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Abstract: The exponential growth of user-contributed data provides a comprehensive basis for assess-
ing collective perceptions of landscape change. A variety of possible public data sources exist, such
as geospatial data from social media or volunteered geographic information (VGI). Key challenges
with such “opportunistic” data sampling are variability in platform popularity and bias due to
changing user groups and contribution rules. In this study, we use five case studies to demonstrate
how intra- and inter-dataset comparisons can help to assess the temporality of landscape scenic
resources, such as identifying seasonal characteristics for a given area or testing hypotheses about
shifting popularity trends observed in the field. By focusing on the consistency and reproducibility
of temporal patterns for selected scenic resources and comparisons across different dimensions of
data, we aim to contribute to the development of systematic methods for disentangling the perceived
impact of events and trends from other technological and social phenomena included in the data.
The proposed techniques may help to draw attention to overlooked or underestimated patterns of
landscape change, fill in missing data between periodic surveys, or corroborate and support field
observations. Despite limitations, the results provide a comprehensive basis for developing indicators
with a high degree of timeliness for monitoring perceived landscape change over time.

Keywords: spatial–temporal; landscape change; opportunistic data; photo content; perception

1. Introduction

It is common to think of landscape as a specific arrangement of objects in space. These
objects can then be measured, inventoried, and mapped for purposes of environmental
planning and natural resource management. To shift the perspective to a process-oriented
view, anthropologist Tim Ingold [1] coined the term landscape temporality in 1993. Ac-
cording to Ingold, this concept encompasses both the human viewer component and the
physical manifestation of objects in space and time. Landscape temporality can therefore
refer to both human and environmental change. This is similar to concepts in landscape and
urban planning, where “experiential” approaches aim to describe how people perceive and
interact with the landscape [2]. It is generally accepted that both human and environmental
change can significantly influence human–environment interactions and the perceived
meaning and value of landscapes [3]. However, the human viewer component in particular
complicates the assessment of landscape scenic resources. Landscape and environmental
planners need to assess not only physical changes (including ephemeral features) but also
how people respond to these changes, which in turn affect landscapes. This includes tem-
poral characteristics, trends, and collective perceptions of landscape change. Consequently,
both the human viewer and the landscape are important issues in the assessment of scenic
resources. In recent years, however, search and ranking algorithms and the global spread of
information increasingly influence the behavior of large groups of people [4]. This affects
collective engagement and interaction with the landscape and its scenic resources. For this
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reason, social media and the dissemination of information have become a new component
that planners need to consider.

To systematize these three components (the environment, the human viewer, and
information technology) for landscape change assessment, we propose the application of
the social–ecological–technological system (SETS) framework [5] to temporal geosocial
media analysis. To demonstrate and discuss a variety of situations, we examine temporal
patterns from five platforms (Reddit, Flickr, Twitter, Instagram, and iNaturalist) and for
five case studies. In particular, we interpret the results from a human-centered perspective,
with the aim of disentangling the human viewer component from several other super-
imposed patterns in the data, such as algorithmic bias, platform dynamics, or shifting
perceptual preferences. The results can help to corroborate or complement traditional
scenic resource assessments. The presented approach can also extend the means to in-
clude newer phenomena resulting from changing communication patterns in a globally
connected world.

2. Literature Review

In an attempt to improve the empirical assessment of ephemeral landscape features,
Hull and McCarthy [6] proposed a concept they called “change in the landscape”. While
the authors give a specific focus to wildlife, they describe a wide range of processes
associated with change: “[. . .] day changes to night, autumn to winter and flowers to fruit;
there is plant succession, bird migration, wind, rain, fire and flood [. . .]” (ibid., p. 266).
These changes are characterized by nine types, such as slow changes (gentrification of
neighborhoods, growth of vegetation), sudden changes (weather fluctuations), regular
changes (seasonal in plants, animal migration, sunrises), frequent (presence of wildlife,
wind, sounds), infrequent (fire, floods), long duration (buildings, roads, consequences of
natural disasters), medium duration (harvesting of trees, seasons), ephemeral–irregular,
occasional, and periodic (wildlife, weather, hiking, evidence of other hikers). In their
conclusion, the authors warn that ignoring these conditions leads to biased assessments of
landscape quality. In practice, however, common temporal assessments continue to focus
on physical manifestations of change, such as those observed in biotopes [7], which are
often assessed using remote sensing technologies [8].

A number of approaches investigate people’s perceptions, attitudes, and responses
to environmental change and how people engage with the landscape over time [9]. With
the emergence of large collections of user-generated content shared on the Internet, several
studies have attempted to assess temporal aspects. Juhász and Hochmair [10] compared
temporal activity patterns between geolocated posts shared on Snapchat, Twitter, and Flickr
and found that the different active groups on these platforms are responsible for significant
differences in the observed spatial patterns. A better understanding of the source and nature
of these differences has become a central focus of research around volunteered geographic
information (VGI). Paldino et al. [11] studied the temporal distribution of activity by
domestic tourists, foreigners, and residents in New York City, analyzing daily, weekly,
and monthly activity patterns and differences between these groups. Mancini et al. [12]
compared time series collected from social media and survey data. They concluded that
day trips have the greatest impact on the differences between survey and social media data.
Tenkanen et al. [13] showed how Instagram, Flickr, and Twitter can be used to monitor
visitation to protected areas in Finland and South Africa. Their findings suggested that the
amount and quality of data vary considerably across the three platforms.

