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Abstract: Globally, natural habitats have suffered tremendous damage from human activities, a
phenomenon that is increasingly evident in basin regions. The management of natural habitats in
basin regions is dependent on understanding of the various impacts of human activities on these
ecosystems. Despite the various studies that have been conducted on the effects of human activities
on habitats in basin regions, there is still a lot of doubt regarding the impact of these activities on the
quality of basin ecosystems. To fill this gap, this study employs a series of spatial analysis methods
and logistic regression modeling to delve into the spatial and temporal patterns of human activities
and habitat quality in the Yangtze River Basin (YRB) as well as the differences in the impacts of
human activities on habitat quality in the sub-basins of the YRB. The findings indicate a 0.408%
decline in the overall environmental quality of the YRB area from 2000 to 2020, accompanied by a
15.396% surge in human activities. Notably, the southeastern Qilian Mountains and the mountainous
regions in the northwestern sector of the Sichuan Basin emerge as pivotal areas for habitat quality
restoration. Conversely, the southwestern Qilian Mountains and the urban clusters in the Yangtze
River Delta (YRD) face significant habitat quality deterioration. Spatial regression analyses reveal a
noteworthy trend: the burgeoning human activities in the Yangtze River region pose a substantial
threat to habitat recovery efforts. Further differential analyses focusing on the upper, middle, and
lower basin segments underscore that human activities exert the most pronounced impact on habitat
quality within the lower basin region, while the upper basin experiences the least influence. The
implications of this study are manifold. It furnishes valuable policy insights for the comprehensive
management and targeted preservation of habitats across the YRB. By delineating areas of habitat
restoration and degradation and highlighting the differential impacts of human activities across basin
segments, this research lays a solid foundation for informed decision making in habitat conservation
and ecosystem management within the YRB.

Keywords: habitat quality; human activities; spatial analysis; spatial regression; Yangtze River Basin

1. Introduction

Globally, the expansion of human activities is having a major impact on natural
habitats, seriously threatening ecosystem function and integrity. Human activities, such
as the expansion of impervious surfaces, agricultural practices, population growth, and
economic development, are causing irreversible damage to natural habitats, with basin
regions experiencing increasingly pronounced effects [1,2]. Understanding the intricate
interplay between human activities and natural habitats within the Yangtze River Basin
(YRB) is imperative given its status as the third-largest basin globally [3]. The ramifica-
tions of habitat degradation in this region are profound, potentially leading to ecosystem
collapse, compromised water quality, climate instability, and threats to species survival.
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Such challenges underscore the urgency of comprehensively assessing habitat quality and
quantifying the impact of human expansion on it across the YRB [4–6]. At present, re-
search on the spatial dynamic relationship between human activities and natural habitats
within the Yangtze River Basin is still relatively weak. This knowledge deficit hampers the
development of effective policies aimed at conserving biodiversity and managing basin
resources sustainably. Addressing this gap necessitates a quantitative evaluation of habitat
quality in the YRB and a thorough investigation into the varying impacts of human activity
expansion across different regions. By conducting a rigorous assessment of habitat quality
and its relationship to human activities, policymakers can gain invaluable insights into the
conservation needs of the Yangtze River and devise evidence-based strategies for integrated
basin management. These efforts are essential for safeguarding the ecological integrity of
the YRB and ensuring the long-term sustainability of its diverse ecosystems.

Habitat quality (HQ) is a visual representation of the goodness of natural habitats in
an area. It indicates the ability of an area’s ecosystems to provide habitats for all organisms,
including humans, and can provide a visual indication of biodiversity [2,7,8]. Measures
of habitat quality are still inconsistent and focus mainly on field surveys and model as-
sessments [9]. Field surveys are used to collect data manually to obtain species richness
data within a geographic area of interest to calculate HQ [10], which can also be used to
explore population structure [11]. This approach requires a great deal of time and effort,
and collecting data in a vast study area such as the Yangtze River Delta Basin is particularly
challenging [7]. Approaches to constructing models for assessment include integrating
data from multiple sources to assess HQ models [12], pressure–state–response (PSR) assess-
ment systems [13], and constructing regional HQ measurement models based on habitat
attributes in the measurement area [14]. These methods are applicable to different regions
and in some aspects cannot accurately reflect the specificity of regional ecosystem struc-
ture [15]. Recently, with the popularization of HQ models and the advancement of remote
sensing imaging technology, the InVEST (Integrated Valuation of Ecosystem Services and
Tradeoffs) model, a constructed ecosystem valuation model, has incorporated threat metrics
in assessing ecosystem threats and has been used to scrutinize the importance of various
ecosystems. The InVEST model employs threat metrics to measure ecosystem threats, and
ecosystem suitability is assessed in high quality (HQ) to efficiently calculate regional HQ.
It is capable of comprehensively assessing changes in HQ across a wide range of scales
and time horizons, and it adapts well to changes in ecosystem structure. Previous studies
have demonstrated its robustness in HQ assessment [2]. Previous studies have extensively
assessed the spatial and temporal patterns of HQ at the national scale [16], the regional
scale of small watersheds [17], the provincial scale [18], and the urban agglomeration
scale [19]. However, HQ assessment at the regional scale of large watersheds is still lacking,
especially for large watershed regions such as the Yangtze River Delta. Meanwhile, previ-
ous studies failed to reveal the differences in the impacts of human activities on habitat
quality among different sub-watersheds, which makes it difficult to refine the integrated
watershed management policy in a larger policy context. Therefore, analyzing spatial and
temporal HQ patterns under sub-basins in the YRD region and the Yangtze River Basin is
crucial for grasping the current status of habitat conservation in the region and predicting
future trends.

Contemporary human activities (HA) have had a profound impact on HQ, leading
to habitat loss and contributing to global climate change [20]. Humans have destroyed
pre-existing natural ecosystems in order to develop land, build towns and cities, mine,
and produce energy, resulting in the reduction or loss of wildlife habitats [21]. Human
transportation and power infrastructure has cut up otherwise contiguous habitats into
isolated fragments, affecting species migration, communication, and reproduction, and
reducing biodiversity [22]. Human activities such as pollution, overgrazing, and defor-
estation degrade the quality of habitats and reduce their functions and services. Human
activities such as industry, agriculture, and transportation emit large amounts of green-
house gases, which lead to an increase in global temperatures, affecting the hydrological,
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soil, and vegetation conditions of habitats and threatening the adaptation and survival of
species [23]. In previous studies, various methods, such as correlation modeling [20], panel
regression modeling [20], and Geodetector [24,25], have been used to measure the extent of
the impacts of HA on HQ, providing rich theoretical and methodological support for this
study. However, previous studies lacked differential analysis of the specific impacts of HA
on HQ in the upper, middle, and lower reaches of the Yangtze River, which largely hindered
the implementation of targeted biodiversity conservation efforts [26]. Although spatial
de-marginalization and spillover effects between HA and HQ are recognized, previous
methods lacked the ability to accurately address these spatial dynamics, resulting in im-
precise estimates [27]. Therefore, it is crucial to incorporate spatial effects when analyzing
the impact of HA on HQ [2]. Existing studies have explored the effects of HA on HQ at
the national, city cluster, and eco-regional scales and found predominantly negative im-
pacts [2,28,29], but there are gaps in the understanding of these impacts at larger watershed
regional scales, such as that of the Yangtze River Delta region. Therefore, it is necessary to
conduct a detailed study of the changes in the impacts of HA on HQ in the upper, middle,
and lower reaches of the Yangtze River Basin.

