, 19 December 2021 9.13

Matalom 20 and 23 November 2021, 8 January 2022 18.68

Mahaplag 21 October 2021, 24 December 2021 7.50

Malitbog 4 December 2021, 11 January 2022 6.20

Ormoc City/Kananga 1 December 2021, 6 January 2022 49.98

Padre Burgos 4 December 2021, 11 January 2022 31.55

San Juan 4 December 2021, 10 January 2022 14.32

Tacloban City (2 sites) 23 November 2021, 23 December 2021 16.45

Tomas Oppus 20 November 2021, 10 January 2022 23.28

Total Area: 311.67



Land 2024, 13, 1031 5 of 25

2.1.4. Topographic Data

The elevation, slope, and aspect data used in this study were derived from the Ad-
vanced Land Observing Satellite (ALOS) digital surface model (DSM) global dataset with
an approximate resolution of 30 m [38]. Data were acquired throughout ALOS’s operational
lifetime from 2006 to 2011.

All the data and its derivatives used in this study are listed in Table 2.

Table 2. List of data used in this study.

Data Spatial
Resolution Derived Data Temporal Range

Satellite Data

Landsat-8 Composite Image

7, 16, and 23 April
2, 9, 18, and 25 May

3 and 19 June
12, 21, and 28 July 2020

Landsat-8 OLI SR [28] 30 m

Forest Cover Map 2020

Monthly Land Cover Map
2021–2022 November 2021–February 2022

Forest Damage Map from LCC
November 2021–December 2021,

November 2021–January 2022,
November 2021–February 2022

Monthly Landsat-derived VI and
HANTS VI 2013–2022

PlanetScope [29] 3–4.1 m Forest Pre- and Post-Change
Detection Map See Table 2.

Forest Data

NAMRIA Land Cover Map of
Leyte Region, 2020 [39,40]

Training points for Land
Classification

Sentinel-1 VV and VH Median April–July 2020

Topographic Data

ALOS DSM [38] 30 m Elevation, Slope, Aspect

Typhoon Rai ground track [27] Forest Damage Proximity Map

2.2. Methods

The workflow of this study is illustrated in Figure 2. This can be summarized in three
steps. First, the degree of harmonics best fitted to this study was identified by comparing
the 1st-, 3rd-, and 6th-degree ∆Harmonic VI to the validation data. At the same time, the
most sensitive VI in terms of typhoon-induced forest damage was identified. The result
from the first step was used to create a Forest Damage Map. Second, the accuracy of
∆Harmonic VI was compared to those of the traditional methods ∆VI and LCC. Lastly, time
lag was investigated and the topography and typhoon track were related to the map.

2.2.1. Data Preprocessing

In order to perform the necessary analyses in this study, several data preprocessing
steps were carried out to the Landsat and PlanetScope images, ALOS, and Typhoon Track.
Derivative data such as the Forest Land Cover Map and Land Cover Change Map were
also produced. The former was used as the reference forest area for all the analyses, while
the latter was used for comparison to this study’s proposed method.
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Figure 2. Workflow of this study.

Landsat

Three sets of Landsat-8 images were generated using GEE. The first was a Landsat-8
composite image of the Leyte Region for the year 2020 using images taken on 7, 16, and 23
April; 2, 9, 18, and 25 May; 3 and 19 June; and 12, 21, and 28 July 2020. The composite was
made by first calculating the maximum NDVI across all of the images, and then choosing
the pixels for each Landsat band composite based on the maximum NDVI. The composite
image was used for land-cover classification using random forest to create a forest cover
map of the region. The second set of images was a monthly land cover (LC) map from
November 2021 to February 2022. Each image was derived from the median monthly
Landsat image for the region. The median was used to reduce noise in the data as it has
shown to be robust to outliers [24,41]. The monthly LC was used for land cover change
detection to create a Forest Damage Map. They were classified using the same model
classifier as that used for the composite images. Lastly, the monthly Landsat-derived VI
and HANTS VI were produced from the median monthly Landsat image for the region.
The latter was an output from harmonic series of the median monthly images. It was used
in computing ∆Harmonics VI and for comparative analysis. In order to account for lag
time effects, images were created in December 2021 and in January and February 2022.

PlanetScope

PlanetScope’s before- and after-typhoon images were used to create two classes in
the validation data: forest and forest loss. By contrasting the damage seen prior to and
following the typhoon, the extent of the forest loss was determined. The forest class, on
the other hand, was delineated by extracting the remaining areas in the scene that were
not covered by the delineated damaged areas and were intersected with the created forest
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cover map using Landsat data. Figure A1 presents an example of the validation dataset
used in this study.

Forest Cover Map

The forest cover used in this study was derived from the created composite Landsat
image and using National Mapping and Resource Information Authority’s (NAMRIA)
2020 LC Map of Region 8, Philippines [39], as the training data through random forest
classification in GEE. The NAMRIA LC Map was digitally interpreted from the 2019–2020
Sentinel-2 satellite 10 m resolution imagery. The Open and Closed Forest classes in the LC
Map [40] were grouped as forest, and the remaining classes were grouped as non-forest.
The training points were generated from the LC map and applied to the 2020 Landsat-8
Composite Image of the Leyte Region.