In a relatively new direction, ecologists are increasingly relying on unstructured VGI
for biodiversity monitoring [14]. Rapacciuolo et al. [15] demonstrated a workflow to sepa-
rate measures of actual ecosystem change from observer-related biases such as changes in
online communities, user location or species preferences, or platform dynamics. In partic-
ular, they found that trends in biodiversity change are difficult to separate from changes
in online communities. In a recent study, Dunkel et al. [16] examined reactions to sunset
and sunrise expressed in the textual metadata of 500 million photographs from Instagram
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and Flickr. Despite significant differences in data sampling, both datasets revealed a strong
consistency in spatial preference patterns for global views of these two events. Platform
biases were observed in locations where user groups differed significantly, such as the
Burning Man festival in Nevada. The festival location ranked second globally for sunrise
viewing on Instagram, while Flickr users shared very few photos, a pattern that is explained
by the different user compositions of these platforms.

As becomes obvious with the above review, a key task in analyzing user-generated
content is to reduce bias in the data to increase representativeness. Bias can include factors
such as uneven data sampling affected by population density, or highly active individual
users skewing patterns through mass uploads, as well as changes in platform incentives
that affect how and what content is shared [12]. There are a number of methods that can
help compensate for these effects. However, these methods can also introduce bias and
further reduce the amount of data available, making interpretation more difficult. For
this reason, ref. [15] divide approaches into two broad categories that are not mutually
exclusive but tend to have opposite effects: filtering and aggregation. Filtering increases
precision, which helps to derive more reliable and useful inferences but also tends to reduce
the available variance, richness, and representativeness of the data. Aggregation, on the
other hand, minimizes bias in the overall data by, for example, increasing quantity through
sampling from a larger, more representative number of observers and by integrating data
from different platforms. This comes at the expense of precision. Aggregation and filtering
approaches can be combined [17].

A gap in the current literature is how to systematize the application of filtering and
aggregation approaches for new studies. The number of possible biases in data is large
(e.g., [14]), and it is not possible to know a priori which biases affect the data. There is a
lack of a categorization scheme to help understand the phenomena that affect sampling
at specific times and places. A first step in this direction is the consideration of any user-
generated data as “opportunistic” sampling and the contributing users as “observers”. Both
terms are increasingly used in biodiversity monitoring [14,18]. Opportunistic in this case
refers to the degree to which data are sampled without predefined systematic contribution
rules or objectives. The classification is not abrupt, and a continuum of platforms exists
between fully standardized and rigorous survey protocols at one end (e.g., the United
Kingdom Butterfly Monitoring Scheme [19]) to semi-structured data (iNaturalist or eBird
as VGI that is aimed at collecting data for a specific purpose), to fully crowdsourced data
(Flickr, Twitter, Reddit, Instagram as geosocial media) [20]. The ranking of platforms
along this continuum can be judged by the homogeneity of contributing user groups
and contribution rules. In summary, the above research suggests that opportunistic data
tend to be better for inferring users’ subjective values, including individual preferences
for activities and observational behavior, making them suitable for assessing landscape
perception and scenic resources.

This openness typically results in larger volumes of observations than are typically
available from more systematized field surveys but also leads to more biases that can
negatively affect the reliability and validity of the data. Proposed solutions to reduce bias
in species monitoring are (1) reverse engineering the “survey structure”, (2) finding the
lowest common denominator for comparison, (3) modeling the observation process, and
(4) comparing to standardized data sources [15]. Applying these solutions to landscape
perception, however, requires a broader set of considerations for disentangling results.
While ecological changes are critical for landscape and urban planners, changes in the
observer and the observation process itself are equally relevant. The latter covers effects
introduced by the use of global social media and information spread. Examples include
mass invasions [4] and algorithmic bias [21], which can have negative effects on landscapes
and how they are perceived.

This study presents five case studies. We discuss three main areas in which change
can occur: ecological, social, and technological. The domains are taken from the SETS
framework. They are used to systematize biases in the case studies and to assess perceived
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landscape change from different perspectives. Rather than looking at a single dataset in
detail, the cross-section allows us to test the system under different parameters. In the
literature cited above, the effects of technology are often subsumed under distributional
measures of the social domain or treated as one of many different biases affecting data
collection. Explicitly considering technology as an independent component helps us
systematize the analysis process and better distinguish important levers for biases found in
the data. We show how the framework can help analysts disentangle the three domains
when interpreting and making sense of temporal patterns in community-contributed
opportunistic data sources.

3. Materials and Methods
3.1. Framework for Analysis

The SETS framework is a system consisting of three poles, the social (S), ecological (E),
and technological (T) [22]. So-called couplings exist between these poles. Couplings can be
thought of as a “lens” for understanding the dynamics between different parts of complex
ecosystems. Perceptions of landscape change are part of such a system. To date, research on
landscape perception has mainly focused on two of these poles: the physical landscape and
the perceiving human (see [23]). The third technological pole of the SETS framework has
usually been subsumed under physical landscape assessment, which may include changes
such as infrastructure. However, Rakova and Dobbe [24] emphasized that algorithms
have become a critical part of the technological pole. Algorithms increasingly affect the
interactions between society and ecosystems on a global scale. From this perspective,
it makes sense to consider technology as a separate third component. Using geosocial
media or VGI as an interface for data collection means that technological couplings can
be identified as imprints in data (shown on the right side of Figure 1). Conversely, people
communicating on these platforms use their senses and social context (the social dimension,
S) to choose what to share and when to share it. Lastly, scenic resources and the environment
(the ecological dimension, E) provide incentives that affect people’s agency and their ability
to perceive and respond in a particular way.
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At the same time, more complex feedback loops exist between these poles that require
special attention. In particular, technological phenomena such as algorithms influence
individual social–ecological interactions [25]. People gather information from all sources
when making travel arrangements, for example. Their choices may be influenced by the
physical characteristics of the landscape, such as scenic quality, as an ecological coupling
(hereafter referred to as E), or by reports, reviews, and recommendations from other trav-
elers, which can be seen as an example of a social coupling (S). Such a spatial discourse
has effects over time on perceived values, norms, or the ways cultures perceive scenic
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beauty [2]. Finally, algorithms that promote some information while downgrading others
can be described as a technological coupling (T). Especially in the latter case and for geoso-
cial media, many algorithms and platform incentives have known and unknown effects
on user behavior [26,27]. The sum of these experiences defines how information about the
environment is perceived and communicated. Geosocial media and VGI, therefore, can
have a profound influence on long-term dynamics. Through repetition and reinforcement,
algorithmic couplings increasingly manifest as actual changes in the social or ecological
domain. Van Dijck [25] already argued that networks such as Flickr “actively construct
connections between perspectives, experiences, and memories” but also warned that “the
culture of connectivity [. . .] leads to specific ways of ‘seeing the world’” (p. 402). For
example, by rewarding particularly stunning landscape photographs with “user reach” on
social media, some landmarks are already under unusual visitation pressure [4].