The Yangtze River, the third-largest river in the world, is well known for being China’s
largest basin region and a global leader in hydroelectric resources. The river traverses
a vast geographic area with abundant natural wealth, diverse industrial chains, and a
highly prosperous economic system [30]. The Yangtze River Basin (YRB) holds significant
importance for China’s socio-economic development and ecological security [3]. Presently,
conservation efforts for the Yangtze River have garnered considerable attention both
domestically and internationally [31]. However, the rapid development of the Yangtze River
Economic Belt poses a serious threat to ongoing conservation initiatives and integrated
YRB management. Therefore, studying the spatial relationship between human activities
and HQ in the YRB can offer policy recommendations for promoting green and sustainable
development within the economic zone. Additionally, it can provide valuable insights for
enhancing Yangtze River conservation and integrated YRB management practices.

To tackle these challenges, this study conducted spatial analyses and investigated the
spatial and temporal dynamics of the impacts of human activities on HQ in the Yangtze
River Basin and its sub-basins using land-use data and the Human Footprint Index (HFI).
The aim was to provide policy insights for integrated management and targeted habitat
conservation measures in the Yangtze River Basin region [32]. By delineating areas of
habitat restoration and degradation through the interpretation of data analysis results
and emphasizing the different impacts of human activities on watershed segments (upper,
middle, and lower), this study further advances the progress of integrated watershed
habitat management, accelerates the progress of identifying vulnerable areas of habitats,
and establishes a solid foundation for informed decision making on habitat conservation
and ecosystem management within the YRB watershed. Therefore, this study had three
primary objectives: (1) to assess spatial and temporal changes in habitat and human
activities (HAs) within the YRB, (2) to investigate the spatial relationship between HA and
HQ, and (3) to analyze changes in the effects of human activities on HQ.

2. Methods
2.1. Habitat Quality Measrements

Among many ecological assessment modeling methods, the InVEST model has sig-
nificant advantages in spatial analysis and accuracy. This study evaluated HQ in the YRB
using the HQ module of the InVEST model [33], which primarily relies on biodiversity
and ecosystem structure indicators to gauge habitat and vegetation types along with their
degradation status. It incorporates data on threat factor sensitivity and external threat
intensity across various land-use types to model HQ [2,34,35]. In this study, the land-use
data were reclassified to confirm their weights, and the sensitivity data were obtained by
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adding the threat factors of different types of land to habitat quality, as shown in Tables 1
and 2. Specific habitat indices were calculated using the following equation:

Qxj = Hj − [1 − (
Dxj

z

Dxj
z + Kz )] (1)

where Hj is the habitat suitability of land cover type j, Dxj is the degree of habitat degrada-
tion of raster cell x in land-use class j, j is a half-saturation constant, z is a constant, and Qxj
is the HQ, which usually ranges from 0 to 1, where the closer the value is to 1, the better
the quality of the habitat.

Table 1. Threat sources and their weights.

Code Threat Source Maximum Distance (km) Weight Decay Type

I Urban and rural construction land 12 0.28 Exponential
II Other construction land 8 0.19 Exponential
III Farmland 3 0.11 Exponential
IV Desert 10 0.25 Exponential
V Gobi 6 0.14 Exponential
VI Bare 3 0.03 Exponential

Table 2. Habitat suitability and its relative sensitivity to different threat sources.

Land-Use Type Habitat
Suitability

Threat Source

Code Name I II III IV V VI

11 Paddy field 0.60 0.65 0.45 0.35 0.30 0.25 0.10
12 Arid land 0.40 0.60 0.40 0.30 0.30 0.30 0.20
21 Forest land 1.00 0.70 0.50 0.60 0.45 0.30 0.10
22 Shrubwood 1.00 0.60 0.40 0.40 0.35 0.20 0.10
23 Open forest land 1.00 0.90 0.80 0.70 0.65 0.30 0.10
24 Other forest land 1.00 0.85 0.75 0.70 0.65 0.30 0.10
31 High-cover grassland 0.80 0.55 0.60 0.50 0.80 0.35 0.10
32 Medium-cover grassland 0.75 0.60 0.70 0.55 0.85 0.40 0.10
33 Low-cover grassland 0.70 0.65 0.80 0.60 0.75 0.40 0.20
41 Graff 1.00 0.80 0.30 0.65 0.65 0.35 0.10
42 Lake reservoir 1.00 0.85 0.35 0.70 0.85 0.40 0.10
45 Bottomland 0.60 0.85 0.35 0.70 0.60 0.40 0.20
51 Urban land 0.00 0.00 0.00 0.00 0.00 0.00 0.00
52 Rural residential land 0.00 0.00 0.00 0.00 0.00 0.00 0.00
53 Other construction land 0.00 0.00 0.00 0.00 0.00 0.00 0.00
61 Desert 0.10 0.10 0.10 0.10 0.10 0.10 0.10
62 Gobi 0.10 0.10 0.40 0.10 0.60 0.10 0.10
63 Bare 0.20 0.15 0.20 0.10 0.50 0.30 0.10
64 Marshland 1.00 0.60 0.60 0.70 0.60 0.35 0.20
67 Other 0.10 0.10 0.10 0.10 0.20 0.10 0.10

Drawing on prior research and referencing established methodologies [36], this study
configured the model parameters necessary for operating the HQ module within the
InVEST model. These parameters were tailored to the specific characteristics of the study
area, as depicted in Tables 1 and 2.

2.2. Calculation of the Human Footprint Index

In this study, we utilized the Human Footprint Index (HFI) [37] to assess human
activity strengths and weaknesses. This dataset comprises eight variables representing
various aspects of human pressure on the built environment, including population density,
nighttime lighting, farmland, pastureland, roads, railroads, and navigable waterways. Fol-
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lowing Sanderson and Venter’s methodology, annual dynamic data on the global terrestrial
human footprint from 2000 to 2020 were developed. The magnitude of human activity
intensity within each grid was calculated using the zonal statistics function of ArcGIS 10.8.

