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Abstract: Accurate and rapid estimation of soil organic matter (SOM) content is of great significance
for advancing precision agriculture. Compared with traditional chemical methods, the hyperspec-
tral estimation is superior in rapidly estimating SOM content. Soil grain size affects soil spectral
reflectance, thereby affecting the accuracy of hyperspectral estimation. However, the appropriate soil
grain size for the hyperspectral analysis is nearly unknown. This study propose a best hyperspectral
estimation method for determining SOM content of farmland soil in the Ibinur Lake Irrigation Area
(ILIA) of the northwest arid zones of China. The original spectral reflectance of the 20-mesh (0.85 mm)
and 60-mesh (0.25 mm) sieved soil were obtained, and the feature wavebands were selected using
five types of spectral transformations. Then, hyperspectral estimation models were constructed based
on the partial least squares regression (PLSR), support vector machine (SVM), random forest (RF),
and extreme gradient boosting (XGBoost) models. Results show that the SOM content had relatively
higher correlation coefficient with spectral reflectance of the 0.85 mm sieved soil than that of the
0.25 mm sieved soil. The transformation of original spectral reflectance of soil effectively enhanced the
spectral characteristics related to SOM content. Soil grain size obviously affected spectral reflectance
and the accuracy of hyperspectral estimation models. The overall stability and estimation accuracy
of RF model was significantly higher compared with the PLSR, SVM, and XGBoost. Finally, the RF
model combined with the root mean first-order differentiation (RMSFD) of spectral reflectance of
the 0.85 mm sieved soil (R? = 0.82, RMSE = 2.37, RPD = 2.27) was identified as the best method for
estimating SOM content of farmland soil in the ILIA.
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1. Introduction

Soil organic matter (SOM) is an indicator for evaluating soil quality and is crucial for
soil health [1]. SOM plays a pivotal role in soil fertility and agricultural productivity [2].
The significant role of SOM also extends to influencing the global carbon budget, mitigating
environmental pollution, and influencing regional climate change [3,4]. Accurately assess-
ing SOM content is essential for identifying areas requiring fertilization within sustainable
soil management practices and sustainable agriculture [5]. In addition, the rapid estimation
of SOM content is crucial for understanding the spatial distribution of soil fertility [6]. How-
ever, the dynamics of SOM content, influenced by various temporal and spatial factors, can
result in variability and spatial heterogeneity of SOM, particularly in agricultural soils [7,8].
The differences in natural environment, soil types, and the complex heterogeneity of soils
in different areas, further limit the estimation of SOM content [9]. Therefore, developing
a rapid and effective monitoring technique for SOM content is challenging due to the
limitations associated with the differences in regional soil environment.
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Hyperspectral remote sensing technology is known for its feasibility in accurately and
rapidly monitoring of soil properties. It has been using for estimating soil moisture [10], soil
salt content [11], soil total nitrogen [12], heavy metals [13,14], and SOM content [15]. Hyper-
spectral estimation of SOM content by using soil spectral reflectance is of great significance
for advancing modern precision agriculture [1]. The monitoring of soil spectral signatures
and then hyperspectral estimation of SOM content supports wider environmental and
agricultural endeavors [15]. However, hyperspectral estimation accuracy of SOM content
depends on the quality of data processing and model construction, though its overall accu-
racy may be slightly lower than traditional methods. Nonetheless, hyperspectral estimation
of SOM offers advantages in terms of higher temporal and spatial resolution, which are
critical for effectively estimating SOM content [16].

Soil spectral reflectance is a comprehensive indicator of the spectral behavior of
physical and chemical properties of soil [17]. Soil grain size leads to obvious differences in
physical properties of soil, as well as characteristic changes in soil spectral reflectance [18].
It has been proven that the soil grain size significantly affects soil properties, including
pore structure, fungal hyphae, as well as SOM [2]. In general, soil grain size also affects
the spectral reflectance data of soil. The average spectral reflectance of soil varies with
grain size across all wavelength bands, highlighting the influence of soil texture on spectral
reflectance data [19]. Even for the same type of soil, different soil grain sizes affect their
spectral characteristics [20,21]. In addition, the estimation accuracy of hyperspectral models
based on spectral reflectance from soils with different grain sizes are different [18]. In
summary, the soil grain size can affect the accuracy and stability of hyperspectral estimation
models [22,23].

There is no consensus on the optimal soil grain size in SOM estimation, and the effects
of soil grain size on the hyperspectral estimation accuracy of SOM content are nearly
unknown, especially for farmlands in arid zones. The main objectives of this research
are to (a) obtain the feature spectral wavebands for SOM contents of farmland soils in
the northwest arid zones of China; (b) detect the effects of soil grain size on the spectral
reflectance related to SOM; (c) clarify the effects of soil grain size on the hyperspectral
estimation accuracy of SOM content; (d) identify a best hyperspectral method for rapidly
estimating SOM content of farmland soil by means of the partial least squares regression
(PLSR), random forest (RF), support vector machine (SVM), and extreme gradient boosting
(XGBoost) models. Results of this study would offer a technical reference for selecting the
optimum soil grain size during the hyperspectral estimation of SOM content.

2. Materials and Methods
2.1. Data Acquisition

This study was conducted in the Ibinur Lake Irrigation Area (ILIA) of the NW arid zones
of China, with an experimental area range of 80°50'-83°00" E and 44°20'-45°10" N (Figure 1),
which covers an area of 3300 km?. Climate type of the experimental area belongs to the
temperate continental dry climate, with an annual average precipitation of 105.27 mm, 80%
of which is mainly concentrated from June to September. The annual average evaporation
reaches 2221.3 mm, and the annual average temperature is 7.8 °C. Main soil types in the
ILIA are irrigation desert soil, sandy soil, saline soil, and calcareous soil [24].

The field investigation, soil sampling, chemical analysis, and spectral measurement of
this study were conducted in May of 2023. A total of 106 surface soil specimens from the
top 20 cm (0-20 cm) layer were collected from farmlands (mainly cultivated land including
cotton, corn, beets, and wheat) according with the soil sampling standard detailed in
“NY/T 395—2000” [25]. The locations of sample sites are also shown in Figure 1.

Five sub-samples (approximately 400 g) were collected at each sample site (100 m x 100 m
areas), and mixed as one typical soil sample (about 2 kg). After three days of air-drying in
laboratory, the non-soil materials such as plant roots and stones in the collected samples
were removed. The collected soil samples divided into two groups. One group was ground
and then passed through a 60-mesh (grain size of <0.25 mm) sieve for determining the
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SOM content, and the other group was ground and passed through a 20-mesh (grain size
of <0.85 mm) and 60-mesh sieve, respectively, for measuring the soil spectral reflectance.
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Figure 1. Map of the study area. (a) Location of ILIR; (b) Satellite image of ILIR; (c) Sample sites.

The SOM content was determined according with the National Standard of China
detailed in NY/T 1121.6—2006 [26]. Soil spectral reflectance extraction is accomplished by
a FieldSpec®3 portable object spectrometer (Analytical Spectral Devices, Boulder, CO, USA)
with spectral resolution of 1 nm. The spectrometer was switched for 30 min before the spec-
tral extraction, and it was corrected using a black and white board. The spectral reflectance
data of 350-1750 nm (including visible light band (350-1000 nm) and near infrared band
(900-1700 nm)) from two different grain size of soils were obtained. The changes in soil
moisture may affect the predictive performance of the models, especially in scenarios where
it is necessary to capture long-term trends or seasonal variations. The uncertainty of soil
moisture may lead to an increase in the uncertainty of model predictions [10]. Therefore,
when developing and using these models, the influence of soil moisture dynamics needs to
be considered and the water absorption band should be removed to improve the accuracy
and robustness of the models. The spectral data within 350-399 nm and 1301-1430 nm
were excluded to reduce abnormal soil spectrum [27].