The median of the Sentinel-1 SAR data (VV and VH) from April to July 2020, ALOS
DSM (elevation, slope, and aspect), and vegetation indices NDVI and NDWI from Landsat-
8 over the Leyte Region were added as additional layers in the classification analysis. The
final map, which has an overall classification accuracy of 85%, is displayed in Figure 1. This
forest cover map was used as a base reference for forest coverage in all analyses performed
in this study.

The GEE code used to create the composite and forest cover maps of the Leyte Region
can be found at https://code.earthengine.google.com/82da315e4a8cf530b64d747387ac31dc
(accessed on 29 March 2024).

Land Cover Change Map

Three Land Cover Change (LCC) Maps were created by comparing the pre-typhoon
November 2021 LC Map with the post-typhoon December 2021, January 2022, and February
2022 LC Maps.

The LCC was derived by merging the cloud covers of each monthly LC map. Each LC
map was then masked using the merged cloud cover. This was performed to ensure that
each of the LC maps had similar coverage and was comparable to each other.

After masking, the LC maps were paired. The pairs were November 2021–December
2021, November 2021–January 2022, and November 2021–February 2022. For LCC detection,
post-typhoon forest cover was subtracted from pre-typhoon forest cover for each LC map
pair. This difference represents forest loss for each pair. Finally, to create a Forest Damage
Map from the LCC, the forest loss from the difference was mosaicked onto the forest cover
of the post-typhoon period for each pair.

Forest Damage Proximity Map

To relate the Typhoon Rai ground track to the Forest Damage Map, a Forest Damage
Proximity Map was created by measuring the perpendicular distance (m) between each
forest damage pixel and the typhoon track.

2.2.2. Determining the Best Harmonic Degree and VI
Vegetation Indices

To successfully measure typhoon-induced forest damage, there is a need to identify
which vegetation index is the most sensitive to such change. The vegetation indices
considered in this study that could best represent the forest response to typhoons were
the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI),
Normalized Difference Infrared Index (NDII), and Green-Red Vegetation Index (GRVI).

The Landsat-8 images contain five bands that can be used to derive all vegetation in-
dices: blue (B), red (R), green (G), near-infrared (NIR), and first shortwave infrared (SWIR1).

The NDVI is a widely used metric in remote sensing for assessing vegetation health
and vigor and can be computed using Equation (1).

NDVI =
(NIR − R)
(NIR + R)

(1)

https://code.earthengine.google.com/82da315e4a8cf530b64d747387ac31dc
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NDVI has been used for forest damage detection by comparing changes in NDVI val-
ues over time [42,43]. However, the index saturates for highly dense vegetation compared
to other VIs [44].

EVI, on the other hand, is more sensitive to dense vegetation than NDVI and has been
used to evaluate vegetation health [44–46]. This index can be computed using Equation (2).
The atmospheric adjustments and canopy background are represented by the constants in
the equation.

EVI = 2.5 ×
(

NIR − R
NIR + 6 × R − 7.5 × B + 1

)
(2)

The NDII is another vegetation index derived from remote sensing data that can
be valuable for forest damage assessment, particularly for assessing water stress within
vegetation. This index can be calculated using Equation (3).

NDII =
NIR − SWIR1
NIR + SWIR1

(3)

A study by Wang et al. [9] showed that NDII has a much higher sensitivity than NDVI
and EVI in assessing forest damage caused by Hurricane Katrina. Other studies have shown
that NDII provides a better monitoring of canopy and forest structural changes [47,48].

Finally, the GRVI is typically used to detect changes in vegetation phenology. This
index can be computed using Equation (4).

GRVI =
G − R
G + R

(4)

Motohka et al. [49] used this index to detect the early phase of leaf green-up and the
middle phase of autumn, when leaf yellowing occurs. They also noted that the index could
be used to detect disturbances such as typhoon occurrences in vegetation.

Although these VIs offer valuable insights into forest monitoring, it is important to
consider their limitations, including sensitivity to atmospheric conditions, soil properties,
and sensor characteristics. Thus, in this study, these VIs were used together with HANTS
and evaluated together with ∆VI, LCC observed in Landsat, and validation data from
PlanetScope images.

Decomposing VI Values to Map Typhoon-Induced Forest Damage through HANTS

The signal observed by a satellite from a particular pixel in an image is composed of
different sources, such as vegetation growth, seasonal variation, and/or other disturbances.
When applied pixel-by-pixel, Harmonic Analysis on Time Series (HANTS) can decompose
this signal into the sum of constant and cosine functions with different frequencies by
taking into account the most important frequencies in the signal’s historical data and using
a least-squares curve fitting procedure based on harmonic components. Equation (5) shows
the underlying function of HANTS for a given temporal N observation of y from i = 1 to
N [50,51].

y(t) = a0 +
M

∑
i=1

ai cos(ωiti − θi) (5)

The constant a0 is the mean of all N observations of y. M is the number of frequencies
in the series, where M ≤ N. In this study, M refers to the degree of harmonics. ωi is the
frequency of the ith harmonic term and ti is the time when the ith sample was taken. ai
and θi represent the amplitude and the phase of the ith harmonic term, respectively.