2.3. Hotspot Analysis

Hotspot analysis is often used to determine whether a geographic object has a sta-
tistically significant low or high value in its spatial distribution and is a type of local
autocorrelation analysis that identifies the location of spatial clustering of high or low
values for HQ in a study area [38]. Meanwhile, hotspot analysis has also been widely used
to assess changes in demographic crime analysis, changes in market resources, changes
in geosocial network trends, and changes in high and low values for HQ in the field of
ecology and the environment [39]. Hotspots and coldspots denote statistically significant
areas with high and low values, respectively. In hotspot analysis, confidence intervals of
90%, 95%, and 99% are typically used, with larger intervals indicating higher confidence
levels. Hotspot analysis identifies areas of high (hotspots) and low (coldspots) values in
geospatial data, offering insights into their statistical significance [40]. The formula for
hotspot analysis is as follows:

Gi
∗(d) =

∑n
j=1 wijxj − E(∑n

j=1 wijxj)

s
√

∑n
j=1 wij

2(xj − E(∑n
j=1 wijxj))

2
(2)

where G∗
i (d) is the G∗

i statistic computed at a distance threshold d; wij is the spatial weight
between point i and point j in geospatial space, which is usually determined based on
the distance; xj is the value of the attribute at point j; Σ denotes the summation of all

the neighboring points j; E
(

∑n
j=1 wijxj

)
is the expected mean value; and s is the standard

deviation.
The value of the G∗

i statistic can be used to identify hot- and coldspots. If the value
of G∗

i (d) is greater than zero, this indicates that there is a spatial aggregation of attribute
values at point i with those of the surrounding points, i.e., it is a hotspot. If the value of
G∗

i (d) is less than zero, the attribute value at point i is spatially dispersed from the attribute
values at the surrounding points, i.e., it is a coldspot. The larger the absolute value of
G∗

i (d), the more significant the hotspot or coldspot. This is a basic formula for calculating
spatial hotspots, and it can be extended and adjusted according to the specific situation in
practical applications [41].

2.4. Bivariate Spatial Autocorrelation

Spatial autocorrelation analysis assesses potential interdependencies between vari-
ables within the same geographic area [42]. These dependencies typically fall into two
main categories: global spatial autocorrelation (Global Moran’s I) and local spatial auto-
correlation (Local Indicators of Spatial Association, LISA). Global spatial autocorrelation
characterizes the overall spatial distribution pattern to ascertain if the data exhibit spa-
tial clustering. It quantifies the global spatial autocorrelation using Moran’s I statistic,
which has a range of [−1, 1]. A Moran’s I value greater than 0 suggests positive spatial
autocorrelation, with values closer to 1 indicating more similar aggregation patterns in
the data. Local spatial autocorrelation analysis is another method based on global spatial
autocorrelation, which identifies the presence of spatial agglomeration centers in a given
geographic location. LISA analysis can help to determine in which regions data values
are significantly similar to each other and the extent of these similarities. This helps to
reveal spatial heterogeneity, i.e., data at different locations within a region may exhibit
different patterns of aggregation [43]. Spatial autocorrelation analysis aids in comprehend-
ing the spatial distribution characteristics of data, facilitating a deeper understanding and
interpretation of potential relationships among geographic data. Global and local spatial
autocorrelation analyses provide different levels of insight that help to more precisely
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locate and understand patterns of aggregation and dispersion in spatial data. The following
equation is used to calculate Moran’s I values:

I =
n
W

∑n
i=1 ∑n

j=1 wij(xi − x)(yi − y)

∑n
i=1 (xi − x)2 (3)

where I is Moran’s I statistic; n is the total number of spatial cells; w is the sum of the
spatial weights; xi and xj are the values of the variables at positions i and j, respectively; x
is the mean value of the variable across all positions; and wij is the spatial weight between
positions j.

Moran’s I statistic takes values from −1 to 1. Positive values indicate spatial clustering
(similar values close to each other), negative values indicate spatial discretization (different
values close to each other), and values close to zero indicate that the spatial pattern is
approximately random. This statistic is widely used in spatial analysis to assess the presence
of spatial autocorrelation in a dataset. If the calculated Moran’s I value is significantly
different from the value expected under spatial randomness, this indicates the presence of
spatial autocorrelation in the data [44].

2.5. Spatial Regression Model

This study introduces three spatial regression models at the global scale: the spatial
lag model (SLM) [45], the spatial error model (SEM) [46], and the spatial error model with
a spatial lag term (SEMLD) [47]. The SLM incorporates interactions of dependent variables
and considers the effects of independent variables from neighboring geographic units on
local units. SEM assumes spatial dependence in disturbance error terms, incorporating
interactions of error terms between neighboring units. SEMLD enhances the explanatory
power of SEM by adding a spatial lag term to the original model.

GWR (geographically weighted regression) is a spatial analysis method derived from
the ordinary least squares (OLS) model [48]. It constructs a local regression equation for
each research unit, typically a point or region in geospatial space. Unlike the traditional
global OLS model, GWR considers the influence of spatial location, thus providing a more
effective solution to spatial autocorrelation issues in model residuals [49]. One of the
strengths of the GWR model is that it is able to capture the heterogeneity of data across
geographic locations, which helps to analyze the causes of spatial heterogeneity [50]. GWR
is thus widely used in ecological studies because ecosystems are usually significantly
affected by geographic location, e.g., factors such as climate, soil type, and vegetation
cover may have different effects in different locations. For this study, GWR analysis was
employed to examine the impact of HA on HQ while focusing on spatial heterogeneity. This
approach involves considering factors across various geographic locations to comprehend
why certain areas may exhibit different effects on HQ. Through GWR modeling, the study
aims to offer a more comprehensive understanding of how geographic factors influence
HQ, thereby enhancing insights into spatial data variations and disparities [51]. GWR is
introduced in this study to probe into the impact of HA on the spatial heterogeneity of
HQ at local scales. By incorporating geographic coordinates into the sample data, GWR
smoothens spatial irregularities based on the OLS model, enabling the exploration of HA
effects on HQ for each geographic unit. Essentially, GWR facilitates the exploration of
spatial heterogeneity in the impact of HA on HQ.

3. Materials
3.1. Data Sources

Human Footprint Indices (HFI) (obtained from global year-by-year human footprint
data) were taken from the dataset collated by the UEMM Team (https://www.x-mol.com/
groups/li_xuecao, accessed on 22 November 2023), YRB-related boundary data and land-
use data, and the Resource and Environment Data Center of the Chinese Academy of
Sciences [37,52–54] (http://www.resdc.cn, accessed on 23 November 2023). Other basic

https://www.x-mol.com/groups/li_xuecao
https://www.x-mol.com/groups/li_xuecao
http://www.resdc.cn
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geographic data were obtained from the National Bureau of Surveying, Mapping, and
Geographic Information of China (http://www.ngcc.cn, accessed on 25 November 2023).
Detailed information is provided in Table 3.