Each soil sample was scanned 10 times and 10 spectral reflectance curves were ob-
tained, then the average value of them was taken as the final spectral reflectance data.
Consequently, the Savitzky—Golay (5-G) algorithm was used to smooth the final spectral
reflectance data to improve the signal-to-noise ratio [28]. Finally, the spectral reflectance
curves of the 0.85 mm and 0.25 mm sieved soils after the above spectral pretreatment
were obtained.

2.2. Spectral Feature Extraction

The original soil spectral reflectance data of the two different grain size soils were
mathematically transformed into the first-order differentiation (FD), logarithmic FD (LTFD),
root mean FD (RMSFD), reciprocal logarithmic FD (ATFD), and logarithmic reciprocal FD
(RLFD) to enhance the spectral information related to SOM content, as well as to reduce un-
predictable interference of environmental background [9]. To select the feature wavebands,
the correlation analysis was performed between SOM content and original and transformed
spectral reflectance data of soils with two different grain sizes. The Pearson’s correlation
coefficient (r) between SOM content and spectral reflectance were calculated, and the
significance of correlation analysis was tested at the p < 0.01 level (two-tailed), whereas
the threshold for the r was set at £20.248 [29]. Then, wavebands with absolute correlation
coefficients more than 0.248 were selected as the feature wavebands, and used for following
model construction. The correlation coefficient (r) can be determined according to special-
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ized literature Zhong et al. The r value ranges from —1 to +1, and based on the absolute
value of magnitude, the strength of the correlation is classified as: maximum correlation
(1.0 > r > 0.80), strong correlation (0.60 < r < 0.80), moderate correlation (0.40 < r < 0.60),
weak correlation (0.20 < r < 0.40), and weakest correlation (0 < r < 0.20) [30].

2.3. Model Construction

The samples of spectral extraction were divided into a calibration set (81 samples)
and a validation set (25 samples) according with the Kennard Stone algorithm [1]. The
calibration set was used to construct and train models, whereas the validation set was
used to test and evaluate the model performance. Among various algorithms, the partial
least squares regression (PLSR), random forest (RF), support vector machine (SVM), and
extreme gradient boosting (XGBoost) models were adopted to establish the hyperspectral
estimation models of SOM. PLSR is a statistical method designed to model the relationship
between a set of independent variables (x) and a dependent variable (y), especially useful
in scenarios of multicollinearity among the independent variables or when the number of
predictors exceeds the number of observations [13]. SVM is a supervised learning algorithm
for regression, it identifies a hyperplane that optimally represents the relationship between
input and output variables while permitting a certain degree of deviation or error. SVM is
effective for non-linear relationships and is applied in diverse research fields [31]. RF is
an ensemble learning algorithm for regression analysis that enhances prediction accuracy
and stability by combining multiple decision trees [32]. XGBoost is an advanced machine
learning algorithm frequently used for regression and classification tasks, which is known
for its efficiency for non-linear relationships [33]. The data of different soil types may have
different distribution patterns and characteristics, which requires the model to have a strong
generalization ability to adapt to unseen soil types. These models need to ensure their
generalization ability through appropriate parameter adjustment and model validation.
The PLSR, the SVM and the RF were constructed for predicting two different sieves SOM
content in this study. Based on Python, the “random-state” of three models was set
as 69. Due to the randomness of the RF model, the number of parameters (“n-estimators”
and another “random-state”) will disturb the predictive performance of the model. Under
the consideration of model performance, model running time, sample number and other
factors, the number of parameters (“n-estimators” and another “random-state”) of the RF
model was set in the range from 1 to 99.

2.4. Model Evaluation Indices

To compare the accuracy and reliability of the constructed hyperspectral estimation
models, the R? (coefficient of determination), RMSE (root mean square error), and RPD
(residual predictive deviation) of validation set were used. These three indices were
calculated as follows:

R2—1_ Yimq (Ym — ]/6)2 )
Yim1 (Yave — ye)z
n _ 2
RMSE = W )
RPD =S.D/RMSE 3)

where y;, and y, represent the ground-measured and hyperspectral estimated values of
SOM content of sample i, respectively. The y,,, represents the average value of the ground-
measured SOM contents, and 7 is total number of the collected soil samples.

In general, a robust hyperspectral estimation model has higher R?> and RPD values
but a lower RMSE [30,34]. R? is used to assess the stability and estimation accuracy in
reflectance spectroscopy studies [35]. The stability and prediction accuracy of R? is classified
into five categories: R? > 0.90 indicates an “excellent prediction”, whereas 0.82 < R? < 0.90
indicates a “good prediction”, 0.66 < R? < 0.82 indicates an “approximate quantitative
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prediction”, 0.50 < R? < 0.66 indicates a “poor prediction”, and R? < 0.50 denotes an
“unsuccessful prediction” [35,36]. The RMSE is used to evaluate the estimation quality of
the model. The lower RMSE indicates the higher estimation quality of the model.

The RPD is defined as the ratio of the standard deviation (S.D) of the ground-measured
data to the RMSE of the cross-validation. It is used to evaluate the estimation ability of
the hyperspectral model [37]. The estimation ability of RPD is divided into five categories:
1.40 < RPD indicates a “poor model and/or estimation”, whereas 1.40 < RPD < 1.80
indicates a “fair model and/or estimation”, 1.80 < RPD < 2.00 indicates a “good model
and/or estimation”, 2.00 < RPD < 2.50 indicates a “very good quantitative model and/or
estimation”, RPD > 2.50 indicates an “excellent model and/or estimation” [37,38].

3. Results
3.1. Descriptive Analysis of SOM

Table 1 details the basic statistical outcomes for the calibration, validation, and total
sets of SOM content of farmland soil in the ILIA. The pH, salt content, and EC values of the
collected soil samples were also given. The S.D and CV (coefficient of variation) values of
SOM content used to quantify data variability. It can be seen that the SOM content of the
total revealed a range from 6.04 to 31.60 g/kg, with an average value of 17.18 g/kg. The
average pH value of the collected samples was 8.85, indicating an alkaline soil condition,
whereas the average salt content was noted as 0.40 g/kg, and the average EC was measured
at 1432.30 us/cm.

Table 1. Descriptive statistics of the soil properties.

SOM EC
Sample Type n pH Salt (g/kg)
Range (g/kg) Average (g/kg) S.D (g/kg)  CV (%) (us/cm)
Calibration set 81 6.04-31.60 16.94 4.99 29.48 8.84 0.39 1368.42
Validation set 25 10.40-28.10 17.96 5.38 29.94 8.88 0.45 1639.28
Total set 106 6.04-31.60 17.18 522 30.39 8.85 0.40 1432.30

Specifically, the average SOM content (16.94 g/kg for the calibration set vs. 17.96 g/kg
for the validation set), S.D (4.99 g/kg for the calibration set vs. 5.38 g/kg for the valida-
tion set), and CV (29.48% for the calibration set vs. 29.94% for the validation set) were
remarkably consistent between the calibration and validation sets. This similarity proves
that the division of dataset in this study was appropriate, which is very applicable for the
subsequent model construction [9].