The amplitude and phase of the cosine function in Equation (5) are determined through
an iterative fitting process for each harmonic. Initially, a least-squares curve is generated
using all data points within the valid range. This curve is then compared with the observa-
tion points, and any points that significantly deviate from the fitted curve are identified and
removed. The process is repeated until no points exceed the predefined error threshold.
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In this study, a harmonic-fitted curve was assumed to be the ideal representation of the
undisturbed phenology based on previous studies [17–24]. HANTS was used to compute
∆Harmonic VI, whose formula is shown in Equation (6). ∆Harmonic VI is the percentage
change between the actual observed VI value of the forest and HANTS VI, which represents
the undisturbed forest phenology or the ideal VI value of the forest without typhoons. The
Con in the equation is a conditional expression, where if “HANTS VI < 0” is true, a −1 value
will be multiplied by the equation, or 1 if it is false.

As previously stated, HANTS can decompose a signal from a pixel. When considering
a signal from a forest pixel, HANTS decomposes it into different components, such as
vegetation growth, seasonal variation, and disturbances. ∆Harmonic VI seeks to obtain the
signal of any disturbance from these other signals by subtracting the undisturbed forest
signal, HANTS VI, from the Observed VI which contains all the forest signals, including
typhoon disturbances, using Equation (6). HANTS VI is a simulated VI image on the same
date as Observed VI.

The HANTS was implemented using GEE, similar to that used by Philipp et al. [24]
when they applied HANTS to measure drought effects on German forests.

∆Harmonic VI =
(

Observed VI − HANTS VI
HANTS VI

)
× 100 × Con(HANTS VI < 0,−1, 1) (6)

The key parameter for obtaining forest disturbance signals through HANTS is the number
of frequencies considered in the series, or the degree of harmonics. This pertains to the
number of signals considered in the HANTS. The goal of this study was to determine the
degree of harmonics that best represents the ideal phenology of the study area. To determine
the degree, the 1st, 3rd, and 6th degrees of all the ∆Harmonics VIs were considered. Usually,
ideal vegetation phenology can be explained by the first three degrees [22–24], which
are from vegetation growth and seasonal variation; thus, the 1st and 3rd degrees were
considered. In order to account for the potential existence of disturbances other than
typhoons, such as atmospheric and local disturbances, the 6th degree was included in the
analysis. This was also employed to make up for any potential spectral mixing brought on
by the data’s spatial resolution [23].

Separating Forest With and Without Loss through Thresholding

To make the ∆Harmonic VI comparable to the observed change in the validation data,
each ∆Harmonic VI pixel for all VIs considered was divided into two groups in terms of
the percentage change in each pixel value. The two groups were as follows: no loss, which
are pixels with a percentage change greater than a set threshold, and with loss, which are
pixels with a percentage change less than a set threshold.

Instead of using negative values to classify areas with forest cover loss, thresholding
was performed to compensate for changes in the area such as partial forest regrowth,
different sensitivities for each harmonic degree and VIs, and time-lag effects. The same
approach has been used in previous studies, such as those by Furukawa et al. [52] and
Chen et al. [13].

A threshold that best fits each VI was set by computing the accuracy of each ∆Harmonic
VI at varying thresholds, ranging from −5% to −100% changes at a −5% change interval.
A −5% threshold indicates that the forest loss value considered ranges from −5% to a
lower percentage change in the VI. Thus, the lower the threshold value, the narrower
the range of percentage change in VIs, considering forest loss. As for the 0–5% measured
change, the highest threshold of −5% was chosen to account for potential system and image
errors [24,26]. The −100% lowest threshold was set to represent the complete change in
land cover, where forest cover before the typhoon changed to barren soil after. Thresholding
was performed to determine the threshold value for each VI that best separates forests with
and without loss. The sensitivity of each VI type was also investigated.

By comparing the threshold values for each harmonic degree, it was possible to
determine which VI was most sensitive to forest damage. High threshold values show less
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sensitivity, as it is necessary to consider wider ranges of negative percentage change in
VIs to detect forest-loss areas, whereas low threshold values show otherwise. To consider
time-lag effects, December 2021, January 2022, and February 2022 were considered as
Observed VI in computing the ∆Harmonic VI in all of the analyses.

2.2.3. Accuracy Assessment and Validation

The validation metrics used in this study were as follows: each ∆Harmonic VI accuracy
when compared to the validation data computed through a confusion matrix (1000 points
created from equalized stratified random sampling were generated for each assessment
of ∆Harmonic VI); and the OA, which is the average accuracy per degree of ∆Harmonic VI
for the 3 months: December, January, and February. The sampling method was selected to
represent the two classes equally.

The resulting accuracy of each ∆Harmonic VI was further compared to the accuracy
of the usual forest damage assessment methods, ∆VI and LCC. The equation used for ∆VI is
shown in Equation (7). The steps for forest loss delineation in ∆VI were the same as the
steps performed for delineation in ∆Harmonic VI for all of the VIs.

∆VI =
(

PostTyphoon VI − PreTyphoon VI
PreTyphoon VI

)
× 100 × Con(PreTyphoon VI < 0,−1, 1) (7)

By performing these comparisons, the reliability and accuracy of ∆Harmonic VI
and the soundness of the assumption that the difference represents the actual change in
vegetation and typhoon disturbances can be confirmed.

2.2.4. Creating Forest Damage Map

Using the best degree and most sensitive VI in computing ∆Harmonic VI, a damage
map that could best represent the typhoon-induced damages was created. Section 2.2.2’s
delineation method was used to identify the areas that sustained damage from the typhoon.
In order to assist the government in disaster response and appropriate rehabilitation
planning, hotspots for forest loss and typhoon-vulnerable areas were identified. To see the
difference and advantage of using ∆Harmonic VI, the created map was compared side by
side with the damage map derived from ∆VI and the LCC map as well.