Table 3. Data information.

Data Name Data Resolution Data Format Data Sources

HFI 1000 m Tif https://www.x-mol.com/groups/li_xuecao

Land-use data 1000 m Tif http://www.resdc.cn

Boundary data / Shpfile http://www.resdc.cn
http://www.ngcc.cn

3.2. Study Area

Spanning approximately 1.8 million square kilometers, the Yangtze River Basin (YRB)
stretches between latitudes 24◦27’ and 35◦54’ N and longitudes 90◦13’ and 122◦19’ E. It
ranks as the world’s third-largest river basin and encompasses nearly all of China, span-
ning 19 provincial-level administrative regions [2]. Figure 1 shows the information on the
Yangtze River Basin in the study area. The YRB showcases distinct differences in longitude
between its upper, middle, and lower basins. The middle and lower reaches, characterized
by mountainous plateaus, boast abundant hydropower and forest resources. Meanwhile,
the upper reaches of the middle YRB, such as Yunnan Province, are renowned for their
tourism potential and serve as a key agricultural hub in China, benefitting from fertile
terrain and a favorable climate. Conversely, the lower reaches, known as the Yangtze
River Economic Belt, feature expansive geography, abundant water resources, dense pop-
ulations, and robust economic development. This area serves as the nucleus of China’s
export-oriented economy and high-tech industries, attracting substantial industrial and
population concentrations [7]. Marked differences in ecosystem composition across the
upper, middle, and lower reaches of the YRB are attributable to variations in resource
allocation and policies.

Population changes in the YRB are evident; in 2000, the population of the YRB was
about 4 million [26]. Over the last two decades, the population of the YRB has steadily
increased and now approaches 500 million. Notably, urbanization rates have surged,
particularly in major cities like Shanghai, Chongqing, and Nanjing, witnessing rapid
growth in urban populations and their share of the total population. Conversely, some
rural areas inland may experience population decline. Economic transformations in the
YRB are also evident. As early as 2000, the YRB stood as one of China’s foremost economic
regions, contributing significantly to the national GDP. Since 2000, the economy of the
YRB has continued to grow at an average annual rate of over 7%. Cities in the YRB
have seen significant development in manufacturing, finance, technology, and services,
attracting large amounts of domestic and foreign investment. Some cities, such as Shanghai
and Shenzhen, have become global economic centers, contributing to China’s overall
economic growth.

http://www.ngcc.cn
https://www.x-mol.com/groups/li_xuecao
http://www.resdc.cn
http://www.resdc.cn
http://www.ngcc.cn
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Figure 1. Map of study area.

4. Results
4.1. Spatiotemporal Patterns of HQ and HA

In the time series, the HQ of the YRB showed a slight decline from 0.736 in 2000 to
0.733 in 2020, with a value of 0.735 in 2010 (refer to Figure 2). Spatially, regions with higher
HQ values are primarily situated in the mountainous and hilly areas surrounding the
Daba Mountains, the Hengduan Mountains, the Sichuan Basin, and the southeastern urban
agglomeration of the YRB. Conversely, areas with lower HQ values are predominantly
found in the Sichuan Basin, the Yangtze River’s source region, the Yangtze River Delta
(YRD) region, and various large urban agglomerations in the middle reaches of the Yangtze
River. These latter areas are primarily characterized by dense concentrations of arable and
construction land.

Over time, the HA of the YRB has shown an increasing trend, with values of 11.211 in
2000, 11.566 in 2010, and 12.937 in 2020. Spatially (refer to Figure 3), areas with a higher
human activity intensity are primarily concentrated in the Yangtze River Delta (YRD)
urban agglomeration, the city agglomerations in the middle reaches of the Yangtze River,
and the Sichuan Basin—regions that have been focal points of national development in
recent years. Conversely, regions with a lower intensity of human activities are mainly
situated in the upper reaches of the YRB, the Hengduan Mountains, the Daba Mountains,
and the mountainous areas surrounding the Sichuan Basin. These areas, predominantly
mountainous, offer fewer opportunities for development and construction.
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Figure 3. Spatial patterns of HA during 2000–2020.

Throughout the study period, in terms of spatial variation, the average HQ was
highest in the middle basin (0.811), lowest in the lower basin (0.684), and intermediate
in the upper basin (0.707). Conversely, the average HA level was highest in the lower
basin of the Yangtze River (19.954), followed by the middle basin (13.794), and was lowest
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in the upper basin (9.683) (refer to Figure 4). In terms of the time series, the HQ of the
upper basin of the YRB saw a slight increase of 0.004, or 0.567%, during 2000–2020, whereas
those of the middle basin and the lower basin experienced decreases of 0.006 and 0.030,
equivalent to 0.738% and 4.298%, respectively, over the same period. While HQ in the
upper reaches showed a minor improvement, the most significant deterioration occurred in
the lower reaches of the YRB. The intensity of human activities in the upper basin, middle
basin, and lower basin all increased during 2000–2020 by 1.201, 1.911, and 4.383, with
corresponding percentage increases of 13.019%, 14.626%, and 24.455%, respectively. This
indicates a consistent upward trend in human activity intensity throughout the YRB, with
the most pronounced increase observed in the lower basin region.
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In addition, hotspot analysis was introduced in this study to visualize the spatial
patterns of changes in HQ and HA illustrated in Figures 5 and 6. Between 2000 and
2010, the urban agglomeration of the Yangtze River Delta (YRD) experienced a significant
decrease in HQ. Conversely, between 2010 and 2020, the southeastern Qilian Mountains
and the mountainous areas in the northwestern part of the Sichuan Basin saw notable
increases in HQ, while decreases were observed in the southwestern Qilian Mountains
and the urban agglomeration of the Yangtze River Delta. Overall, over the 20-year period
from 2000 to 2020, HQ notably declined in the southwestern Qilian Mountains and the
urban agglomeration of the Yangtze River Delta, while it increased significantly in the
southeastern Qilian Mountains and the mountainous areas of the northwestern Sichuan
Basin. Between 2000 and 2010 and 2010 and 2020, HA witnessed significant increases
in the Yangtze River Delta region, the urban agglomeration in the middle reaches of the
Yangtze River, and the Sichuan Basin. Overall, during 2000–2020, HA rose significantly
throughout the YRB, with the most pronounced increase observed in the Yangtze River
Delta urban agglomeration.
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4.2. Spatial Clustering Patterns of HQ and HA

Based on the global bivariate spatial autocorrelation results for HQ and HA in the YRB
(Figure 7), the Moran’s indices of −0.015, −0.059, and −0.135 were negative and significant
at the 0.001 level during 2000–2020, indicating a negative correlation between HA and HQ.
The Moran’s index decreased by 0.120 during 2000–2020, demonstrating a decreasing trend
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over the study period. Meanwhile, the absolute z-values exhibited an increasing trend
during the study period, rising by 50.82, suggesting a gradual enhancement in the negative
correlation between HQ and HA.
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Figure 7. Bivariate Moran scatter plots for HQ and HA during 2000–2020.