3.2. Spectral Reflectance of Soils with Different Grain Sizes

Figure 2 illustrates the S-G smoothed soil spectral reflectance curves for the 0.85 mm
(Figure 2a) and 0.25 mm (Figure 2b) sieved soil samples, respectively.

0.8 0.8
0.85 mm sieved soil 0.25 mm sieved soil
0.6+ 0.6

Reflectance
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Figure 2. The original soil spectral reflectance curves processed through S-G smoothing. (Each line
represents the spectrum of the soil sample (n = 106)). (a) 0.85 mm sieved soil; (b) 0.25 mm sieved soil.
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As shown in Figure 2, the range of the original spectral reflectance of the 0.85 mm
and 0.25 mm sieved soil samples were 0.074-0.598 and 0.122-0.647, respectively. The
average reflectance value of the 0.85 mm and 0.25 mm sieved soil samples were 0.334 and
0.423, respectively. As shown here, the spectral reflectance curves of these two sieved
soil exhibited a rapid increase an upward trend at the 400-800 nm wavelength range,
while showing relatively stable at the 800-1300 nm and 1430-1750 nm wavelength range.
The steeper slope observed in the 400-600 nm range may be attributed to the presence
of iron in the soil. However, the trend of the spectral reflectance curves decreased at the
1300-1430 nm wavelength range. Besides, the spectral reflectance curves of these two
sieved soil starts to change significantly at around 600 nm, and the spectral curves of
investigated soil samples exhibited consistency in shape, trend, and the positions of main
peaks and valleys. Generally, the spectrum of the 0.25 mm sieved soil was slightly higher
than that of the 0.85 mm sieved soil (Figure 2). This result indicating the obvious effects of
soil grain sizes on the soil spectral reflectance.

3.3. Correlations between Soil Spectral Reflectance and SOM Content

The correlation between the soil spectral reflectance (including the original and mathe-
matically transformed spectral reflectance) and SOM content of the collected soil samples
was analyzed (Figure 3). It can be seen that the SOM content exhibited relatively weak asso-
ciation with the original spectral reflectance (R) of both the 0.25 mm sieved soil (r = —0.227,
at the weak correlation level) and the 0.85 mm sieved soil (r = —0.415, at the moderate
correlation level) (Figure 3a). As for the original spectral reflectance, the 0.85 mm sieved
soil exhibited better correlation with SOM content compared with the 0.25 mm sieved soil.
It is evident that the original spectral reflectance curve of the 0.25 mm sieved soil does
not meet the correlation test threshold of +-0.248. The original spectral reflectance of soil,
especially the 0.25 mm sieved soil, had poor performance in the correlation between SOM
content of farmland soil in the ILIA.
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Figure 3. Correlation between the soil spectral reflectance and SOM content. (a) R; (b) FD; (c) LTFD;
(d) RMSFD; (e) ATFD; (f) RLFD.

The correlations between SOM content and the five types of transformed spectral
reflectance data including FD (Figure 3b), LTFD (Figure 3c), RMSFD (Figure 3d), ATFD
(Figure 3e), and RLFD (Figure 3f) were significantly improved. Specifically, as for the
0.25 mm sieved soil, the absolute values of the maximum correlation coefficients between
SOM content and FD, LTFD, RMSFD, ATFD, and RLFD transformed soil spectral reflectance
data were 0.544 (at 885 nm), 0.533 (at 885 nm), 0.541 (at 885 nm), 0.533 (at 885 nm), and
0.532 (at 885 nm), respectively, at a moderate correlation level (0.40 < r < 0.60). Meanwhile,
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as for the 0.85 mm sieved soil, the maximum absolute correlation coefficients between
SOM content and the FD, RMSFD, and RLFD transformed spectral data were 0.658 (at
515 nm), 0.641 (at 441 nm), and 0.651 (at 515 nm), respectively, at a strong correlation level
(0.60 < r < 0.80), whereas the maximum absolute correlation coefficients between SOM
content LTFD and ATFD transformed spectral data were 0.543 (at 407 nm) and 0.543 (at
407 nm), respectively, at a moderate correlation level.

Among the five types of mathematically transformed spectral reflectance data, the FD,
RMSFD, and RLFD fall into the strong correlation level (0.60 < r < 0.80), whereas LTFD and
ATED fall into the moderate correlation (0.40 < r < 0.60). The results indicate that the FD,
RMSFD, and RLFD transformation can effectively minimize environmental interference or
eliminate baseline drift during spectral data collection, thereby enhancing spectral features
of soil and facilitating the identification of effective wavebands. It can be concluded that the
mathematical transformation of the original soil spectral reflectance can effectively enhance
the correlation between the SOM content and soil spectral reflectance, which is consistent
with results of related study [39]. Thus, applying appropriate mathematical transforma-
tions to the original spectrum constitutes an effective strategy for enhancing accuracy of
hyperspectral estimation model. Notably, the FD, RMSFD, and RLFD transformation of the
original soil spectral reflectance of the 0.85 mm sieved soil exhibited the more significant
(r > 0.6) impact on the spectral characteristics of the soil.

In addition, the feature wavebands primarily located within the 407-885 nm range
of visible light, and achieving a maximum correlation coefficient of —0.658, at the strong
correlation level. In the near-infrared waveband, there is no notable correlation between
SOM content and spectral reflectance. The near-infrared band is typically highly sensitive
to SOM content. Therefore, SOM displays relatively lower reflectivity in the near-infrared
waveband due to its absorption of most near-infrared light [40]. Consequently, spectral
reflectance in the near-infrared band exhibited a negative correlation with SOM content.

3.4. Model Construction and Evaluation

Based on the correlation coefficient between the soil spectral reflectance data and SOM
content, wavebands with the absolute correlation coefficient value more than 0.248 were
taken as the feature wavebands. Then, taking the selected feature wavebands as the
independent variables (x), whereas taking the SOM content as the dependent variables (y),
the PLSR, SVM, REF, and XGBoost algorithms were employed to construct hyperspectral
estimation models of SOM content of farmland soil in the ILIA. Three evaluation indices
including the R?, RMSE, and RPD for the constructed hyperspectral estimation models
were obtained to compare the performance of constructed models (Table 2).

Table 2. Model evaluation indices of the hyperspectral estimation models.

The 0.85 mm Sieved Soil The 0.25 mm Sieved Soil
Models Indices
FD LTFD RMSFD ATFD RLFD FD LTFD RMSFD ATFD RLFD
R? 0.56 0.61 0.59 0.54 0.62 0.41 0.44 0.40 0.44 0.48
PLSR RMSE 3.55 3.51 3.48 3.74 3.40 4.11 4.08 4.16 4.08 3.90
RPD 1.52 1.53 1.55 1.44 1.58 1.31 1.32 1.29 1.32 1.38
R? 0.70 0.64 0.74 0.63 0.69 0.44 0.73 0.62 0.73 0.38
SVM RMSE 4.17 4.58 4.29 4.54 4.22 493 4.96 4.83 4.95 491
RPD 1.29 1.17 1.25 1.19 1.27 1.09 1.08 1.11 1.09 1.10
R? 0.74 0.64 0.82 0.59 0.75 0.58 0.55 0.60 0.44 0.72
RF RMSE 2.97 3.62 2.37 3.41 3.00 3.53 3.71 3.62 4.07 3.05
RPD 1.81 1.49 2.27 1.58 1.79 1.52 1.45 1.49 1.32 1.76
R? 0.39 0.28 0.37 0.13 0.37 0.10 0.10 0.03 0.06 0.21
XGBoost RMSE 3.76 3.52 3.79 3.81 4.16 4.54 4.53 5.21 3.78 4.45
RPD 1.43 1.53 1.42 1.41 1.29 1.19 1.19 1.03 1.42 1.21
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3.4.1. PLSR Model

Table 2 showed that, as for the 0.85 mm sieved soil, the R? values of the constructed
PLSR model combined with FD, LTFD, RMSFD, ATFD, and RLFD were 0.56, 0.61, 0.59,
0.54, and 0.62, respectively, at the “poor prediction” level based on the classification criteria
of the R2. Meanwhile, as for the 0.25 mm sieved soil, the R? values of the PLSR model
combined with FD, LTFD, RMSFD, ATFD, and RLFD were 0.41, 0.44, 0.40, 0.44, and 0.48,
respectively, indicating an “unsuccessful prediction” category. According to the R? values
of the constructed PLSR models for two types of soil grain sizes, the stability and estimation
accuracy of PLSR model by using the 0.85 mm sieved soil were relatively higher than that
of the 0.25 mm sieved soil.