2.2.5. Investigating the Presence of Time Lag

Accounting for the time lag is crucial in the analysis using different VIs as indicators
of changes in forest phenology, as shown in previous studies [15,16]. The lag can vary
depending on factors, such as vegetation cover, climate, and other environmental conditions.
Different vegetation types respond differently to environmental changes. Some may show
immediate responses, whereas others may show delayed or cumulative responses. It can
also vary depending on the VI used.

To determine the presence of time lag in this study, the pixel count for forest and forest
loss from December 2021 to February 2022 of the three best performing ∆Harmonic VI were
tabulated to check the trend in the two classes.

2.2.6. Determining Contributing Factors to Forest Damage

To further understand the measured forest damage and the dynamics between the
forest, its terrain, and typhoons, the Forest Damage Map was matched with the Forest
Damage Proximity Map, elevation, slope, and aspect.

This was implemented by overlaying the Forest Damage Map on the topography and
proximity map to relate the forest loss areas to the terrain layers, which are the distance
to the typhoon, elevation, slope, and aspects derived from the Typhoon Rai track and the
ALOS DSM.

To ascertain which topographic features contributed to forest damage, the observable
trends for each comparison of forest loss observed with those features were examined.
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3. Results
3.1. Determing the Best Harmonic Degree and VI
3.1.1. Thresholding

Figure 3 shows the result of the OA of each ∆Harmonic VI for every set threshold. The
general trend for all VIs was that the OA increased slightly as the threshold increased. The
NDVI (Figure 3a) had its highest peak in OA at 67.20%, the NDII (Figure 3b) at 69.10%, the
EVI (Figure 3c) at 69.20%, and the GRVI (Figure 3d) at 65.60%. This relatively flat trend
can be explained by checking the producer’s accuracy (PA) of the EVI for forests with and
without loss, as shown in Figure 4. The EVI was selected because it had the highest OA
peak among the ∆Harmonic VIs. The PA of the no-loss areas (Figure 4a) increased as the
threshold increased; however, the PA of the loss areas (Figure 4b) decreased as the threshold
increased. The observed opposite trends balanced the effect of using multiple thresholds,
resulting in a flatter OA trend. The low PA of no-loss areas was expected since ∆Harmonic
VI, continuous data, gives information about the changes in remaining forest covers as well.
Subtle changes in the VI were categorized as forest losses, so higher thresholds tended to
underestimate forests that were not lost.

Figure 3. Overall accuracy at varying thresholds for each ∆Harmonic: (a) NDVI, (b) NDII, (c) EVI,
and (d) GRVI.

The 1st degree of all ∆Harmonic VIs performed better overall than the 3rd- and
6th-degree ∆Harmonic. The highest was measured at the 1st degree of ∆Harmonic EVI
with an OA of 69.20%, followed by the 1st degree of ∆Harmonic NDII with an OA of 69.10%,
both in the month of February.
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Figure 4. Producer’s accuracy at varying thresholds for ∆Harmonic EVI: (a) no loss, and (b) loss.

The ∆Harmonic VI in the month of February had the best OA, as all of the OA peaks
for each degree and VI were observed in this month. December exhibited the worst
performance across all of the degrees and VIs. This difference was evident in the NDII and
was much closer in the EVI and GRVI plots. The underperformance was due to the timing
of the typhoon occurrence (14 December), which took place in the middle of December. The
December monthly images comprised 6 and 22 December Landsat-8 OLI SR images. The
presence of pre-typhoon (6 December) measurements affected the OA for the month. As all
forest losses were visible in the February data, the dates for which post-typhoon images
were used to construct the validation data fall between December and January. As time
goes on, the measured damage from the VIs becomes more noticeable, which is another
reason for the variation in months.

For NDVI (Figure 3a), the OA of the 1st degree of ∆Harmonic peaked at 67% using a
−45% threshold, the 3rd degree of ∆Harmonic peaked at 65.80% applying a −30% threshold,
and lastly, the 6th degree of ∆Harmonic peaked at 67.20% with a −75% threshold.

For NDII (Figure 3b), the OA of the 1st degree of ∆Harmonic peaked at 69.10% using a
−95% threshold, the 3rd degree of ∆Harmonic peaked at 67.00% applying a −50% threshold,
and lastly, the 6th degree of ∆Harmonic peaked at 66.30% with a −65% threshold.

For EVI (Figure 3c), the OA of the 1st degree of ∆Harmonic peaked at 69.20% using a
−95% threshold, the 3rd degree of ∆Harmonic peaked at 66.60% applying a −90% threshold,
and lastly, the 6th degree of ∆Harmonic peaked at 66.50% with a −35% threshold.

Lastly, for GRVI (Figure 3d), the OA of the 1st degree of ∆Harmonic peaked at 65.00%
using a −40% threshold, the 3rd degree of ∆Harmonic peaked at 65.60% applying a −45%
threshold, and lastly, the 6th degree of ∆Harmonic peaked at 63.60% with a −70% threshold.

Judging by each VI peak at different degrees, NDVI and GRVI showed less sensitivity
to damage compared to NDII and EVI, as both the former needed higher thresholds to
accurately map the damage.