Based on the findings from the bivariate spatial autocorrelation analysis, several dis-
tinct types of clustering patterns emerge in the Yangtze River Basin (YRB). The predominant
types include high–low (high HQ and low HA) and low–high (low HQ and high HA) clus-
ters. Over the study period, there was a notable decrease of 1.549% in the share of low–high
clusters, suggesting a shift in spatial dynamics. Furthermore, as shown in Table 4, the
low–low type (low HQ and low HA) experienced the most significant growth, increasing
by 17.356% between 2000 and 2020 (Figure 8). Conversely, the high–high type (high HQ
and high HA) represented the smallest agglomeration type, accounting for only 6.219% in
2020. The spatial distribution of these agglomeration types reveals distinct patterns. High
HQ and high HA clusters are primarily concentrated in northwestern Guizhou and certain
cities along the middle reaches of the Yangtze River. Interestingly, their distribution appears
more dispersed, indicating that human activities in these regions have not significantly
impacted HQ. Conversely, areas with low HQ and low human activity are mainly found
in the upper basin of the YRB, suggesting natural limitations to human development in
these regions. Regions characterized by low HQ and high human activity are clustered
around the urban agglomerations of the Yangtze River Delta (YRD), the Sichuan Basin, and
the vicinity of the Dabie Mountain Range. These areas exhibit intense human activities,
resulting in considerable damage to HQ. On the other hand, regions with high HQ and low
human activity are predominantly situated in mountainous areas in the western part of the
Sichuan Basin and around the Hengduan Mountains. This part of the region is sparsely
populated, and there is no significant destruction of HQ.

Table 4. Percentages for each cluster type.

Cluster Types High–High Low–Low High–Low Low–High

2000 7.680% 10.198% 16.590% 15.425%
2010 6.471% 10.334% 15.514% 15.317%
2020 6.219% 11.968% 16.446% 15.186%
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4.3. Effects of HA on HQ

Given the significant spatial spillover effect of human activity (HA) on habitat quality
(HQ), employing a spatial model becomes imperative. Initially, an ordinary least squares
(OLS) model was utilized in this study, the results of which are presented in Table 5.
However, the analysis revealed a notable spatial autocorrelation effect in the residual term
of the OLS model, prompting consideration of a spatial regression model. Moreover, the
relatively low R² in the OLS model suggests that it lacks interpretive power. Consequently,
the structural equation model (SEM), the spatial lag model (SLM), and the spatial error
model with a lagged dependent variable (SEMLD) were introduced to further explore
the impact of HA intensity on HQ in the Yangtze River Basin (YRB) area. It is worth
noting that all the models selected for this study passed the robust LM test, affirming their
suitability for analysis. Additionally, the statistical values of the Breusch–Pagan test and
the Koenker–Bassett test for all the models cleared the significance threshold, indicating
the absence of heteroscedasticity in the independent variables (as detailed in Table 5). After
evaluating various criteria, such as log-likelihood, the Akaike information criterion (AIC),
and the Schwartz Bayesian information criterion (SC), the SEMLD model emerged as the
one most suitable for this study. This choice ensured a robust analysis of the relationship
between HA intensity and HQ in the YRB area, accounting for both spatial autocorrelation
and lagged effects.

The regression analysis yielded insightful results regarding the impact of human
activity (HA) on habitat quality (HQ) in the Yangtze River Basin (YRB) over time, as shown
in Table 6. The effect of HA on HQ exhibited a gradual decline, with a peak value of −0.017
in 2000 and a significant regression coefficient of −0.017 (p < 0.001). This indicates that
for every 1% increase in the intensity of human activity, HQ is expected to decrease by
0.017%. Furthermore, the regression coefficient of the spatial lag term also displayed a
decreasing trend, reaching its maximum value of 1.033 in 2000. This suggests that for every
1% increase in HQ in the surrounding areas, HQ within the region itself would increase
by 1.033%. It is noteworthy that the regression coefficients of the spatial error terms are
significant across all years. This implies that the error terms of neighboring regions tend to
influence the error terms of the focal region, with negative effects observed in 2000, 2010,
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and 2020. Such findings underscore the interconnectedness of habitat quality across spatial
domains within the YRB, highlighting the importance of considering spatial dynamics in
habitat management and conservation efforts.

Table 5. Diagnostic items of the ordinary least squares (OLS) method.

Diagnostic Item 2000 2010 2020

Moran’s I (error) 234.5292 *** 235.517 *** 232.450 ***
LM (lag) 54,246.817 *** 54,171.908 *** 51,631.749 ***

Robust LM (lag) 169.289 *** 207.819 *** 218.046 ***
LM (error) 54,964.396 *** 55,428.354 *** 53,993.951 ***

Robust LM (error) 886.868 *** 1464.265 *** 2580.247 ***
Lagrange multiplier (SARMA) 55,133.685 *** 55,636.173 *** 54,211.996 ***

Breusch–Pagan test 352.618 *** 257.113 *** 284.895 ***
Koenker–Bassett test 193.9842 *** 135.763 *** 133.542 ***

Log-likelihood 7212.750 7064.670 7055.640
AIC −14,421.500 −14,125.300 −14,107.300
SC −14,405.300 −14,109.100 −14,091.100
R2 0.005 0.014 0.043

Notes: *** p ≤ 0.001.

Table 6. Regression results for the YRB.

Explanatory
Variables

SLM SEM SEMLD

2000 2010 2020 2000 2010 2020 2000 2010 2020

HA −0.068 *** −0.075 *** −0.084 *** −0.334 *** −0.341 *** −0.370 *** −0.035 ***
(0.002)

−0.035 ***
(0.002)

−0.034 ***
(0.002)

Constant 0.082 *** 0.085 *** 0.098 *** 0.795 *** 0.797 *** 0.814 *** −0.017 ***
(0.002)

−0.016 ***
(0.002)

−0.013 ***
(0.002)

Spatial lag term 0.908 *** 0.906 *** 0.895 *** 1.033 ***
(0.002)

1.031 ***
(0.002)

1.029 ***
(0.002)

Spatial error
term 0.914 *** 0.914 *** 0.908 *** −0.677 ***

(0.014)
−0.658 ***

(0.014)
−0.657 ***

(0.014)
Log likelihood 22,956.200 22,794.700 21,859.900 23,534.269 23,501.254 22,791.041 26,775.907 26,520.790 25,445.620

AIC −45,906.300 −45,583.300 −43,713.900 −47,064.500 −46,998.500 −45,578.100 −53,545.800 −53,035.600 −50,885.200
SC −45,882.000 −45,559.000 −43,689.600 −47,048.300 −46,982.300 −45,561.900 −53,521.500 −53,011.300 −50,860.900
R2 0.773 0.773 0.762 0.785 0.789 0.782 0.812 0.811 0.800

Notes: *** p ≤ 0.001. Numbers in parentheses denote standard deviations.