The ranges of RMSE values of the constructed PLSR model across the five types of
spectral transformations were 3.40-3.74 for the 0.85 mm sieved soil, whereas 3.90-4.16 for
the 0.25 mm sieved soil. The RMSE of the 0.85 mm sieved soil was lower than that of the
0.25 mm sieved soil. It indicates that the estimation quality of PLSR model by using the
0.85 mm grain size soil was higher than the 0.25 mm grain size soil. Moreover, the ranges
of RPD of PLSR model across the five types of spectral transformations were 1.44-1.58
for the 0.85 mm sieved soil, whereas 1.29-1.38 for the 0.25 mm sieved soil. Based on the
classification criteria of RPD, the estimation ability of the constructed PLSR model for
the 0.85 mm sieved soil fall into a “fair model and/or estimation”, whereas PLSR model
for the 0.25 mm sieved soil belonged to the “poor model and/or estimation” category.
The above analysis indicates that the stability, estimation accuracy, estimation quality,
and estimation ability of the constructed PLSR model were poor based on three model
evaluation indices. However, the spectral reflectance data of the 0.85 mm sieved soil were
better for constructing PLSR model compared with the 0.25 mm sieved soil. Therefore,
the RLFD transformed spectral reflectance of the 0.85 mm sieved soil is superior when
constructing hyperspectral estimation model of SOM content by using the PLSR model.

The scatter plot of SOM content for the ground-measured and predicted by the selected
PLSR method (with the highest R> and RPD, and lowest RMSE) was exhibited in Figure 4.
In Figure 4, the reasons for choosing the linear equation are based on the simplicity of the
model, statistical foundations, performance metrics, data characteristics and predictive
accuracy. Despite the differences between the predicted and actual values, previous related
research indicates that the linear model is still regarded as a practical and effective predictive
tool [11,39]. Results of the 0.85 mm and 0.25 mm sieved soils were compared. It can be seen
that RLFD transformed spectral reflectance of the 0.85 mm sieved soil had a relatively higher
performance. Therefore, the 0.85 mm-RLFD-PLSR (R% = 0.62, RMSE = 3.40, RPD = 1.58) can
be identified as a better PLSR method for estimating SOM content of farmland soil in the
ILIA. However, based on the evaluation indices of PLSR models, the overall performance
of all the constructed PLSR models were not reliable.
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Figure 4. Comparison of the measured and predicted values of SOM content by PLSR modeling.
(a) 0.85 mm-RLFD-PLSR; (b) 0.25 mm-RLFD-PLSR.
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3.4.2. SVM Model

As shown in Table 2, as for the 0.85 mm sieved soil, the R? values of the constructed
SVM model combined with FD, LTFD, RMSFD, ATFD, and RLFD were 0.70, 0.64, 0.74,
0.63, and 0.69, respectively, at the “approximate quantitative prediction” category for FD,
RMSFD, and RLFD, and the “poor prediction” for other two spectral transformations.
Meanwhile, as for the 0.25 mm sieved soil, the R? values of the SVM model combined with
FD, LTFD, RMSED, ATFD, and RLFD were 0.44, 0.73, 0.62, 0.73, and 0.38, respectively, with
the “approximate quantitative prediction” for LTFD and ATFD, the “poor prediction” for
RMSEFD, and the “unsuccessful prediction” for other two spectral transformations. The
ranges of RMSE values of the constructed SVM model across the five types of spectral
transformations were 4.17-4.58 for the 0.85 mm sieved soil, whereas 4.83-4.96 for the
0.25 mm sieved soil (Table 2). The difference in the R?> and RMSE values for these two
different soil grain sizes were relatively small.

Moreover, the ranges of RPD values of SVM model across the five types of spectral
transformations for both the 0.85 mm and 0.25 mm sieved soil were less than 1.40. Based
on the classification criteria of RPD, the estimation ability of the constructed SVM model
indicated a “poor model and/or estimation” level. Relatively speaking, spectral reflectance
data of the 0.85 mm sieved soil were better for constructing SVM model compared with the
0.25 mm sieved soil.

The scatter plot of SOM content for the ground-measured and predicted by the selected
SVM method (with the highest R? and RPD, and lowest RMSE) was exhibited in Figure 5.
Results of the 0.85 mm and 0.25 mm sieved soils were compared. It is clear that the
RMSFD transformed spectral reflectance of the 0.85 mm sieved soil had a relatively higher
performance in estimation of SOM content. However, the 0.85 mm-RMSFD-SVM (R2 =0.74,
RMSE =4.29, RPD =1.25) can be identified as a better SVM method for estimating SOM
content of farmland soil in the ILIA. Overall, based on the model evaluation indices, the
overall performance of all the constructed SVM models were also not reliable.
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Figure 5. Comparison of the measured and predicted values of SOM content by SVM modeling.
(a) 0.85 mm-RMSFD-SVM; (b) 0.25 mm-ATFD-SVM.

3.4.3. RF Model

As for the 0.85 mm sieved soil, the R? values of the constructed RF model combined
with FD, LTFD, RMSFD, ATFD, and RLFD were 0.74, 0.64, 0.82, 0.59, and 0.75, respectively,
with a “good prediction” for RMSFD, an “approximate quantitative prediction” for FD and
RLFD, and a “poor prediction” for other two spectral transformations (Table 2). Meanwhile,
as for the 0.25 mm sieved soil, the R2 values of the RF model combined with FD, LTFD,
RMSFD, ATFD, and RLFD were 0.58, 0.55, 0.60, 0.44, and 0.72, respectively, with an
“approximate quantitative prediction” for RLFD, an “unsuccessful prediction” for ATFD,
and a “poor prediction” for other three spectral transformations. According to the R?
values of RF models for these two different grain size of soils, the stability and estimation
accuracy of RF model by using the 0.85 mm sieved soil were obviously higher than that of
the 0.25 mm sieved soil.
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The ranges of RMSE values of the constructed RF model across the five types of
spectral transformations were 2.37-3.00 for the 0.85 mm sieved soil, whereas the 3.05—-4.07
for the 0.25 mm sieved soil. The RMSE of the 0.85 mm sieved soil was obviously lower
than that of the 0.25 mm sieved soil. It proves that the estimation quality of RF model by
using the 0.85 mm grain size soil was higher than the 0.25 mm grain size soil.