Figure 5 shows the OA results for each ∆VI at varying thresholds. Similar to the trend
observed in the ∆Harmonic VI plots, the general trend observed in ∆VI is relatively flat
aside from some sudden rises and dips in some trends. The highest OA for ∆VI was 67.60%
observed at NDVI, followed by 66.57% for EVI and 64.90% for NDII. To give context to its
trend, the PA of ∆EVI for forest areas with and without loss is shown in Figure 6. ∆EVI
was selected to make the trend in ∆VI’s PA comparable to ∆Harmonic VI’s PA (Figure 4)
by showing the same VI. Figure 6a,b show the opposite trend with increasing thresholds,
similar to ∆Harmonic VI, resulting in a flat OA trend.



Land 2024, 13, 1031 13 of 25

Figure 5. Overall accuracy at varying thresholds for each ∆VI: (a) NDVI, (b) NDII, (c) EVI, and
(d) GRVI.

Figure 6. Producer’s accuracy at varying thresholds for ∆EVI: (a) no loss, and (b) loss.

3.1.2. Comparison of ∆Harmonic VI to ∆VI and LCC

The highest OA of each degree of ∆Harmonic VI with its corresponding threshold is
shown in Figure 7. The highest accuracy observed was the 1st-degree ∆Harmonic EVI,
with an accuracy of 69.20% using a −95% threshold, followed by the 1st-degree ∆Harmonic
NDII with an accuracy of 69.10% applying a −95% threshold and 6th-degree ∆Harmonic
NDVI with an accuracy of 67.20% with a −75% threshold, all in the month of February.
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Figure 7. Overall accuracies of 1st-, 3rd-, and 6th-degree harmonic and ∆VI for each VIs: (a) NDVI,
(b) NDII, (c) EVI, and (d) GRVI; and accuracy of forest cover loss from (e) LCC detection. The
numerical value on the top of each bar indicates its threshold value.

The best degree on each ∆Harmonic VI was the 1st degree. The 6th-degree harmonic
had the lowest accuracy for almost all the VIs; however, the difference was small. The
largest difference observed was at 2.80% in ∆Harmonic NDII, and the smallest difference
observed was at −0.2% in ∆Harmonic NDVI.

The degree and VI with the best OA, considering 3 months for the time lag, were
the 1st degree of ∆Harmonic EVI, with an average OA of 63.10%. It also had the highest
peak among the VIs, and its thresholds were lower, showing high sensitivity to forest loss.
Thus, EVI is the best VI for assessing typhoon-induced damage to forest cover in the Leyte
Region. The NDII is also a good VI for forest loss assessment, as it has the 2nd highest peak
among the VIs and shows high sensitivity to forest loss, as well as low threshold values.

The performance of ∆Harmonic VI was comparable to the performance of ∆VI and
LCC accuracy. The highest accuracy observed for ∆VI was ∆NDVI between November
2021 and February 2022, with an accuracy of 67.60%, and the highest OA, considering the
three month-to-month comparisons, was 60.91% observed in ∆EVI. The lowest accuracy
observed for ∆VI was ∆NDII between November 2021 and January 2022 with an accuracy
of 53.80%, and the lowest average OA considering the three month-to-month comparisons
was ∆NDII at 57.97%. The NDII performed poorly in December for both ∆Harmonic VI and
∆VI, which can be attributed to the effect of the presence of pre-typhoon data, as discussed
in Section 3.1.1., and a high sensitivity to forest loss.

The LCC had the highest accuracy of 60.60% observed in November 2021 and February
2022, in the before- and after-typhoon images. With an accuracy of 43.00%, the period from
November 2021 to January 2022 was the least accurate. LCC’s average OA was 51.73%.
Due to its underestimation of the areas experiencing forest loss, LCC performed poorly.
This was evident in the high error of omission of forest loss areas at 49.60% and the very
low error of forests with no-loss areas at 29.20%. The sampling method did not help the
LCC either, as it gave the same weight to both forests, with and without loss classes.
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3.2. Creating Forest Damage Map

The first-degree ∆Harmonic EVI using data from February 2022 was found to be the
most sensitive to typhoon-induced damage, with an OA of 69.20% throughout the 3-month
period from December 2021 to February 2022. Using this, a damage map of forest cover in
the Leyte Region was generated and is shown together with the ∆EVI and LCC maps in
Figure 8.

Figure 8. Forest Damage Map of the Leyte Region generated using (a) 1st-degree ∆Harmonic EVI using
February 2022, and (b) ∆EVI for November 2021–February 2022 and (c) November 2021–February
2022 LCC.

The ∆Harmonic map showed a larger area coverage (Figure 8a) when compared to the
∆EVI (Figure 8b) and LCC map (Figure 8c). However, most forest areas are covered by
clouds; thus, a method that minimizes the cloud cover effect is ideal.

The southern portion of the region closest to the typhoon shows the most damage, as
illustrated in Figure 8. Damage can also be seen at the edges of the forest cover and near
the coast, where trees are very vulnerable. To clearly observe the effect of typhoons, forest
loss and terrain relationships must be further investigated (Section 2.2.6).

When comparing the forest loss observed on each map, ∆Harmonic (Figure 8a) showed
a larger forest loss observation than the other two maps, owing to its sensitivity to distur-
bances and less susceptibility to cloud cover. The LCC map (Figure 8c) showed the lowest
mapped forest loss area because it underestimated forest loss and had a low area coverage
owing to cloud cover susceptibility.