The study also delved into the specifics of different sub-basins within the Yangtze
River Basin (YRB) using the SEMLD model, with diagnostic results affirming its efficacy.
Tables 7–10 present the regression results for these sub-basins, which exhibited notable
differences compared to the regression results for the entire YRB. Across all sub-basins,
human activities consistently demonstrated predominantly negative effects on habitat qual-
ity (HQ). The smallest regression coefficients were observed in the lower basin, indicating
that the negative impact of human activity on HQ was most pronounced in this region. In
both the middle YRB and upper YRB, the negative effect of human activity on HQ was
also significant. Specifically, in 2020, a 1% increase in human activity in the upper YRB led
to a 0.024% decrease in HQ, while the same increase in the lower YRB resulted in a more
substantial 0.147% decrease in HQ. Moreover, regarding the spatial lag term, all sub-basins
exhibited a strong spatial spillover effect of HQ, with the middle basin of the Yangtze
River displaying the most significant effect. Specifically, in the middle basin of the YRB, a
1% increase in human activity led to a 0.144% increase in HQ compared to 0.026% in the
upper basin and 0.068% in the lower basin. These findings underscore the nuanced spatial
dynamics of human activity and its impact on habitat quality within different regions of the
Yangtze River Basin, emphasizing the importance of tailored conservation and management
strategies at the sub-basin level.
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Table 7. Regression results for the UYRB.

Explanatory
Variables

SLM SEM SEMLD

2000 2010 2020 2000 2010 2020 2000 2010 2020

HA −0.016 *** −0.023 *** −0.038 *** −0.207 *** −0.219 *** −0.269 *** −0.026 ***
(0.002)

−0.027 ***
(0.003)

−0.024 ***
(0.002)

Constant 0.069 *** 0.070 *** 0.078 *** 0.730 *** 0.733 *** 0.752 *** −0.021 ***
(0.002)

−0.020 ***
(0.002)

−0.020 ***
(0.002)

Spatial lag term 0.904 *** 0.905 *** 0.900 *** 1.035 ***
(0.003)

1.035 ***
(0.003)

1.035 ***
(0.003)

Spatial error
term 0.910 *** 0.911 *** 0.908 *** −0.701 ***

(0.017)
−0.695 ***

(0.017)
−0.684 ***

(0.017)
Log likelihood 13,739.000 13,663.200 13,222.500 13,905.673 13,866.005 13,541.526 16,159.919 16,074.237 15,572.295

AIC −27,472.100 −27,320.400 −26,439.000 −27,807.300 −27,728.000 −27,079.100 −32,313.800 −32,142.500 −31,138.600
SC −27,449.300 −27,297.600 −26,416.200 −27,792.100 −27,712.800 −27,063.800 −32,291.000 −32,119.700 −31,115.800
R2 0.765 0.765 0.752 0.771 0.773 0.764 0.808 0.808 0.795

Notes: *** p ≤ 0.001. Numbers in parentheses denote standard deviations.

Table 8. Regression results for the MYRB.

Explanatory
Variables

SLM SEM SEMLD

2000 2010 2020 2000 2010 2020 2000 2010 2020

HA −0.317 *** −0.304 *** −0.297 *** −0.494 *** −0.471 *** −0.467 *** −0.141 ***
(0.006)

−0.143 ***
(0.006)

−0.147 ***
(0.005)

Constant 0.263 *** 0.271 *** 0.308 *** 0.945 *** 0.940 *** 0.951 *** 0.061 ***
(0.006)

0.070 ***
(0.006)

0.098 ***
(0.006)

Spatial lag term 0.786 *** 0.775 *** 0.737 *** 0.973 ***
(0.005)

0.964 ***
(0.005)

0.938 ***
(0.006)

Spatial error
term 0.864 *** 0.860 *** 0.842 *** −0.593 ***

(0.024)
−0.566 ***

(0.024)
−0.555 ***

(0.024)
Log likelihood 8357.070 8326.890 8188.990 8457.452 8445.305 8357.833 9103.311 9024.309 8791.379

AIC −16,708.100 −16,647.800 −16,372.000 −16,910.900 −16,886.600 −16,711.700 −18,200.600 −18,042.600 −17,576.800
SC −16,687.300 −16,627.000 −16,351.200 −16,897.000 −16,872.800 −16,697.800 −18,179.800 −18,021.800 −17,556.000
R2 0.756 0.755 0.756 0.771 0.772 0.777 0.782 0.780 0.778

Notes: *** p ≤ 0.001. Numbers in parentheses denote standard deviations.

Table 9. Regression results for the LYRB.

Explanatory
Variables

SLM SEM SEMLD

2000 2010 2020 2000 2010 2020 2000 2010 2020

HA −0.210 *** −0.215 *** −0.261 *** −0.309 *** −0.346 *** −0.382 *** −0.052 ***
(0.011)

−0.067 ***
(0.010)

−0.086 ***
(0.012)

Constant 0.215 *** 0.234 *** 0.299 *** 0.798 *** 0.813 *** 0.834 *** 0.008
(0.011)

0.031
(0.012)

0.061 ***
(0.014)

Spatial lag term 0.801 *** 0.785 *** 0.733 *** 1.015 ***
(0.011)

0.993 ***
(0.012)

0.968 ***
(0.013)

Spatial error
term 0.867 *** 0.870 *** 0.843 *** −0.567 ***

(0.042)
−0.466 ***

(0.042)
−0.471 ***

(0.042)
Log likelihood 2033.750 2026.100 1844.520 2013.895 2024.201 1816.932 2295.148 2247.032 2036.960

AIC −4061.500 −4046.200 −3683.030 −4023.790 −4044.400 −3629.860 −4584.300 −4488.060 −4067.920
SC −4044.210 −4028.910 −3665.740 −4012.270 −4032.880 −3618.340 −4567.010 −4470.780 −4050.630
R2 0.738 0.760 0.755 0.742 0.770 0.761 0.770 0.781 0.776

Notes: *** p ≤ 0.001. Numbers in parentheses denote standard deviations.