Figure 1 illustrates geosocial media and VGI as a core component and as indistinct
from SETS. This concept helps to consider these algorithms together with their social
(including institutional) and ecological couplings that define the broader ecosystem in
which they operate [24,28]. To draw useful conclusions and derive actionable knowledge,
planners need to assess all three poles. However, approaches to disentangling the effects
of these poles vary widely depending on the data source and analysis context. To explore
these different analytical contexts and data characteristics for assessing perceived landscape
change, we use data from five platforms in five small case studies. The case studies illustrate
a variety of tasks, challenges, and pitfalls in early exploratory parts of analyses. We discuss
these case studies from a SETS perspective. The discussion is sorted based on the complexity
of identified data couplings, from less complex to more complex.

3.2. Data Collection and Preprocessing

Table 1 lists platforms and number of observations collected for each study. Data
collection for these studies was performed using the official application programming
interfaces (APIs) provided by the platforms. APIs are challenging to work with. They often
change on a weekly or monthly basis, are difficult to fully sample, and are often incom-
pletely documented. For example, the Instagram, Reddit, and Twitter APIs have changed in
ways that would make it very difficult or impossible to retrieve the data that were collected
for this study again and in the same form. Therefore, transparency, reproducibility, and
reusability are critical issues in this area of research. We follow a workflow outlined in [29]
that allows us to share the data collected from the APIs without compromising user privacy.
Based on this workflow, the data have been transformed into a privacy-friendly format
that allows quantitative analysis without the need to store raw data. As a result of this
data abstraction process, all measures reported in this paper are estimates, with guaranteed
error bounds of ±2.30%. Only publicly shared content was retrieved. With the exception
of the Reddit data, we only selected content that was either geotagged or contained some
other form of explicit reference to a location or coordinate. To reduce the effort of cross-
platform analysis, we mapped the different data structures and attributes of all platforms
to a common structure for comparison1. To assess temporal patterns, we used either photo
timestamps (Flickr), time of observation (iNaturalist), or post-publication date as a proxy
(Twitter, Instagram, Reddit). Below, we keep the discussion of data collection and process-
ing steps to a necessary minimum and refer readers to Supplementary Materials S1–S10
for commented code, data collection, processing, and visualization.

The first study focuses on data from Instagram, as a single data source, and a specific
phenomenon related to landscape change that is observed at 13 selected vantage points
across Europe (see S1). The study captured metadata from 998,800 photographs from
40 Instagram places between 2007 and 2019. Because multiple Instagram places can refer
to the same vantage point, we applied manual disambiguation to assign Instagram places
to vantage points. In the second study, we looked at Reddit, a discussion platform that
does not support explicit georeferencing. However, spatial information can be inferred,
for example, from subreddits that refer to different spatial regions. We manually matched
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46 subreddits related to US national parks and collected comments and posts from 2010
to 2022 (S2–S5). This dataset contains 53,491 posts and 292,404 comments. Due to signif-
icant differences in data availability, we limit our analysis to the 20 national parks that
receive the most communication exposure. The third study focuses on a single ecological
phenomenon (cherry blossoming) and examines seasonal and long-term variation across
two platforms (S6). The data collected include metadata for 100,700 photos from Flickr
and 1.6 million tweets from Twitter. The fourth study illustrates cross-platform analysis
by sampling and aggregating data from Instagram, Flickr, Twitter, and iNaturalist for
30 biodiversity hotspots in Germany. The total number of photos and observations is
2,289,722. In this case study, we do not apply any filtering techniques, and the results show
the absolute frequencies of photos, tweets, and animal and plant observations, respectively
(S7). In the last case study, we look at global observations of the Red Kite (Milvus milvus)
and use a variety of filtering techniques to examine temporal patterns (S8–S10).

Table 1. Overview of case studies and collected data.

Case Study Instagram Flickr Twitter Reddit iNaturalist

(1) “Mass invasions” 998,800
2007–2019

/ / / /

(2) “National parks” / / / 345,900
2007–2023

/

(3) “Cherry blossoms” / 100,700
2007–2018

1.6 M
2007–2018

/ /

(4) “Biodiversity hotspots” 997,200
2007–2020

915,800
2007–2022

221,100
2007–2022

/ 117,000
2007–2022

(5) “Red Kite” / 22,080
2007–2023

/ / 9 M
2007–2023

3.3. Signed Chi Equation

Specifically for the last case study, we apply the signed chi normalization to temporal
data. This equation was originally developed by Visvalingam [30] to visualize overrepre-
sentation and underrepresentation in spatial data.

chit =
((obst ∗ norm)− expt)√expt

norm =
Σexp

Σobs

Applying this normalization allows analysts to distinguish properties of filtered sub-
sets of data from phenomena or biases found in the entire data set [30]. The two components
can also be described as a generic query (expected) and a specific query (observed). A specific
query might be the frequency of photographs related to a particular topic or theme (e.g., all
photographs of the Red Kite). A generic query, on the other hand, ideally requires a random
sample of data. Observed and expected values are usually evaluated for individual “bins”,
which can be spatial grid cells or temporally delimited time periods or intervals. Based
on the global average ratio of frequencies between observed ( Σobs) and expected ( Σexp