A side-by-side comparison between the Forest Damage Map and PlanetScope’s before-
and after-typhoon delineated forest loss can be seen in Figure A2.

3.3. Investigating the Presence of Time Lag

In this study, a time lag was observed in the response of forests to typhoon disturbance.
Figure 9a–d show the forest and forest losses in pixel count (1 pixel ∼= 0.0009 km2) from
the three ∆Harmonic VIs with the highest OA and from LCC. Forest loss increased from
December 2021 to January 2022 and then decreased from January 2022 to February 2022.
Subsequently, the forest area that experienced no loss decreased from December 2021 to
January 2022 and then increased from January 2022 to February 2022. This same trend
was also observed in most of the ∆Harmonic VI and ∆VI measurements. The trend showed
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that there was a 1-month time delay in measuring the full effect of the typhoon on the
forest region.

Figure 9. Pixel count of forest and forest loss area of the three ∆Harmonic VIs with the highest accu-
racy: (a) 6th-degree ∆Harmonic NDVI; (b) 1st-degree ∆Harmonic NDII; (c) 1st-degree ∆Harmonic
EVI; (d) LCC; (e) filtered 6th-degree ∆Harmonic NDVI; (f) filtered 1st-degree ∆Harmonic NDII;
(g) filtered 1st-degree ∆Harmonic EVI.

The December Landsat-derived HANTS VI image comprised two Landsat-8 OLI SR
December images: 6 and 22 December 2021. Considering Typhoon Rai’s date of occurrence,
14 December 2021, December HANTS VI was a combination of before- and after-typhoon
images. To further investigate the effect of time lag, the effect of the pre-typhoon data that
was present in December was filtered out in the pixel count analysis to clearly observe the
time-lag effect after the typhoon hit.

Figure 9e–g show the result of removing the pre-typhoon data in December on the
pixel count of the forest with and without loss. While NDVI showed no lag, NDII and EVI
showed time lags. In ∆VI, the same pattern was also noted. Given that the NDVI has been
shown to do poorly on dense vegetation, saturation may be the cause of the difference
in trend seen with NDVI [44]. It peaked at a −45% threshold, requiring a wider range of
percentage change in VI and overestimated forest loss areas in December, resulting in a low
OA of 58.32% (filtered December data).

Knowing the time lag allows a better understanding of vegetation dynamics, and vege-
tation change measurements using VIs can be made accurately. To increase the ∆Harmonic
EVI’s accuracy in this study, the forest loss recorded in January and February was com-
bined with the forest loss recorded in December. This was performed to account for the
time-lag effect and monitor the behavior of the monthly detected forest loss. Merging was
performed by first separating the forests with and without loss areas for each month pair.
Then, for each group, the forests with/without a loss of area were merged by giving the
later map higher priority than the preceding month in the merging method. Finally, the
two groups were merged into one map by assigning the forest loss area the highest priority.

Figure 10 shows the result of merging the series of time-lag forest loss areas using
the ∆Harmonic VIs with the best accuracy. OA increased as forest loss increased with each
succeeding month, further proving the presence of a time lag. From merging, a better
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1st-degree ∆Harmonic EVI damage map with a larger area coverage compared to Figure 8a
with a similar OA was created, as shown in Figure 11.

Figure 10. (a) Overall accuracy and (b) Producer’s accuracy of no loss and (c) loss for 1st-degree
∆Harmonic EVI, NDVI, and NDII of merged forest loss areas from December 2021 to February 2022.

Figure 11. Forest Damage Map of the Leyte Region generated by merging the 1st-degree ∆Harmonic
EVI December 2021 to February 2021 maps.
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Figure 12 shows sample PlanetScope images of Hindang and Leyte before and after
Typhoon Rai, with the Leyte Region Map showing the municipality’s location. Yellow
areas showed forest loss observed in the month of December 2021; orange areas showed
forest loss observed both in the months of December 2021 and January 2022; and red areas
showed forest loss observed for the three months—December 2021, January 2022, and
February 2022. Figure 12 shows that the forest loss area changed over time, indicating
that multiple dates after typhoon occurrence should be considered to better estimate the
damage caused by typhoon disturbance.

Figure 12. Comparison of (a) Hindang, Leyte (bounded by black box) PlanetScope images (b) before
(20 November 2021) and (c) after typhoon Rai (12 January 2022), and (d) merged Forest Damage Map
of 1st-degree ∆Harmonic EVI December 2021 to February 2022.

3.4. Determining Contributing Factors to Forest Damage

After generating the Forest Damage Map using HANTS, forest loss was compared
with the Forest Damage Proximity Map and the region’s topography. Figure 13 shows plots
of the relationships between the measured damage through HANTS (Figure 8a), typhoon
track, and topography.

Figure 13a shows that forest loss decreased as the distance from the typhoon increased.
In Figure 13b, forest loss increased from 0◦ to 15◦ and then decreased from the 15◦ slope
onward. Figure 13c shows that the forest loss increased from the 0◦ to 120◦ aspect, flattened
from 120◦ to 240◦, and then decreased from 240◦ to 360◦. As shown in Figure 13d, forest
loss increased from 0 m to 800 m, where it suddenly increased, and then decreased from
800 m to 1000 m.