Table 10. Regression results of SEMLD for the different sub-basins.

Explanatory
Variables

Upper Basin Middle Basin Lower Basin

2000 2010 2020 2000 2010 2020 2000 2010 2020

HA −0.026 ***
(0.002)

−0.027 ***
(0.003)

−0.024 ***
(0.002)

−0.141 ***
(0.006)

−0.143 ***
(0.006)

−0.147 ***
(0.005)

−0.052 ***
(0.011)

−0.067 ***
(0.010)

−0.086 ***
(0.012)

Constant −0.021 ***
(0.002)

−0.020 ***
(0.002)

−0.020 ***
(0.002)

0.061 ***
(0.006)

0.070 ***
(0.006)

0.098 ***
(0.006)

0.008
(0.011)

0.031
(0.012)

0.061 ***
(0.014)

Spatial lag term 1.035 ***
(0.003)

1.035 ***
(0.003)

1.035 ***
(0.003)

0.973 ***
(0.005)

0.964 ***
(0.005)

0.938 ***
(0.006)

1.015 ***
(0.011)

0.993 ***
(0.012)

0.968 ***
(0.013)

Spatial error
term

−0.701 ***
(0.017)

−0.695 ***
(0.017)

−0.684 ***
(0.017)

−0.593 ***
(0.024)

−0.566 ***
(0.024)

−0.555 ***
(0.024)

−0.567 ***
(0.042)

−0.466 ***
(0.042)

−0.471 ***
(0.042)

Log likelihood 16,159.919 16,074.237 15,572.295 9103.311 9024.309 8791.379 2295.148 2247.032 2036.960
AIC −32,313.800 −32,142.500 −31,138.600 −18,200.600 −18,042.600 −17,576.800 −4584.300 −4488.060 −4067.920
SC −32,291.000 −32,119.700 −31,115.800 −18,179.800 −18,021.800 −17,556.000 −4567.010 −4470.780 −4050.630
R2 0.808 0.808 0.795 0.782 0.780 0.778 0.770 0.781 0.776

Notes: *** p ≤ 0.001. Numbers in parentheses denote standard deviations.
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The local-scale regression results depicted in Figure 9 reveal a notable scale depen-
dence of the effect of human activity intensity on habitat quality (HQ). This highlights the
significance of considering spatial scale when assessing this relationship. To address this,
geographically weighted regression (GWR) was employed, extending from the ordinary
least squares (OLS) model [55]. The superiority of the GWR model over the OLS model
was evident from the Akaike information criterion (AIC) values in Table 11. Specifically, for
the years 2000, 2010, and 2020, the AIC of GWR was substantially smaller than that of OLS,
indicating the higher performance of the GWR model. Moreover, the R² of GWR surpassed
that of the OLS model, signifying its enhanced explanatory power. The analysis revealed
that the percentage of data with positive regression coefficients was consistently lower than
that with negative coefficients, suggesting a prevailing negative impact of human activity
intensity on HQ. Additionally, GWR underscored the spatial heterogeneity of this effect.
Specifically, in the urban agglomeration area of the Yangtze River Delta (YRD), regression
coefficients were predominantly negative, often with larger absolute values compared to
other areas. In contrast, the Yangtze River source area exhibited mainly positive coefficients
in 2000 and 2010, shifting to negative coefficients in 2020. Furthermore, a positive effect
of human activity intensity on HQ gradually emerged over time, primarily observed in
mountainous regions like the Daba Mountain Range and the northern region of Guizhou
Province. These findings highlight the complex and dynamic nature of the relationship
between human activity intensity and habitat quality across different spatial scales and
regions within the study area.
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Table 11. R² and AICc values for OLS and GWR models.

Years 2000 2010 2020

GWR OLS GWR OLS GWR OLS

AICc −56,777.633 −14,421.500 −54,721.534 −14,125.300 −50,751.269 −14,107.300
R2 0.884 0.005 0.857 0.014 0.816 0.043
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5. Discussion
5.1. Impact of HA on HQ

This study provides a comprehensive assessment of the spatial and temporal variations
in habitat quality (HQ) within the Yangtze River Basin (YRB), revealing a concerning
trend of continuous degradation [26]. Significant disparities in HQ were observed across
different areas of the YRB, closely linked to the spatial and temporal distribution of human
activities [56]. As economic development progresses along the gradient from west to east
within the Yangtze River Basin (YRB), the alluvial plains in the lower basin have emerged
as focal points for population concentration and rapid economic growth [57]. However, this
rapid expansion of human activity has come at the expense of natural habitats, resulting in
substantial degradation of HQ in these areas. Over the period from 2000 to 2020, human
activity increased significantly across the upper, middle, and lower basins of the Yangtze
River, with the lower basin experiencing the most pronounced increase, reaching 24.455%.
Despite this surge in human activity, HQ in the lower basin notably increased, indicating
successful conservation efforts or mitigating factors in this region. However, the overall
trend for HQ in the YRB is concerning. Apart from a slight increase in HQ observed in the
upper basin, HQ in the middle and lower basins experienced significant declines, with the
lower basin recording the most substantial decrease, reaching a maximum of 4.298% over
the 20-year period. Of particular interest is the observation that while certain areas within
the upper basin exhibited improvements in HQ over specific time periods, a downward
trend was observed in the middle and lower basins. This nuanced understanding of the
spatial and temporal evolution of ecosystem health in the YRB underscores the complexity
of balancing economic development with environmental conservation efforts in a dynamic
and rapidly changing landscape.

This study extensively examined the spatial relationship between human activity (HA)
and habitat quality (HQ) in the Yangtze River Basin (YRB). It was found that in urban
agglomeration areas, HA had a pronounced negative impact on HQ, indicating that the
expansion of human activities has a more serious effect on ecosystems, disrupting the in-
tegrity and connectivity of regional ecosystems and resulting in habitat degradation [58]. In
contrast, a slight improvement in HQ was observed in areas where HA expansion was less
pronounced, such as mountainous regions. This variation in HA across the upper, middle,
and lower reaches of the YRB is primarily influenced by the distribution of resources and
other factors [59]. The upper basin of the YRB is characterized by low human activities due
to resource scarcity, while the middle and lower basins are influenced by the abundance of
resources and economic development levels. Intensive HA in urban agglomerations has led
to a significant decline in environmental quality, which has had a strong adverse impact on
the environment. Conversely, in mountainous areas, HA may contribute to the restoration
of environmental quality through environmental protection measures. This suggests that
the environmental changes in the YRB are a result of a combination of multiple factors,
necessitating the adoption of measures tailored to local conditions to promote sustainable
development while protecting and enhancing environmental quality [60]. Moreover, this
study analyzed the variations in the impacts of HA expansion on HQ in different sub-basins.
The results show that the negative effect of HA on HQ is strongest in the downstream region
and smallest in the upper Yangtze River Basin. This finding provides crucial insights for
developing targeted conservation measures in specific regions. By further investigating the
mechanisms of how HA specifically affects HQ, we can devise more precise environmental
management strategies to promote sustainable ecological development in the Yangtze
River Basin. Expansion of human activities in specific sub-basins may lead to significant
deterioration of HQ, while in other sub-basins there may be relatively small impacts on
HQ. This variation suggests the need for site-specific ecological conservation and resource
management measures to minimize the adverse effects of human activities on HQ [61]. In
addition, HQ tends to have significant spatial spillover effects, which is consistent with
findings from previous studies [2]. Spatial spillovers of human activities impact habitats,
including ecosystem connectivity, migration and species dispersal, land-use change, cli-
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mate change, diffusion of socio-economic activities, and policy and management practices,
require that integrated ecosystem responses across regions be considered in research and
management [62].