It should be noted that the RPD values of the RF model combined with FD, LTFD,
RMSEFD, ATFD, and RLFD of the 0.85 mm sieved soil were 1.81, 1.49, 2.27,1.58, and 1.79,
respectively (Table 2). Based on the classification criteria of RPD, the estimation ability of
RF model indicated a “very good quantitative model and/or estimation” for RMSFD, a
“good model and/or estimation” for FD, and a “fair model and/or estimation” for other
three spectral transformations. The RPD values of the RF model combined with FD, LTFD,
RMSFD, ATFD, and RLFD of the 0.25 mm sieved soil were 1.52,1.45,1.49, 1.32, and 1.76,
respectively, with a “fair model and/or estimation” for FD, LTFD, RMSFD, and RLFD
transformations, and a “poor model and/or estimation” for ATFD transformation.

Based on three model evaluation indices, the stability, estimation accuracy, estimation
quality, and estimation ability of RF model were superior compared with PLSR and SVM.
As analyzed here, spectral reflectance data of the 0.85 mm sieved soil were relatively better
for constructing RF model compared with the 0.25 mm sieved soil. Therefore, the RMSFD
transformed spectral reflectance of the 0.85 mm sieved soil is superior when constructing
hyperspectral estimation model of SOM content by using the RF model.

The scatter plot of SOM content for the ground-measured and predicted by the selected
RF method (with the highest R?> and RPD, and lowest RMSE) was exhibited in Figure 6.
Results of the 0.85 mm and 0.25 mm sieved soils were compared. It can be seen that
the RMSFD transformed spectral reflectance of the 0.85 mm sieved soil had a higher
performance in estimation of SOM content. Overall, the 0.85 mm-RMSFD-RF (RZ=0.82,
RMSE =2.37, RPD = 2.27) can be identified as the best RF method for estimating SOM
content of farmland soil in the ILIA. However, the RF model is very applicable for estimating
SOM content.
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—_ RMSE =237 ? —_ RMSE =3.05
55 9 el
2 25r RPD =227 <25 RPD=1.76
N S
= P
2 320
= b= )
2 AR a0 > % °
~ & Q
(b)
10 1 1 1 10 ! I !
10 15 20 25 30 10 15 20 25 30
Measured SOM (g/kg) Measured SOM (g/kg)

Figure 6. Comparison of the measured and predicted values of SOM content by RF modeling.
(a) 0.85 mm-RMSFD-RF; (b) 0.25 mm-RLFD-RF.

3.4.4. XGBoost Model

As given in Table 2, the R? values of the XGBoost model combined with five types
of spectral transformation for both the 0.85 mm and 0.25 mm sieved soils were less than
0.39, indicating an “unsuccessful prediction”. The R? values for the 0.85 mm grain size
soil were higher than that the 0.25 mm grain size soil. Besides, the ranges of RMSE values
of XGBoost model across the five types of spectral transformations were 3.52—4.16 for the
0.85 mm sieved soil, while 3.78-5.21 for the 0.25 mm sieved soil.

The RMSE of the 0.85 mm sieved soil was lower than that of the 0.25 mm sieved soil.
However, the estimation quality of XGBoost model by using the 0.85 mm grain size soil
was relatively better than the 0.25 mm grain size soil. The ranges of RPD values of the
XGBoost model across the five types of spectral transformations were smaller than that
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of PLSR, SVM, and RF, with a “poor (or fair) model and/or estimation”. It indicates that
the stability, estimation accuracy, estimation quality, and estimation ability of the XGBoost
model were very poor.

The scatter plot of SOM content for the ground-measured and predicted by the selected
XGBoost method (with the highest R? and RPD, and lowest RMSE) was exhibited in
Figure 7. Results of the 0.85 mm and 0.25 mm sieved soils were also compared. Figure 7
illustrated that the FD transformed spectral reflectance of the 0.85 mm sieved soil had a
relatively higher performance in estimation of SOM content. Therefore, the 0.85 mm-FD-
XGBoost (R2 =0.39, RMSE =3.76, RPD = 1.43) can be selected as a better XGBoost method
for estimating SOM content of farmland soil in the ILIA. Overall, based on the model
evaluation indices, the overall performance of all the constructed XGBoost models were
very poor and not reliable.
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Figure 7. Comparison of the measured and predicted values of SOM content by XGBoost modeling.
(a) 0.85 mm-FD-XGBoost; (b) 0.25 mm-RLFD- XGBoost.

4. Discussion

In this work, the overall performance of the constructed hyperspectral estimation
models can be ranked as: RF > SVM > PLSR > XGBoost. It should be noted that the RF
model had a significantly higher R? and RPD value and relatively lower RMSE values
compared with PLSR, SVM, and XGBoost models. Therefore, the RF was selected the
best model for predicting SOM content of farmlands in the ILIA. Results of this study are
inconsistent with the research findings of some previous studies. For example, Zheng et al.
reported that the PLSR had the best estimation accuracy of SOM content of coastal soil [41].
Wei et al. constructed a hyperspectral inversion model for SOM content of farmland soils
and suggested that the AdaBoost algorithm had the best accuracy compared with the
Ridge Regression (RR), Kernel RR (KRR), and Bayesian RR (BRR) [17]. Zhang et al. also
constructed a SOM estimation model, and their results showed that the estimation accuracy
of SVM surpassed than that of the back propagation neural network (BPNN) [42]. Recently,
Li et al. suggested that the CNN (convolutional neural network) had high accuracy in
predicting SOM content [5]. Bai et al. indicated that the PLSR model based on outer-product
analysis (OPA) achieved the best estimation accuracy of SOM content [1].

It is worth noting that the RF model had better accuracy than the PLSR model for SOM
content in the Ogan-Kugqa River Oasis of NW arid zones of China [43]. This result is consis-
tent with our research findings. Similarly, the best accuracy for hyperspectral estimation of
heavy metals in farmland soils was obtained by using the RF Model [44]. However, due
to the effects of the regional geographical environment and physicochemical features of
various soil types in different areas, the optimal hyperspectral model for estimating SOM
content varies considerably [9].

From the perspective of inversion accuracy, most preprocessed spectra have higher
modeling accuracy than the original spectra. This is because in the process of obtaining
spectral information, external interference can introduce noise, which hinders the accu-
rate reflection of the spectral characteristics of features. However, spectral preprocessing
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techniques can reduce spectral noise and highlight spectral feature information (Figure 2).
The original spectral reflectance of the 0.25 mm sieved soil was slightly higher than that
of the 0.85 mm sieved soil. This result indicates that the smaller the soil grain size, the
higher the soil spectral reflectance. The reason is that the void among the smaller soil
grains are smaller than the bigger soil grains, which enhance the spectral reflectance of
soil [2]. Moreover, the lower spectral reflectance of soils with the 0.85 mm grain size may
is attributed to light scattering and changes in optical path length [20]. Soil with a sieved
of 0.25 mm has a smaller porosity, which reduces the absorption and scattering of light,
thereby increasing the reflectance. On the other hand, soil with a sieved of 0.85 mm has a
larger porosity, and the path of light within the soil is longer, which increases the absorption
and scattering of light, leading to a decrease in reflectance. Therefore, when analyzing the
spectral reflectance of soil, it is very important to consider the influence of soil grain sizes.
By studying the spectral characteristics of soils with different grain sizes, scientific bases
can be provided for soil classification, quality assessment, and land resource management.