With the plot, important topographic factors related to forest loss can be identified
and provide valuable information to proper authorities for the careful planning of disaster
preparedness and prevention.
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Figure 13. Forest loss compared to (a) proximity to typhoon, (b) slope (◦), (c) aspect (◦), and
(d) elevation (m).

4. Discussion
4.1. Determining the Best Harmonic Degree and VI
4.1.1. Most Sensitive VI to Typhoon-Induced Forest Damage

From numerous ∆Harmonic VI comparisons with the validation data, the EVI showed
the highest sensitivity among the VIs for forest loss. It showed better results than the
NDVI, which agrees with a previous study regarding the application of both VIs to dense
vegetation, such as forested areas [44]. Although the difference was small (2.20% at OA
peaks), NDVI needed a higher threshold to distinguish forests with and without loss,
showing less sensitivity.

The NDII was close to the EVI, with only a 0.10% difference in the OA peaks. This
result conforms to those of previous studies, which suggested that the index is a good
indicator for measuring vegetation disturbance [9,47,48].

Despite exhibiting the lowest OA peaks compared to the other VIs, GRVI also showed
good accuracy on every degree of ∆Harmonic VI. In the Philippines, where there are
only rainy and sunny seasons, it is unusual to find the use of an index that is normally
used to determine the beginning of spring and autumn. However, as shown in this
study, it can be a useful index for measuring typhoons because it is sensitive to typhoon-
induced defoliation [49]. The index performed better than other VIs in some months when
comparing ∆Harmonic VI and ∆VI. Another advantage of the GRVI is that it utilizes visible
bands (Green and Red), unlike other VIs, which require bands beyond the visible range.
This means that it is accessible because images in the visible range can be easily obtained.

4.1.2. Degree of Harmonic

The degree of harmonics with the highest accuracy across different VIs in this study
was the 1st degree, followed by the 3rd degree of harmonic. This implies that only one
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to three frequencies must be considered to describe the undisturbed phenology of the
study area and obtain optimal results. This agrees with previous studies [22–24], wherein
ideal vegetation phenology can be explained by the first three degrees, which are from
vegetation growth and seasonal variation. Additionally, a more general model might be
more appropriate given the size of the study area. The 6th degree of harmonics performed
the worst among the considered degrees, which shows that the effect of the image’s spatial
resolution and other sources of disturbances did not significantly influence the signal for
the undisturbed phenology. The only exception was in the case of the NDVI, where the
6th degree had a slightly better OA peak than the 1st degree. This might be due to the
information from the additional frequencies compensating for the saturation issues that the
index dealt with due to dense vegetation.

4.1.3. In Comparison With ∆VI and LCC Maps

LCC had the worst performance overall in the comparative analysis with ∆Harmonic
VI and ∆VI. The LCC achieved its highest accuracy of 60.60% from the November 2021–
February 2022 before- and after-typhoon images. It was 8.60% lower than ∆Harmonic VI’s
peak of 69.20% with the 1st-Harmonic EVI and 7.00% lower than ∆VI’s highest at 67.60%
with the change in NDVI between November 2021 and February 2022. The results showed
that the ∆Harmonic VI method was comparable to the conventional methods used for forest
damage assessment. It performed much better than the LCC.

Aside from having comparable results with ∆VIs and better results than LCC, the
∆Harmonic VI has several advantages.

First, the implementation of HANTS has been made simpler with the introduction
of geospatial processing platforms like GEE. The time-series images and computational
resources required by the method were provided by the platform. This method is also
straightforward, making automation of the process possible. On the other hand, the LCC
requires several rigorous processing steps and different datasets for implementation in
the GEE. First, a reference image was required to create training points for classification.
Often, the required reference image is not available on the platform, as in the reference
used in this study. Then, a classifier must be produced using the reference image and the
desired images to be processed. Depending on the accuracy of the classifier, supplementary
data, which are sometimes not available on the platform, might be needed to increase its
accuracy. To perform LCC detection, the LC image pair prior to and following the typhoon
must be created. The LCC process is laborious and unlikely to be automated because it
necessitates multiple recursions, stops, and checks.

Second, the accuracy of the LCC relies heavily on the spatial resolution of the data and
the accuracy of land classification. However, its accuracy suffers when data with coarser
resolutions are used. ∆Harmonic VI does not have these issues.

Third, ∆Harmonic VI only uses a single date image influenced by cloud cover, which
is the Observed VI, as the HANTS VI can be generated from the harmonic model and is
cloud-free. On the other hand, ∆VI and LCC need at least an image pair. These make
∆Harmonic VI not that susceptible to clouds. For regions like the Philippines, cloud cover
is a significant hurdle in performing remote sensing analysis, and minimizing the effect
of cloud cover would be very significant. Possessing a larger area coverage for damage
assessment would also be of great impact on disaster response. Figure 8 illustrates this
advantage. Figure 9 shows the difference in pixel count between ∆Harmonic VI and LCC.
Additionaly, Table 3 shows the pixel count and area difference of ∆Harmonic VI and ∆VI to
see the advantage of the proposed method in numbers.

Fourth, historical damage maps can be used to provide context for the causes of forest
damage seen in recent events and can be used to properly evaluate and prepare for future
typhoon events. Because ∆Harmonic VI utilizes historical data through HANTS, a Forest
Damage Map from any typhoon disturbance that occured at any point in time can be
generated as long as it is within the range of the harmonic series. This makes this study
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applicable when typhoon damage occurs frequently and makes the comparison of typhoon
damage at different times of occurrence possible.