)
,

individual bins are normalized (norm). Positive chi values indicate overrepresentation
and negative values indicate underrepresentation of observations in a given area or time
interval (chit). The randomness of the generic query is typically difficult to achieve due
to the opaque nature of APIs. For example, it is not always clear how data have been
pre-filtered by algorithms before being served to the user [16]. The easiest way to ensure
randomness is to sample all data from a platform. For Flickr and iNaturalist, this was
possible, and all geotagged photos and observations were queried for the period from 2007
to 2022. The resulting dataset we use for “expected” frequencies consists of metadata of
9 million iNaturalist observations. Observed frequencies are based on 22,075 Flickr photos
and 20,561 iNaturalist observations. All data and code used to generate the graphs are
made available in a separate data repository [31].
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4. Results and Discussion
4.1. Mass Invasions (Instagram)

For the first case study, we looked for a phenomenon called “mass invasions” by
Oian et al. [4], which refers to landscape changes triggered by technology and the use of
geosocial media. We expected that such a phenomenon would be easier to identify in the
data collected from geosocial media and VGI, since the phenomenon under observation
and the interface for data collection are closely related. We focused on a selected list of
13 scenic places in Europe that were known to be affected. This analytical context is part
of a master’s thesis by Tautenhahn [32]. The term is used to describe a sudden increase
in visitors that cannot be explained without taking into account geosocial media and the
global spread of information. Here, the effect of people crowding certain places can be
described as primarily belonging to the social (S) domain. Crowding existed before social
media (see [33]). Likewise, without the existence of scenery and beauty at these locations,
mass invasions might not have occurred in the first place. Thus, the ecological (E) and social
(S) domains can be seen as a necessary backdrop for this coupling. However, platforms,
algorithms, and the Internet as technology (T) seem to reinforce and incentivize certain
behaviors that produce a particular outcome in these places.

Data collection and analysis for this study presented relatively few challenges. Claudia
Tautenhahn contributed a list of potentially affected places, based on a priori knowledge
that she gained from literature and field observations. Because Instagram enables place-
based communication through a named gazetteer of user-contributed places, these places
could be used to directly query and filter data. For the 13 given locations and 40 assigned
Instagram places provided by Tautenhahn, we retrieved all posts, starting in 2019 and going
backward in time. To emphasize, the data collection was performed by the authors of this
article, and the visuals presented here were generated independently of the master’s thesis.
Tautenhahn’s thesis is based on the same data and includes additional qualitative surveys
and interpretations, which we cite accordingly. Figure 2 shows time series visualizations
for a subset of four of these places. The graphs were generated based on the total monthly
Instagram post volume. In addition, the single month with the highest frequency of posts
and the 12-month moving average are shown.
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To begin exploring questions of why and how, a common first step in interpreting such
graphs is to formulate hypotheses [34]. Comparing relative differences is an important
key task, as absolute post volume is not a robust and reliable measure [35]. We accounted
for this fact by scaling the y-axes between the minimum and maximum values in Figure 2
and by omitting absolute values. Based on visual comparison, the relative differences
between the four graphs can be grouped into three categories. Dark Hedges, a famous
avenue of old beech trees in the UK made famous by the TV series “Game of Thrones”,
shows a continuously increasing trend that also starts relatively early compared to the
other locations. In contrast, the two viewpoints Trolltunga and Preikestolen in Norway
both show a strong seasonal trend, peaking in the summer months. For these two sites, the
first significant peak in Instagram post volume also appeared relatively late in 2016–2017.
As an outlier, the Devil’s Bridge in Germany, known for its distinctive water reflection that
forms a full circle, shows an increasing trend in Instagram posts that peaks in the fall of
2017 and then suddenly declines. In contrast to the other three locations, the Devil’s Bridge
graph shows no noticeable seasonal patterns.

The formulation of useful hypotheses typically requires the consideration of additional
data. For Devil’s Bridge, a review of infrastructure changes reveals that the bridge was
undergoing renovations from 2018 to 2021 [32] (p. 55), a finding that can explain the
declining trend in Instagram photos. In other words, the opportunity to take stunning
photos of the bridge and generate “reach” on geosocial media was severely limited during
this time period. This simple and obvious relationship can be described as a coupling from
the SETS framework. The construction, as a (1) technological phenomenon, affects the
(2) social dimension of visitors’ agency to take photos of a given scene. The motivation
to take these photos (3) is perhaps related to the platform, which incentivizes the repro-
duction of idealized photos that generate as many comments, likes, or reshares online
as possible [36]. A similar social–technological incentive could also be at work at Dark
Hedges, further fueled by the global spread of information through geosocial media, as an
algorithmic–technological coupling that reinforces these trends. Such hypotheses would
need further confirmation through, e.g., questionnaires. In an interview by Tautenhahn [32]
at Dark Hedges, a couple confirmed the relationship between the TV series and their
motivation to visit the avenue (transcript, p. 201):

I: So what were your motives to come here? Your reasons?

P 1: Ahm. . .

P 2: Of course the movie.

[. . .]

I: (Laughs) And what did you expect when you came here?

P 1: Ahm, basically something like that. [Okay] A little bit overcrowded. [Yeah. Okay]
Yeah. But beautiful landscape of course.

Options for confirmatory analysis also include internal consistency checks, such as
regression analysis or comparing the consistency of individual ratios. For example, for Dark
Hedges, Tautenhahn [32] examined the proportion of posts containing hashtags related
to the TV series (#gameofthrones, #GoT, #kingsroad) over time. Her results show that the
ratio of posts containing at least one of these hashtags increased continuously up to 55% in
April 2015 and remained relatively stable thereafter, a finding that can be used to support
hypotheses and gain confidence in the data. Similarly, the small peak for Devil’s Bridge in
December 2016 can be linked to Lorenz Holder winning the Red Bull award with a photo
of the bridge and its reflection (ibid., p. 54), an event that may have originally triggered
reactions on geosocial media.