At present, it is difficult to fully extract the effective feature wavebands by using not-
sieved soil samples, which limits the estimation ability of hyperspectral models. However,
by selecting feature wavebands obtained from soils with appropriate grain size, deeper
feature wavebands extraction can be achieved and the constructed hyperspectral estimation
model has better generalization, which is consistent with our research findings [20]. Based
on the R?, RPD, and RMSE values of the constructed hyperspectral estimation models
by using soils with different grain sizes, a significantly higher R?, RPD values and lower
RMSE values were observed for the 0.25 mm sieved soil. The correlations between soil
spectral reflectance and SOM content were effectively improved by using the spectrum of
the 0.85 mm sieved soil samples. Then the use of the feature wavebands of the 0.85 mm
sieved soil significantly improved the stability and prediction ability of the constructed
hyperspectral estimation model in this study. It is verified that the soil grain size effects the
stability, estimation accuracy, estimation quality, and estimation ability of hyperspectral
estimation of SOM content, and the 0.85 mm sieved soil is more suitable for spectral
measurement and following model construction. In the case where higher grain size results
in a higher R? value, the relationship may exist with the physical and chemical properties
of the soil as follows: (1) Porosity structure: Larger grain sizes may lead to changes in the
size and distribution of soil pores. A more uniform or suitable pore structure may make the
related physical processes more regular, thereby improving the degree of fit of the model to
the data, i.e., a higher R? value. (2) Particle arrangement: When grain sizes are larger, the
arrangement of particles may be more orderly, which affects the soil’s permeability, water
retention, and other physical properties. This can make the relationship between these
properties and other factors clearer, thus increasing the R? value. (3) Nutrient adsorption
and release: Larger grains may affect the soil’s ability to adsorb and release nutrients.
More stable or regular nutrient dynamics may allow the model to better explain the data,
leading to an increase in the R? value. However, to accurately determine the relationship
between grain size and R-squared, as well as the specific correlation with the physical and
chemical properties of the soil, further experimental research and detailed data analysis are
required [20,22,23,45].

Finally, RF model based on RMSFD transformed spectral reflectance of the 0.85 mm
sieved soil (0.85 mm-RMSFD-RF) can realize the effective fusion of spectral features, which
can make up for the limitation of single data features, and further improve the stability
and estimation ability of the constructer model. Therefore the 0.85 mm-RMSFD-RF method
(R? = 0.82, RMSE = 2.37, RPD = 2.27) is the best hyperspectral estimation method of SOM
content of farmland soil in the ILIA.

Based on the measured and predicted SOM content, the actual distribution and the
estimated distribution patterns of SOM content based on the selected PLSR, SVM, REF, and
XGBoost methods were mapped using the Ordinary Kriging (OK) interpolation method
and geostatistical analysis method (Figure §8).



Land 2024, 13,1111

13 of 16

SITE SZTE 83°E SIT’E 82°"E 83°E
- (a) — et gie o >, (b)

3| SOM(gkg) PN 3| SOM (gke)

m 10.4-14.0 m 10.4-14.0

14.0-18.0 14.0-18.0

z 18.0-21.0 z 18.0-21.0
¥ 21.0-25.0 nall 4 5 21.0-25.0
S | 25.0-28.1 S| mm o 25.0-28.1
< <~

81‘|’E 82:’E 83°E SITE SZTE 83°E

c = e d

. e Y WY © . - (@)
o &
7 ]
3| SOM(gkg) I | SOM (gkg)

= 10.4-14.0 4 = 10.4-14.0

14.0-18.0 14.0-18.0

4 18.0-21.0 ~ 4 18.0-21.0
= 21.0-25.0 - % 21.0-25.0
S | mm 25.0-28.1 S | mm 25.0-28.1
< <+

81°E 82°E 83°E

' ‘ (a) Actual distribution of SOM
® (e) . o

? (b) Estimated distribution of SOM based on RLFD-PLSR
o
=l ’»
%rr SOM (g/kg) (c) Estimated distribution of SOM based on RMSFD-SVM

- }gg:}gg (d) Estimated distribution of SOM based on RMSFD-RF
;Zr ;?373;8 (e) Estimated distribution of SOM based on FD-XGBoost
S .0-25.
T | == 25.0-28.1

Figure 8. Spatial distribution map of SOM content based on the measured and predicted values.

It can be observed that the spatial distribution patterns of the estimated SOM content
via the 0.85 mm-RMSFD-RF method (Figure 8d) was most similar with the actual distribu-
tion of SOM content (Figure 8a), with higher SOM content in the eastern and northern parts,
and lower SOM content in the central parts of the ILIA. However, the spatial distribution
patterns of SOM content estimated by the 0.85 mm-RLFD-PLSR (Figure 8b), the 0.85 mm-
RMSFD-SVM (Figure 8c), and the 0.85 mm-FD-XGBoost (Figure 8e) methods significantly
varied from the actual distribution. This result further proves that the 0.85 mm-RMSFD-RF
is the best hyperspectral estimation method for SOM content of farmland soil in the ILIA.
However, this work is a regional study, and the applicability of hyperspectral estimation
models varies across different geographic regions due to differences in soil types and phys-
ical and chemical properties of soil [46]. Therefore, future studies are needed to explore
whether the overall estimation accuracy and stability of hyperspectral estimation models
using the spectrum of the 0.85 mm sieved soil was also the optimal method to other regions.

5. Conclusions

This study investigated the effects of soil grain size on the accuracy of hyperspectral
estimation of SOM content of farmland soil in arid zones. The following conclusions
were drawn:

(1) The smaller the soil grain size, the higher the spectral reflectance. In the original
spectral reflectance curve, the wavebands sensitive to SOM were primarily found
within the 350-550 nm range (r > 0.5, p < 0.01), exhibiting a negative correlation with
SOM content.

(2) The spectral reflectance of the 0.85 mm sieved soil demonstrated relatively higher
correlation coefficients with SOM content than the 0.25 mm sieved soil.
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(3) The mathematical transformation of original spectral reflectance of soil can effectively
enhance the spectral characteristics related to the SOM content, and soil grain size
obviously effect the accuracy of hyperspectral estimation model of SOM content.

(4) The overall estimation accuracy and stability of the constructed hyperspectral esti-
mation models in this study can be ranked as: RF > SVM > PLSR > XGBoost. The
RF model had a significantly higher R? and RPD value and relatively lower RMSE
values compared with the PLSR, SVM, and XGBoost models. The 0.85 mm-RMSFD-
RF method (R2 =0.82, RMSE =2.37, RPD = 2.27) was selected as the best model for
estimating SOM content of farmland soil in the ILIA.

Findings of this work offer a technical reference for the hyperspectral estimation of
the SOM content of farmland soil in arid zones. However, further investigation should be
considered in future studies.

Author Contributions: Conceptualization, X.S. and M.E.; methodology, X.S. and M.E.; software, X.S.;
validation, X.S. and M.E.; formal analysis, X.S. and N.W.,; investigation, X.S.; resources, X.S.; data
curation, X.S. and N.W,; writing—original draft preparation, X.S.; writing—review and editing, X.S.
and MLE.; visualization, X.S.; supervision, M.E.; project administration, M.E.; funding acquisition,
M.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Natural Science Foundation of Xinjiang Uygur Autonomous
Region (2023D01E08) and the National Natural Science Foundation of China (U2003301).