Table 3. Coverage difference between ∆Harmonic VI and ∆VI.

Method
Total Pixel Count

December January February

∆Harmonic EVI 796,573 420,546 219,350
∆EVI 501,586 327,268 157,893

diff. 294,987 93,278 61,457

Area diff.1 (km2) 265.49 83.95 55.31
1 Conversion: 1 pixel = 0.03 × 0.03 km (Landsat-8 Spatial Resolution).

Finally, as ∆Harmonic VI contains continuous data that computes the percentage
change in a vegetation index, it has the potential to assess damage by severity. This can
also be said of the remaining forests. ∆Harmonic VI, which utilizes vegetation indices, can
indicate forest degradation or growth. However, as discrete data, LCCs can only indicate
the presence or absence of forests.

4.2. Different Contributing Factors to Forest Damage

From Figures 8 and 11, areas south of the Leyte Region have a high susceptibility to
damage as they are near the typhoon path. Regions near the coast and at forest cover edges
also showed damage from typhoons. To further understand the damage observed, the
map was compared to the topography and typhoon track, and the results are shown in
Figure 13.

The distance plot (Figure 13a) shows peaks in the first 30 km because these areas are
near the typhoon. Peaks were also observed at the 90th and 120th km intervals. However, it
is difficult to determine the cause of these peaks because multiple factors could affect them,
such as terrain and forest cover. Mountains are dispersed throughout the Leyte Region,
despite the region’s abundance of level coastal areas.

In the case of the slope (Figure 13b), forest loss increased from 0◦ to 15◦ and then declined
throughout the succeeding slopes. This conforms to the results of other studies [12,13].

Regarding the aspect (Figure 13c), the slope of the terrain and the direction, rotation,
and position of the typhoon must all be considered. Figure 12c, which shows the separation
between the damaged and non-damaged areas, demonstrates the effects of both aspect and
slope. Because the Philippines is in the Northern Hemisphere, typhoons rotate counter-
clockwise and usually move from west to east. So, the area located on the right side of
the typhoon path was expected to experience stronger winds due to its rotation and the
addition of the typhoon’s speed. Thus, slopes north of Typhoon Rai’s path facing east will
receive stronger winds than slopes facing west in this study because the typhoon’s path
was westward; the opposite is true for areas south of the typhoon. Therefore, aspect, in
combination with slope, is an important factor in these types of analyses. In the plot, there
was a peak in forest loss at around 90◦–120◦. This was expected, as Typhoon Rai, based on
Figure 2, passed to the south of the Leyte Region, causing the slopes facing east to catch the
full strength of the typhoon wind. There is also a dip at approximately 240–270◦, as these
slopes face the opposite direction of the wind direction.

Finally, an upward trend between forest loss and elevation (Figure 13d) was clearly
observed. Forest loss steadily increased from 0 to 700 m in elevation, followed by a sudden
rise at 700–800 m. Subsequently, it declined from 800 m onward. This sudden peak may be
due to the exposed forest patches on top of the hills, making the area more susceptible to
further losses [13].

To improve the applicability of the method and determine which factors contribute
more to the forest loss, it is recommended to use detailed validation data in which grad-
ing the changes before and after the typhoon to severity could be possible. This would
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improve the identification of damage hotspots and make the estimations more accurate
and quantifiable. A corresponding, current, and accurate map of the forest cover should be
added to this.

5. Conclusions

This study demonstrates the applicability of HANTS to Landsat-8 and PlanetScope
images for mapping typhoon-induced forest damage. It showed that the method is compa-
rable to the conventional ways used in forest assessment, with comparable accuracy versus
∆VI and LCC. It also showed several advantages of the method compared to ∆VI and LCC.

Using the method, a Forest Damage Map of the Leyte Region was created through
∆Harmonic VI and was used to identify damage hotspots. This approach can be used to
utilize past data to assess the present and plan for the future, as this study showed proof of
the advantage of this method in using historical data.

This study was also able to show the presence of time lag and contributing factors such
as the typhoon track and terrain in relation to the mapped forest loss due to the typhoon.

Overall, the approach using ∆Harmonic VI was successful in measuring forest loss
caused by a typhoon. This study achieves its primary objectives. With the use of just one
set of data, which was easily accessible to the public, and implementation through GEE, it
has been shown that the method is effective, simple, and transferable. The Government
and local sectors can easily adapt this method and use it to guide them in creating effective
forest management plans, forming appropriate responses to typhoons towards a more
resilient forest and, in turn, building a more resilient, disaster-ready community.
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Appendix A

Figure A1. PlanetScope’s images of Maasin City, Leyte, (a) before (25 October 2021) and (b) after
Typhoon Rai (19 December 2021). (c) Delineated changes between before and after images. (d) Image
bounds intersected with forest cover map and mosaicked with delineated damage areas.

https://www.planet.com/
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Figure A2. Side-by-side comparison (a) before and (b) after Typhoon Rai hit the selected areas in
Leyte Region as seen from PlanetScope with the (c) delineated forest and forest loss through visual
interpretation and land classification and (d) forest and forest loss mapped using HANTS method.
Dates of registration of the images were from 21 to 26 March 2024.
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