4.2. National Parks (Reddit)

Clearly delineated contexts with a single phenomenon and pole as a common denomi-
nator, as in the first example, are unfortunately rare in landscape change assessment. Many
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contexts require the study of landscapes at smaller scales, often covering large regions
with many phenomena and a variety of perceiving user groups. This not only requires
more effort to query, filter, and map data but also reduces the specificity of hypotheses
that can be identified from exploring patterns. To illustrate such a context, we selected a
list of 20 Reddit subreddits related to US national parks for the second example. The list
of subreddits is comparable to the list of Instagram locations in the first example. Both
gazetteers allow analysts to examine a set of locations or regions (E) from the perspective
of a selected group (S) of users on a particular platform (T). Figure 3 shows the average
monthly post and comment volume for the Reddit data for each park. The graphs are
stacked into a single visualization. This type of visualization, also known as a Joyplot, is
particularly useful for comparative analysis of changes in distributions over time [37]. The
Joyplot sorts the graphs for the national parks in descending order of importance based on
the average volume of data per month. To avoid obscuring parks with less communication,
parks with the most comments are shown in the background.
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Contrary to what one might expect, the ranking of Reddit parks (the order of ridges in
Figure 3) does not match the rankings reported by official visitation statistics. For example,
Great Smoky Mountains National Park is ranked #1 in official visitation statistics, while it
is ranked #14 based on the volume of posts and comments on Reddit. However, when this
overall bias is ignored, the monthly post volume for individual parks actually confirms
our expectation that seasonal preferences and limitations for viewing scenic resources
are reflected in communication trends. For example, Yosemite, Glacier, and Grand Teton
national parks are difficult to visit in the winter due to harsh weather conditions. This is
also evident in Reddit’s communication trends. Similarly, Joshua Tree, Zion, Grand Canyon,
Big Bend, and Death Valley national parks are popular during the winter season when
temperatures are more moderate.
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However, just because people communicate and share photographs online does not
necessarily mean (1) that they visited a national park, (2) that they perceived scenic re-
sources, or (3) that the quality of their experience was positive or negative. The strength of
the coupling between visual perception and collected data varies based on the interface
that is used for data collection [36]. This also applies to data collected from different social
media platforms. Flickr’s metadata, for example, often contains relatively direct links to
the visually perceived environment, through photo timestamps or GPS coordinates [27].
In contrast, posts on X (formerly Twitter) are frequently published retrospectively and do
not necessarily refer to the referenced geolocation [38]. From the perspective of visual
resource assessment, these biases can be seen as a detrimental effect. It can also be seen
as an opportunity to investigate different forms of environmental perception. Reddit, for
instance, incentivizes a particular form of communication that regularly produces extensive
discussion on a specific topic [39]. This is evident when looking at a small subset of four
Reddit post titles for Yosemite selected from Supplementary Materials (S2):

1. What equipment do I need for Vernal Fall in April?
2. Does group size of 1 help half dome lottery chances?
3. Yosemite Valley with little kids—in the snow—Trip Report
4. Mirror Lake today before the snow

One might wonder what “equipment” (1) has to do with appreciating the beauty of
Vernal Falls. Or how and why the “Half Dome Lottery” (2) affects the visitor experience,
or the effect of traveling with or without small children on the perception of the valley (3).
These questions may be only indirectly related to actual visual changes observed in the
landscape, but they can be critical for exploring dynamic relationships and making sense of
preference factors. Particularly, these discussions can be used by visual resource specialists
to examine three independent forms of landscape perception: (1) pre-visit expectations,
(2) on-site, in situ perceptions and experiences, and (3) post-visit retrospective reports and
abstracted memories of scenes.

Here, considering Reddit as a separate technological factor or lens can help draw
attention to the strengths and weaknesses of different platforms. Individual platform
features and algorithms result in a specific set of written and unwritten contribution rules,
restrictions, and incentives that affect the opportunistic contribution of data [10]. These
circumstances create a self-selection bias for contributing users. Hargittai [39] identifies
several of these for Reddit, including gender bias (more men than women), education
bias (more middle to higher education), and a bias toward users from urban areas. Biases
generally limit representativity. They may also explain why certain parks receive more
(e.g., Yosemite, Yoshua Tree) or less (e.g., Death Valley, Everglades) attention on Reddit
than is observed in field surveys. Many biases are difficult to assess systematically as they
are a consequence of complex couplings between the social and technological domains.
Depending on the context of the analysis, these factors limit the ability to draw valid and
accurate conclusions, such as for comparing different park uses. Conversely, correlations be-
tween the seasonality of platform use and the ecological characteristics of individual parks
indicate an easier-to-identify coupling. This may offer options for developing indicators
for monitoring perceived landscape change for individual parks.

4.3. Cherry Blossoms (Flickr, Twitter)

The first two case studies show a mix of ecological, technological, and social dynamics
in data patterns. Is this always the case? To illustrate the impact of a single phenomenon
across multiple platforms, we considered observations of cherry blossoms (E) shared on
Twitter and Flickr. Our hypothesis is that, under certain circumstances, global communi-
cation should be closely linked to actual ecological change. Cherry blossoms can be seen
as one of the many phenomena that Hull and McCarthy [6] categorized under landscape
change (see Literature review). Our expectation was that the regularity and seasonal ap-
pearance of cherry blossoms each spring should allow us to better observe changes in
patterns related to the other two SETS dimensions. For example, cultural changes (S) could
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lead to a steady increase in perceived importance that is visible online (T); or unexpected
fluctuations in the regularity of reactions could draw attention to trends and events not
captured so far. Figure 4 illustrates the global volume of tweets and Flickr photographs
that contain references to cherry blossoming from 2007 to 2018. For both Flickr and Twitter,
we used the same query to semantically filter content:(

‘cherry′AND
(
‘ f lower′OR ‘blossom′OR ‘sakura′

))
IN (post.hashtags OR post.post_title OR post.post_body)
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We explicitly limited our query to English terms and the Japanese word sakura, ac-
cepting a possible language bias. Furthermore, while we restricted the Flickr query to
geotagged content, we left the Twitter query unrestricted due to the limited availability of
only 1% of geotagged tweets.