Data Availability Statement: Data will be available upon request to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Bai, Y,; Yang, W.; Wang, Z.; Cao, Y.; Li, M. Improving the estimation accuracy of soil organic matter based on the fusion of
near-infrared and Raman spectroscopy using the outer-product analysis. Comput. Electron. Agric. 2024, 219, 108760. [CrossRef]

2. Chen, Y,; Wang, J; Liu, G; Yang, Y.; Liu, Z.; Deng, H. Hyperspectral estimation model of forest soil organic matter in northwest
Yunnan Province, China. Forests 2019, 10, 217. [CrossRef]

3. He, Y, Yang, M,; Huang, R.; Wang, Y.; Ali, W. Soil organic matter and clay zeta potential influence aggregation of a clayey red soil
(Ultisol) under long-term fertilization. Sci. Rep. 2021, 11, 20498. [CrossRef] [PubMed]

4. Zhao, L.; Fang, Q.; Hong, H.; Algeo, TJ.; Lu, A,; Yin, K,; Wang, C.; Liu, C.; Chen, L.; Xie, S. Pedogenic-weathering evolution
and soil discrimination by sensor fusion combined with machine-learning-based spectral modeling. Geoderma 2022, 409, 115648.
[CrossRef]

5. Li, H;Ju, WL, Song, YM.; Cao, Y.Y.; Yang, W.; Li, M.Z. Soil organic matter content prediction based on two-branch convolutional
neural network combining image and spectral features. Comput. Electron. Agric. 2024, 217, 108561. [CrossRef]

6. Hong, Y.S.; Chen, S.C.; Zhang, Y.; Chen, Y.Y.; Yu, L, Liu, Y.F; Liu, Y.L.; Cheng, H.; Liu, Y. Rapid identification of soil organic
matter level via visible and near-infrared spectroscopy: Effects of two-dimensional correlation coefficient and extreme learning
machine. Sci. Total Environ. 2018, 644, 1232-1243. [CrossRef]

7.  Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem.
2014, 68, 4-9. [CrossRef]

8.  Keesstra, S.; Pereira, P.; Novara, A.; Brevik, E.C.; Azorin-Molina, C.; Parras-Alcantara, L.; Jordan, A.; Cerda, A. Effects of soil
management techniques on soil water erosion in apricot orchards. Sci. Total Environ. 2016, 357, 551-552. [CrossRef]

9. Xayida, S.; Mamattursun, E.; Zhong, Q.; Li, X.G. Estimating the chromium concentration of farmland soils in an arid zone from
hyperspectral reflectance by using partial least squares regression methods. Ecol. Indic. 2024, 161, 111987.

10. Jiang, X.Q.; Luo, SJ; Ye, Q.; Li, X.C.; Jiao, W.H. Hyperspectral estimates of soil moisture content incorporating harmonic indicators
and machine learning. Agriculture 2022, 12, 1188. [CrossRef]

11. Jiang, X.E; Duan, H.C,; Liao, J.; Guo, P.L.; Huang, C.H.; Xue, X.A. Estimation of soil salinization by machine learning algorithms
in different arid regions of northwest China. Remote Sens. 2022, 14, 347. [CrossRef]

12.  Lin, L.X.; Gao, L.P,; Xue, EC.; Wang, X.Y.; Zhang, S.R. Hyperspectral analysis of total nitrogen in soil using a synchronized
decoloring fuzzy measured value method. Soil Till. Res. 2020, 202, 104658. [CrossRef]

13. Wang, Y,; Zhang, X.; Sun, W.; Wang, J.; Ding, S.; Liu, S. Effects of hyperspectral data with different spectral resolutions on the
estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data. Sci. Total Environ. 2022,
838,156129. [CrossRef] [PubMed]

14. Ye,M,; Zhu, L, Li, X.; Ke, Y;; Huang, Y.; Chen, B.; Yu, H; Li, H,; Feng, H. Estimation of the soil arsenic concentration using a

geographically weighted XGBoost model based on hyperspectral data. Sci. Total Environ. 2023, 858, 159798. [CrossRef] [PubMed]


https://doi.org/10.1016/j.compag.2024.108760
https://doi.org/10.3390/f10030217
https://doi.org/10.1038/s41598-021-99769-w
https://www.ncbi.nlm.nih.gov/pubmed/34654873
https://doi.org/10.1016/j.geoderma.2021.115648
https://doi.org/10.1016/j.compag.2023.108561
https://doi.org/10.1016/j.scitotenv.2018.06.319
https://doi.org/10.1016/j.soilbio.2013.06.014
https://doi.org/10.1016/j.scitotenv.2016.01.182
https://doi.org/10.3390/agriculture12081188
https://doi.org/10.3390/rs14020347
https://doi.org/10.1016/j.still.2020.104658
https://doi.org/10.1016/j.scitotenv.2022.156129
https://www.ncbi.nlm.nih.gov/pubmed/35605855
https://doi.org/10.1016/j.scitotenv.2022.159798
https://www.ncbi.nlm.nih.gov/pubmed/36309269

Land 2024, 13,1111 150f 16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Shabtai, .A.; Wilhelm, R.C.; Schweizer, S.A.; Hoschen, C.; Buckley, D.H.; Lehmann, J. Calcium promotes persistent soil organic
matter by altering microbial transformation of plant litter. Nature Commun. 2023, 14, 6609. [CrossRef] [PubMed]

Khosravi, V.; Ardejani, ED.; Yousefi, S.; Aryafar, A. Monitoring soil lead and zinc contents via combination of spectroscopy with
extreme learning machine and other data mining methods. Geoderma 2018, 318, 29—41. [CrossRef]

Wei, L.; Yuan, Z.; Wang, Z.; Zhao, L.; Zhang, Y.; Lu, X.; Cao, L. Hyperspectral inversion of soil organic matter content based on a
combined spectral index model. Sensors 2020, 20, 2777. [CrossRef] [PubMed]

Xu, 5.X.; Wang, M.Y,; Shi, X.Z.; Yu, Q.B.; Zhang, Z.Q. Integrating hyperspectral imaging with machine learning techniques for the
high-resolution mapping of soil nitrogen fractions in soil profiles. Sci. Total Environ. 2021, 754, 142135. [CrossRef] [PubMed]
Ma, C.; Shen, G.; Wang, Z.; Wang, Z. Analysis of spectral characteristics for different soil particle sizes. Chin. J. Soil Sci. 2015, 46,
292-298. (In Chinese)

Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. Particle size effects on soil reflectance explained by an analytical radiative transfer
model. Remote Sens. Environ. 2018, 210, 375-386. [CrossRef]

An, X.; Li, M.; Zheng, L.; Hong, S. Eliminating the interference of soil moisture and particle size on predicting soil total nitrogen
content using a NIRS-based portable detector. Comput. Electron. Agric. 2015, 112, 47-53. [CrossRef]

Bao, Y;; He, Y.; Fang, H.; Annia, G.P. Spectral characterization and N content prediction of soil with different particle size and
moisture content. Spectro. Spec. Anal. 2007, 27, 62.