5.2. Policy Implications

Taken together, this study offers a thorough examination of the interplay between
habitat quality (HQ) and human activities in the Yangtze River Basin (YRB), uncovering
trends in spatial and temporal variations. It serves as a robust scientific foundation for
future endeavors in ecological preservation and sustainable development, thus contribut-
ing significantly to the development of targeted environmental policies and ecosystem
management strategies [63]. Policy recommendations grounded in the study’s findings are
set out below.

Given that habitat quality (HQ) has significant spatial spillover effects, policymakers
should incorporate it into environmental protection strategies and promote synergistic re-
gional development. Measures to reduce interregional spillover effects of adverse ecological
impacts and achieve sustainable ecosystem health by promoting synergistic interregional
development are recommended [64,65]. To address this issue, an ecological compensation
mechanism could be established, such as the establishment of a Yangtze River Basin ecolog-
ical compensation fund at the national level to support ecological environmental protection
efforts in upstream areas, while upstream and downstream areas could be encouraged to
establish ecological compensation agreements to clarify the compensation standards and
modalities so as to realize a win–win situation for ecological environmental protection
and economic and social development. In this way, a cross-regional ecological cooperation
mechanism and a decision-making framework for eco-compensation could be established
to ensure that habitat protection is not only effective at the local scale but also has a positive
impact in the wider region.

Given the different levels of HQ in different regions, the implementation of differenti-
ated ecological environmental protection and management measures is recommended [65].
The upper reaches of the Yangtze River Basin can strengthen soil and water conservation
and ecological restoration by implementing projects such as returning farmland to forests,
grasses, and wetlands to improve vegetation cover and ecological stability. The upstream
area has more mountainous areas and should strictly control the development of mineral
resources to reduce the damage of mining activities to the ecological environment and
promote ecological agriculture and green planting technology, reduce agricultural surface
pollution, and comprehensively realize the enhancement of habitat quality (HQ). In the
middle reaches of the Yangtze River Basin, the decline in HQ is obvious, and the manage-
ment of industrial pollution sources should be intensified, strict emission standards should
be implemented, and enterprises should be promoted to carry out cleaner production and
technological transformation, including strengthening of the construction and management
of urban sewage treatment facilities, improvement of the sewage treatment rate and the
rate of water reuse, and reduction in urban sewage pollution on the Yangtze River, while
strengthening the management of agricultural face source pollution and slowing down
the destruction of the habitat quality (HQ) in the middle reaches of the Yangtze River. The
habitat quality of the lower reaches of the Yangtze River Basin itself is not encouraging,
and the decline in its HQ is also more obvious. It is possible to strictly control urban
expansion and land development and to rationally plan the urban layout and land-use
structure so as to avoid negative impacts on the habitat quality of the Yangtze River Basin
resulting from the reduction in animal and plant habitats resulting from uncontrolled urban
expansion [66] The HQ damage in the downstream region is more serious, and the protec-
tion and restoration of wetlands along the river should be strengthened by establishing
wetland nature reserves or wetland parks to improve the stability and service function of
wetland ecosystems, and the comprehensive management of the water environment should
be strengthened by implementing projects such as river dredging and water ecological
restoration so as to improve the water quality and ecological environment of the lower
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reaches of the Yangtze River and to rectify the imbalance between balanced urbanization
development and biodiversity protection.

5.3. Limitations and Future Plans

The study delves into the spatiotemporal patterns of human activities’ impact on
habitat quality in the YRB over the period 2000–2020. However, it acknowledges the
following limitations: 1. In the era of rapid informatization and industrialization, there has
been a surge in the exchange of people, information, and material flows. Nonetheless, this
study has not examined the impact of HA on HQ from the perspective of remote coupling.
Specifically, the study has not accounted for the potential influence of HA in the upper
basin of the YRB on HQ in the lower basin areas. To address this gap, we aim to incorporate
the remote coupling perspective in future research to enhance the analysis of the impact of
HA on HQ. 2. This study primarily relied on cross-sectional data to investigate the effects
of HA on HQ, overlooking the time-series perspective within a given region. To overcome
this limitation, we plan to utilize panel data in future endeavors to gain insights into the
regional variations in the impact of HA on HQ.

6. Conclusions

This study comprehensively analyzed the spatial and temporal patterns of human
activities (HAs) and habitat quality (HQ) in the Yangtze River Basin, including its upper,
middle, and lower reaches, from 2000 to 2020 using spatial analysis and spatial regression.
The results showed that the overall HQ of the Yangtze River Basin gradually declined
during the study period, while the overall HA significantly increased. Specifically analyzing
the changes in the upper, middle, and lower reaches of the Yangtze River basin, the HQ
of the upper Yangtze River basin increased by 0.567%, while that of the middle and lower
reaches decreased by 0.738% and 4.298%, respectively. Meanwhile, the HA in the upper,
middle, and lower basins increased by 13.019%, 14.626%, and 24.455%, respectively. It
is noteworthy that the changes in HQ and HA showed obvious and consistent trends in
the upper, middle, and lower basins. Locally, the low–low aggregation type increased
by 17.356%, while all other aggregation types decreased, with the largest decrease of
79.230% being recorded for the high–high aggregation type. The spatial regression model
at the basin-wide scale indicated that HA had a significant negative effect on HQ, and
HQ exhibited a significant spatial spillover effect. However, the results of geographically
weighted regression (GWR) at the local scale indicated that HA in mountainous areas had
a positive effect on HQ. This study deepens our understanding of the spatial relationship
between HA and HQ in the upper, middle, and lower reaches of the Yangtze River and the
differences in the effects of HA on HQ changes. This study can serve as a case study of the
effects of human activities on habitat quality in large basins.
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