Three key observations can be made. Firstly, the regularity and strong delineation
of peaks each spring can be observed for both Twitter and Flickr. This underpins the
overarching ecological bias of the phenomenon. Blossoms are visually sensed. The possi-
bility to physically observe cherry blossoms is further limited to a brief period each year.
Confirmation of this aspect in the graph (Figure 4) can be seen as a consistency check
for the data collection process. In other words, both Twitter and Flickr capture at least
some of the experiential dynamics of perceiving cherry blossoms as a visible change in the
landscape. Secondly, and perhaps more interestingly, Twitter and Flickr patterns differ (T).
While Flickr’s photograph volume is mainly limited to the short periods when blossoms
are actually visible (February through April), the data from Twitter feature a more continu-
ous volume of tweets throughout the year. A possible explanation could be the unequal
platform impact on the data collection process. Photographs can be considered as shared
digital artifacts of landscape perception [40]. Taking a photograph typically requires active
observation and presence [41]. We likely further substantiated this coupling by limiting our
Flickr query to geotagged content only. This is not the case for users of X (formerly Twitter),
who also use non-geotagged and text-only tweets that only metaphorically refer to cherry
blossoms. A look at a small subset of the collected data can support this assumption and
reveal other differences between the two platforms.

Twitter:

1. wondering why the cherry blossom tourists have to take the Metro during rush hour
2. Ugh cherry blossom fest traffic hell. Avoid the downtown mall
3. The Sakura flowers are expected to be on its full bloom tomorrow, can’t wait to just sit

under the Cherry Trees
4. LED Cherry Blossom Tree—National Deal, Special 1

Flickr:

1. This looked so nice in the sunlight. A whole tree filled with big clumps of cherry
blossom and this little clump was leaning out into the sunlight.

2. This is our Cherry tree in full bloom a couple of months ago, before the wind blew the
blossom away. You can’t tell from this how overgrown the garden is. Can’t comment
at moment.
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Interestingly, while the two selected Flickr photo descriptions are positive, half of
the shown tweets also refer to negatively perceived events related to the cherry blossoms.
Technology (T) and the way communication works on X seem to motivate users (S) to
report on negative experiences as well. Based on our limited observation, the same cannot
be said for Flickr, where users rarely share negatively perceived content. Furthermore, a
tweet referencing the “LED Cherry Blossom Tree” (a corporate advertisement) illustrates
a strong bias toward the intertwining of cherry blossoms in culture and technology. This
observation of occurrence is almost decoupled from its ecological origin (E) and would
be considered noise that must be excluded for any analysis of actual landscape change.
These observations may mean that analysts need better filtering procedures to consider
Twitter as a valid data source for studying visual perception or to exclude the platform’s
data altogether. Empirical testing could confirm and support these subjective observations,
which was not performed in this paper. Finally, the regularity of the cherry blossoms
and the global data collection also allow us to observe underlying platform trends [42].
Flickr’s overall popularity increased until 2012–2013, with a downward trend in users
since then (Figure 4). The rise of Twitter, on the other hand, appears to be slightly offset,
with a noticeable peak in 2014, according to our data. These technological artifacts distort
interpretation over longer periods and must be accounted for, which we demonstrate in
the last case study (Section 4.5).

4.4. Biodiversity Hotspots (Flickr, Twitter, iNaturalist, Instagram)

As becomes obvious, comparing data from multiple platforms is particularly useful
for identifying and separating technological (T) impacts from ecological (E) and social
(S) phenomena. To illustrate this utility, our next case study explicitly aimed to collect
data from many platforms and for a variety of regions of scenic interest. Using data from
Flickr, Twitter, iNaturalist, and Instagram, we examined the variance in seasonal user
frequency for five platforms and for 30 biodiversity hotspots in Germany (see Appendix A,
Figure A3). Figure 5 shows a subset of three hotspots as stacked frequency bar plots. All
hotspots show divergent patterns, with user frequency varying significantly over the year
and across platforms. For example, the “Ammergebirge, Niederwerdenfelser Land und
Obere Isar” (Hotspot 2) appears to be a popular holiday destination at the turn of the
year and for Instagram (e.g., winter sports tourism). At the same time, this region shows
a relatively constant flow of visitors across all platforms in all seasons. In contrast, the
“Limestone and Volcanic Eifel” (Hotspot 14), a region known for its attractiveness for nature
lovers and hikers, seems to attract a disproportionately high number of animal and plant
observers, especially in summer (iNaturalist), according to our data. Other regions, such as
“Mecklenburg-Brandenburgisches Kleinseenland” (Hotspot 25), are primarily characterized
by summer tourism. Many of the remaining hotspots, available in Appendix A, Figure A3,
can also be assigned to these three categories. In our data, Twitter and Instagram tend to
show the least variation in frequency throughout the year. In comparison, iNaturalist and
Flickr users seem to share more data, relatively speaking, during the summer months.