Si, H; Yao, Y.; Wang, D.; Liu, Y. Influence of soil particle size on the estimate of soil organic matter by hyperspectral spectroscopy.
Chin. Agric. Sci. Bullet. 2015, 31, 173-178. (In Chinese)

Muyassar, M.; Mamattursun, E.; Wang, L.L.; Xayida, S.; Wang, N.; Hu, Y.L. Pollution and ecological risk assessment of metal
elements in groundwater in the Ibinur Lake Basin of NW China. Water 2023, 15, 4071. [CrossRef]

NY/T 395—2000; Procedural Regulations Regarding the Environment Quality Monitoring of Soil. Standards Press of China:
Beijing, China, 2000. (In Chinese)

NY/T 1121.6—2006; Soil Testing—Part 6: Method for Determination of Soil Organic Matter. Standards Press of China: Beijing,
China, 2006. (In Chinese)

Wei, L.; Zhang, Y.; Lu, Q.; Yuan, Z.; Li, H.; Huang, Q. Estimating the spatial distribution of soil total arsenic in the suspected
contaminated area using UAV-Borne hyperspectral imagery and deep learning. Ecol. Indic. 2021, 133, 108384. [CrossRef]
Savitzky, A.; Golay, M.]. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36,
1627-1639. [CrossRef]

Zhong, Q.; Eziz, M.; Sawut, R.; Ainiwaer, M.; Li, H.; Wang, L. Application of a hyperspectral remote sensing model for the
inversion of nickel content in urban soil. Sustainability 2023, 15, 13948. [CrossRef]

Cao, X.; Zhang, J.; Meng, H.; Lai, Y.; Xu, M. Remote sensing inversion of water quality parameters in the Yellow River Delta. Ecol.
Indic. 2023, 155, 110914. [CrossRef]

Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48,
2297-2307. [CrossRef]

Elfatih, M.A.; Onisimo, M.; Elhadi, A.; Riyad, I. Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using
airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS J. Photo. Remote Sens. 2014, 88, 48-59.
Jia, Y,; Jin, S.G,; Savi, P; Gao, Y,; Tang, J.; Chen, Y.X.; Li, WM. GNSS-R soil moisture retrieval based on a XGboost machine
learning aided method: Performance and validation. Remote Sens. 2019, 11, 1655. [CrossRef]

Liu, W,; Li, M,; Zhang, M,; Long, S.; Guo, Z.; Wang, H.; Li, W.; Wang, D.; Hu, Y.; Wei, Y,; et al. Hyperspectral inversion of
mercury in reed leaves under different levels of soil mercury contamination. Environ. Sci. Pollut. Res. Inter. 2020, 27, 22935-22945.
[CrossRef] [PubMed]

Sun, Y.S.; Chen, S.S.; Dai, X.M.; Li, D,; Jiang, H.; Jia, K. Coupled retrieval of heavy metal nickel concentration in agricultural soil
from spaceborne hyperspectral imagery. J. Hazard. Mater. 2023, 446, 130722. [CrossRef] [PubMed]

Vohland, M.; Besold, J.; Hill, J.; Friind, H.C. Comparing different multivariate calibration methods for the determination of soil
organic carbon pools with visible to near infrared spectroscopy. Geoderma 2011, 166, 198-205. [CrossRef]

Summers, D.; Lewis, M.; Ostendorf, B.; Chittleborough, D. Visible near-infrared reflectance spectroscopy as a predictive indicator
of soil properties. Ecol. Indic. 2011, 11, 123-131. [CrossRef]

Bian, Z.J.; Sun, L.N,; Tian, K.; Liu, B.L.; Huang, B.; Wu, L.H. Estimation of multi-media metal(loid)s around abandoned mineral
processing plants using hyperspectral technology and extreme learning machine. Environ. Sci. Pollut. Res. 2023, 30, 19495-19512.
[CrossRef] [PubMed]

Dai, X,; Liu, S.; Xiang, T.; Fu, T.; Feng, H.; Xiao, L.; Wang, Z.; Yao, Y.; Zhao, R.; Yang, X. Hyperspectral imagery reveals large spatial
variations of heavy metal content in agricultural soil: A case study of remote-sensing inversion based on Orbita hyperspectral
satellites (OHS) imagery. J. Clean. Product. 2022, 380, 134878. [CrossRef]

Fang, S.; Yang, M.; Zhao, X.; Guo, X. Spectral characteristics and quantitative estimation of SOM in red soil typical of Ji’an County,
Jiangxi Province. Acta Pedo. Sin. 2014, 51, 1003-1010. (In Chinese)

Zheng, G.H.; Ryu, D.R;; Jiao, C.X.; Hong, C.Q. Estimation of organic matter content in coastal soil using reflectance spectroscopy.
Pedosphere 2016, 26, 130-136. [CrossRef]

Zhang, S.; Lu, X.; Nie, G.G; Li, Y.R,; Shao, Y.T.; Tian, Y.Q.; Fan, L.Q.; Zhang, Y.J. Estimation of soil organic matter in coastal
wetlands by SVM and BP based on hyperspectral remote sensing. Spectro. Spec. Anal. 2020, 40, 556-561.


https://doi.org/10.1038/s41467-023-42291-6
https://www.ncbi.nlm.nih.gov/pubmed/37857604
https://doi.org/10.1016/j.geoderma.2017.12.025
https://doi.org/10.3390/s20102777
https://www.ncbi.nlm.nih.gov/pubmed/32414203
https://doi.org/10.1016/j.scitotenv.2020.142135
https://www.ncbi.nlm.nih.gov/pubmed/32920400
https://doi.org/10.1016/j.rse.2018.03.028
https://doi.org/10.1016/j.compag.2014.11.003
https://doi.org/10.3390/w15234071
https://doi.org/10.1016/j.ecolind.2021.108384
https://doi.org/10.1021/ac60214a047
https://doi.org/10.3390/su151813948
https://doi.org/10.1016/j.ecolind.2023.110914
https://doi.org/10.1109/TGRS.2009.2039484
https://doi.org/10.3390/rs11141655
https://doi.org/10.1007/s11356-020-08807-z
https://www.ncbi.nlm.nih.gov/pubmed/32329007
https://doi.org/10.1016/j.jhazmat.2023.130722
https://www.ncbi.nlm.nih.gov/pubmed/36628862
https://doi.org/10.1016/j.geoderma.2011.08.001
https://doi.org/10.1016/j.ecolind.2009.05.001
https://doi.org/10.1007/s11356-022-22904-1
https://www.ncbi.nlm.nih.gov/pubmed/36239890
https://doi.org/10.1016/j.jclepro.2022.134878
https://doi.org/10.1016/S1002-0160(15)60029-7

Land 2024, 13,1111 16 of 16

43. Zhou, Q.; Ding, J.L.; Ge, X.Y,; Li, K.; Zhang, Z.0.; Gu, Y.S. Estimation of soil organic matter in the Ogan-Kuqa River Oasis,
Northwest China, based on visible and near-infrared spectroscopy and machine learning. J. Arid Land 2023, 15, 19-204. [CrossRef]

44. Tan, K; Wang, H.; Chen, L.; Du, Q.; Du, P; Pan, C. Estimation of the spatial distribution of heavy metal in agricultural soils using
airborne hyperspectral imaging and random forest. ]. Hazard. Mater. 2020, 382, 120987. [CrossRef] [PubMed]

45. Wu, H.Q.; Fan, YM;; He, J.; Jin, G.L.; Xie, Y.; Chai, D.P.,; He, L. Response of soil hyperspectral characteristics of different particle
sizes to soil. Acta Agrestia Sin. 2014, 22, 266.

46. Yang, P;Hu,].; Hu, B,; Luo, D.; Peng, J. Estimating soil organic matter content in desert areas using in situ hyperspectral data and
feature variable selection algorithms in southern Xinjiang, China. Remote Sens. 2022, 14, 5221. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1007/s40333-023-0094-4
https://doi.org/10.1016/j.jhazmat.2019.120987
https://www.ncbi.nlm.nih.gov/pubmed/31454609
https://doi.org/10.3390/rs14205221

	Introduction 
	Materials and Methods 
	Data Acquisition 
	Spectral Feature Extraction 
	Model Construction 
	Model Evaluation Indices 

	Results 
	Descriptive Analysis of SOM 
	Spectral Reflectance of Soils with Different Grain Sizes 
	Correlations between Soil Spectral Reflectance and SOM Content 
	Model Construction and Evaluation 
	PLSR Model 
	SVM Model 
	RF Model 
	XGBoost Model 


	Discussion 
	Conclusions 
	References