Looking at these graphs, it is clear that different platforms (T) promote different user
groups (S) with different interests. These interests influence how and when data are shared.
For example, for hotspot 25, characteristic lakes provide a number of ecosystem services
(E) for well-being that attract families and young people during the summer months. On
the other hand, rare species are difficult to observe with children playing nearby, which
may explain the underrepresentation of iNaturalist and the overrepresentation of Flickr
observations in this region. Similar couplings between ecology (E) and social preferences
(S) can be identified for the other hotspots. It would be natural to assume that older people
and species and plant observers, seeking quiet recreation during the summer months, are
more likely to avoid the busy family tourism in hotspot 25. Instead, hotspot 14 may offer
a set of features that better correlate with the interests of these groups, resulting in an
overrepresentation of iNaturalist data in this region. Finally, hotspot 2 is located in a region
bordering the Alps, which is popular for group travel. This characteristic overlaps well
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with group activities such as skiing or snowboarding. New Year’s Eve is a singular event
of particular importance for this group, which is shown as a significant peak for January in
our data. These patterns can be used to understand environmental justice and socio-spatial
inequality in decision-making [24]. The regularity and persistence of these seasonal trends
can further support monitoring changes over time. In these cases, cross-platform sampling
can reduce bias and increase the trustworthiness of the data. Unfortunately, rigid spatial
delineation of hotspots requires coordinates of sufficient accuracy, which are only available
from a limited number of platforms.
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4.5. Red Kites (iNaturalist)

Finally, in addition to seasonal patterns, we wanted to explore whether we could
identify long-term temporal trends for a selected landscape resource. In this last case study,
we filtered for observations of the Red Kite, a relatively common bird of prey in Europe,
as an ecological theme (E). After excluding Flickr due to low volume and noisy data, we
selected the iNaturalist platform for data collection. Unlike the other data sources explored
so far, iNaturalist can be considered as explicit Volunteered Geographic Information (VGI).
Explicit VGI directs user behavior toward a common goal for data collection, such as to
“Explore and share [. . .] observations from the natural world”.2 The platform is specifically
tailored for nature and plant observers, allowing (for example) sharing and filtering by
taxonomic species name. From a data collection perspective, this type of sampling is less
error-prone and does not require significant data cleaning (see [43]). The map in Figure 6
visualizes all locations from which users sighted and reported Red Kites in Europe between
2007 and 2022. Shown in the background is the shape of the Red Kite range, which is an
additional dataset maintained by iNaturalist. The area is derived from user activity and
illustrates the possible presence range of the Red Kite.
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Figure 6. Using umbrella communities, such as all “bird photographers” (Aves), to compensate
for within-community variation: (a) signed chi for “Red Kite” calculated without compensation,
based on all iNaturalist observations, (b) test for “Aves” vs. all iNaturalist observations, produc-
ing a similar distribution as (a), and (c) “Red Kite” vs. “Aves” observations to compensate for
within-community variation.

Disentangling social (S), ecological (E), and technological (T) couplings in the temporal
patterns of these data proves difficult for two reasons. First, the popularity of iNaturalist
increased significantly over the observation period (Figure 6). This means that the number
of Red Kite sightings must be adjusted to account for the overall increase in observers
on the platform. This requires downloading the complete iNaturalist data for all species
observations. We used the chi-square equation to account for this effect (see Materials and
Methods). Second, due to the concrete filtering, akin to a needle in a haystack, any noise,
co-occurring event, or underlying data problem can produce effects that make the results
difficult to interpret. The resulting graph (Figure 6a) shows an overrepresentation of Red
Kite observations in the years 2013 to 2017. Is this overrepresentation associated with an
actual increase in abundance (an ecological coupling) for this particular species? In fact,
structured survey data [44] suggest a continuous increase in Red Kite abundance over the
last decade.

We questioned this initial assumption. Given that the platform has grown significantly,
a bias introduced by certain subgroups, such as birdwatchers, overly joining in some years
could also explain fluctuations in Red Kite observations. To test the data based on this
hypothesis, the expected frequencies (all iNaturalist observations) can be compared to all
observations of the Aves (birds) “umbrella class”. The resulting graph (Figure 6b) produces
a similar overrepresentation as is visible in Figure 6a, which supports our earlier expectation.
Bird photographers joining comparatively early may have led to an overrepresentation of
Aves observations shared on the platform during these years. Later, as iNaturalist grew in
popularity, the platform also perhaps attracted more species observers from other interest
groups, such as plant photographers.

Based on these assumptions, we adjusted for the overrepresentation of Aves photogra-
phers by selecting all observations of the class Aves as expected frequencies and calculating
chi for the observed frequencies of the Red Kite (Figure 6c). In other words, we examine
the overrepresentation of selected subgroups by comparing behavioral similarities to a
broader “umbrella” group. While the resulting graph (Figure 6b) still shows an overall
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increase in relative Red Kite sightings, it is less pronounced than without compensation
(Figure 6a). A significant outlier of under-represented Red Kite observations compared to
all Aves observations is visible in 2019 (Figure 6c), corresponding to a decrease in general
bird photography in the following year of 2020 (Figure 6b). Further investigation of the
contributions of the Aves community compared to other subsamples would be necessary
to explain this outlier. At the same time, increased filtering also reduces reliability and
representativeness. For iNaturalist, representativity is already severely limited because of
the required expertise in a selected, specific topic (species monitoring). This may prevent
further zooming in on particular regions of interest and limit analysis to small-scale or
regional contexts where sufficient data are available.

5. Conclusions

Many of the relationships between visual perception, photo-based communication,
and collective social behavior have been known since Urry wrote about “the tourist
gaze” [33]. Since then, geosocial media and online communication have radically al-
tered their technological counterparts. Geosocial media and algorithms now influence,
distort, and modify the way people perceive their environment. This has given rise to
new phenomena, such as mass invasions or cyber cascades, which cannot be explained
without considering the global spread of information. Trends such as fake news [45], social
bubbles [46], and GenAI are creating an “era of artificial illusions” [47], in which the senses
are increasingly challenged to distinguish between the real and the imagined. On the other
hand, masses of data on how people perceive their environment are readily available online
as what we call opportunistic occurrence data. Assessing perceived landscape change
from this data requires disentangling multiple superimposed patterns in the data. For
biodiversity and species monitoring, ref. [15] refer to this process as “reverse engineering
survey structure” (p. 1226). While their goal is to identify changes in the physical world
(species trends) based on data collected online, landscape perception analysis requires
equal consideration of the human observer and the physical landscape. Both poles are
important subjects of analysis. In this paper, we introduce technology as a third pole. Based
on the SETS framework, we distinguish three main domains in which change can occur:
the ecological (E), social (S), and technological (T) domains. We discuss the application of
the SETS framework in five case studies and show how couplings between these domains
can be used to disentangle relationships. Three main findings can be summarized: first, the
importance of integrating data from multiple data sources, which refers to the category of
aggregation approaches proposed in ref. [15]; second, the consideration of platform biases
when filtering user-generated content collected online for specific purposes; third, the
existence of biases introduced by the use of technology as a data collection interface. These
distortions lead to specific analytical challenges in assessing original landscape experiences
and affect planners’ agency in decision-making.

In terms of scenic resource assessment, the five case studies can be grouped based on
how they address two common tasks: (1) identifying temporal characteristics for a given
area or region (national parks 4.2, biodiversity hotspots 4.4), and (2) characterizing and
identifying temporal trends for selected scenic resources or phenomena (mass invasions
4.1, cherry blossoms 4.3, red kites 4.5). Generic queries and the integration of multiple data
sources can reduce bias and increase representativeness, which helps to gain confidence in
the data. In particular, comparisons between data from different platforms help to better
understand tourist flows for different user groups. However, only unspecific and broad
interpretations are possible, such as identifying and confirming common, recurring seasonal
visitation patterns for selected areas and regions. Our results show this for two case studies
of US national parks and for 30 biodiversity hotspots in Germany. On the other hand, it
proved difficult to identify trends for selected themes or scenic resources. Our observations
indicate that overall platform changes (e.g., popularity) or changes in subcommunities
(e.g., bird photographers or the group of “red kite photographers” on Flickr and iNaturalist)
have a stronger influence on the observed patterns than phenomenal changes, such as
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the actual growth of the red kite population. A solution for landscape change monitoring
could be to first consider observations from umbrella communities, such as all “bird
photographers” on iNaturalist (Section 4.5), as the expected value in the signed chi equation.
This generic query can then be used to compensate for within-community variation to
visualize corrected trends for specific observations (e.g., to normalize observations of
specific bird species). As an exception, observations of cherry blossom, as a globally
perceived ecological event, are found to be very stable and seem to be less affected by
changes in communities or technology. One possible interpretation is that the phenomenon
is valued equally across many cultures and communities. Such events may therefore be
useful as “benchmark events” to compensate for within-community variation in the study
of more localized aspects of landscape change.

Our results show that platform biases exist toward individual poles that affect their
suitability for assessing some contexts of landscape change better than others. iNaturalist
or Flickr, for example, features metadata that appears more directly linked to the actual
perceived environment. This makes these platforms better suited for filtering data related
to actual ecological change (E), such as the timing of events like flowers, fruits, and leaf
color change. Other aspects related to broader societal behavior, human preferences, and
collective spatiotemporal travel footprints (S) may require consideration of a broader set of
platforms, including (e.g.) Instagram or Twitter. Due to the rules and incentives on these
platforms, not all aspects are captured equally. In our study, we observed that charged
discussions with positive and negative reaction sentiments, associations, metaphors, and
political couplings are primarily found on X (formerly Twitter) and Reddit. The influence of
technology and algorithms also varies, as shown in our case studies and confirmed by other
authors [36]. Capturing these different perspectives and conditions of opportunistic data
contribution helps planners gain a more holistic understanding of the dynamics influencing
visual perception and behavior observed in the field. Cross-platform comparisons, such as
in Section 4.4, are found to be particularly useful in reducing bias and providing actionable
knowledge for decision-making. The results can be used, for example, to increase environ-
mental justice or reduce socio-spatial inequality [24]. It can also help develop techniques
to counteract phenomena associated with the technological domain, such as crowd bias
toward certain visual stimuli and amplifying imitative photo behavior.

When evaluating scenic resources through the “lens” of user-generated content from
geosocial media, we recommend that planners consider the following three analytical
challenges. First (1), some ecological features (E) may be valuable even if they are not
perceived by someone. This applies to ecological phenomena that are rare, take a long time
to occur, or cannot be recreated or replaced once lost. Such features may be difficult to
detect in user-generated content and with quantitative analysis due to the selective focus
and bias of crowd perception [28]. Second (2), some content may be shared online for
social purposes (S) even if the original experience was not perceived as scenic or valuable.
We observed this effect for places affected by “mass invasions” (Section 4.1). Here, users
appear to selectively share photos that show few people in solitary scenes from what are
actually crowded vantage points. Tautenhahn explains this phenomenon as “self-staging”
in the landscape [32] (p. 9). Finally (3), even in those cases where people do share their
original experiences with, e.g., photographs of crowded scenes, geosocial media ranking
algorithms (T) may prevent these experiences from ever gaining a wider user “reach” by,
e.g., downgrading unaesthetic or negatively perceived content. These algorithmic effects
can make it difficult for planners to interrupt feedback loops, such as mass invasions,
with negative consequences for infrastructure, ecology, and human well-being (see [4]).
In the fields of landscape and urban planning, the shown analyses over time can help to
better understand these unique transient characteristics of places, areas, and landscapes,
to protect and develop specific ephemeral scenic values, or to propose actions to change
negative influences.
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Notes
1 Available online: https://lbsn.vgiscience.org/ (accessed on 18 July 2024).
2 Available online: https://www.inaturalist.org/ (accessed on 18 July 2024).
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