Analysis of the Government’s Decision on Leasing Different Lands under Public Ownership of Land
Abstract
:1. Introduction
2. Background of Land Leasing in Shenzhen
3. Methodology
4. Multinomial Logit Model of Influencing Factors for Land Leasing
4.1. Classification of Influencing Factors
4.1.1. Land Attribute
4.1.2. District-Level Economy and Polity
4.1.3. Land Accessibility
4.2. Multinomial Logit Model of Influencing Factors for Land Leasing
5. Data Collection and Processing
6. Regression Results and Discussion
6.1. Results of Multinomial Logit Model
6.2. Discussion on Multinomial Logit Model
6.3. Validation of the Results
7. Conclusions and Implication
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, J. Analysis of commercial land leasing of the district governments of Beijing in China. Land Use Policy 2021, 100, 104881. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, L.; Cao, Y.D.; Yang, L.C. Industrial land supply at different technological intensities and its contribution to economic growth in China: A case study of the Beijing-Tianjin-Hebei region. Land Use Policy 2021, 101, 105087. [Google Scholar] [CrossRef]
- Huang, L.X.; Yang, L.; Tian, L.L.; Yu, R.; Wang, D.C.; Hao, J.M.; Lu, J. Does the location of construction land supply play an very important role on economic growth? The case study of Tianjin Binhai New Area. J. Urban Manag. 2020, 9, 104–114. [Google Scholar] [CrossRef]
- Wu, J.Y.; Guo, Q.; Hewings, G.J.D. Land regulating economy as a policy instrument in urban China. Cities 2019, 94, 225–234. [Google Scholar] [CrossRef]
- Tian, L.; Ma, W.J. Government intervention in city development of China: A tool of land supply. Land Use Policy 2009, 26, 599–609. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhang, Z.W.; Zhou, Y. Efficiency of construction land allocation in China: An econometric analysis of panel data. Land Use Policy 2018, 74, 261–272. [Google Scholar] [CrossRef]
- Liu, Y.S.; Fang, F.; Li, Y.H. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Yuan, F.; Wei, Y.H.D.; Xiao, W.Y. Land marketization, fiscal decentralization, and the dynamics of urban land prices in transitional China. Land Use Policy 2019, 89, 104208. [Google Scholar] [CrossRef]
- Cao, R.F.; Zhang, A.L.; Cai, Y.Y.; Xie, X.X. How imbalanced land development affects local fiscal condition? A case study of Hubei Province, China. Land Use Policy 2020, 99, 105086. [Google Scholar] [CrossRef]
- Wang, H.Z.; Lu, X.H.; Wang, M.X.; Tang, Y.F. Determining existence of three-dimensional intergovernmental competition: Spatial econometric analysis based on China’s land-leasing behavior. J. Urban Plan. Dev. 2022, 148, 05022017. [Google Scholar] [CrossRef]
- Chiang, T.F.; Hou, J.; Tsai, P.H. Fiscal incentives and land finance cycles of prefectures in China. World Econ. 2021, 45, 1262–1293. [Google Scholar] [CrossRef]
- Fang, L.; Tian, C.H.; Yin, X.H.; Song, Y. Political cycles and the mix of industrial and residential land leasing. Sustainability 2018, 10, 3077. [Google Scholar] [CrossRef]
- Zhao, Y.; Choy, L.H.T.; Chau, K.W. Political circles and land supply for the service and industrial sectors: Evidence from 284 cities in China. Land 2023, 12, 573. [Google Scholar] [CrossRef]
- Sun, W.Z.; Song, Z.D.; Xia, Y.H. Government-enterprise collusion and land supply structure in Chinese cities. Cities 2020, 105, 102849. [Google Scholar] [CrossRef]
- Yang, S.F.; Hu, S.G.; Li, W.D.; Zhang, C.R.; Song, D.D. Spatio-temporal nonstationary effects of impact factors on industrial land price in industrializing cities of China. Sustainability 2020, 12, 2792. [Google Scholar] [CrossRef]
- Yan, S.Q.; Ge, X.J.; Wu, Q. Government intervention in land market and its impacts on land supply and new housing supply: Evidence from major Chinese markets. Habitat Int. 2014, 44, 517–527. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Chen, T.T. Land remise income and remise price during China’s transitional period from the perspective of fiscal decentralization and economic assessment. Land Use Policy 2016, 50, 293–300. [Google Scholar]
- Gao, H.N. Public land leasing, public productive spending and economic growth in Chinese cities. Land Use Policy 2019, 88, 104076. [Google Scholar] [CrossRef]
- Han, L.D.; Wu, X.; Tang, P. Does environmental decentralization affect the supply of urban construction land? Evidence from China. Land 2023, 12, 601. [Google Scholar] [CrossRef]
- Jiang, M.; Xin, L.J.; Li, X.B.; Tan, M.H. Spatiotemporal variation of China’s state-owned construction land supply from 2003 to 2014. Sustainability 2016, 8, 1137. [Google Scholar] [CrossRef]
- Jin, W.F.; Zhou, C.S.; Zhang, G.J. Characteristics of state-owned construction land supply in Chinese cities by development stage and industry. Land Use Policy 2020, 96, 104630. [Google Scholar] [CrossRef]
- Qian, J.; Peng, Y.F.; Luo, C.; Wu, C.; Du, Q.Y. Urban land expansion and sustainable land use policy in Shenzhen: A case study of China’s rapid urbanization. Sustainability 2016, 8, 16. [Google Scholar] [CrossRef]
- Tong, D.; Wang, X.G.; Wu, L.J.; Zhao, N.Q. Land ownership and the likelihood of land development at the urban fringe: The case of Shenzhen, China. Habitat Int. 2018, 73, 43–52. [Google Scholar] [CrossRef]
- Lai, Y.N.; Chen, K.; Zhang, J.M.; Liu, F.H. Transformation of Industrial Land in Urban Renewal in Shenzhen, China. Land 2020, 9, 371. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Shen, L. The impacts of rail transit on future urban land use development: A case study in Wuhan, China. Transp. Policy 2019, 81, 396–405. [Google Scholar] [CrossRef]
- Wang, F.R.; Ross, C.L. Machine learning travel mode choices: Comparing the performance of an extreme gradient boosting model with a multinomial logit model. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 35–45. [Google Scholar] [CrossRef]
- Zhou, B.; Kockelman, K.M. Neighborhood impacts on land use change: A multinomial logit model of spatial relationships. Ann. Reg. Sci. 2008, 42, 321–340. [Google Scholar] [CrossRef]
- Gingerich, K.; Maoh, H.; Anderson, W. Choice of land use development type within commercial and industrial zoning. J. Urban Plan. Dev. 2015, 141, 04014024. [Google Scholar] [CrossRef]
- Miheretu, A.B.; Yimer, A.A. Determinants of farmers’ adoption of land management practices in Gelana sub-watershed of Northern highlands of Ethiopia. Ecol. Process. 2017, 6, 19. [Google Scholar] [CrossRef]
- Martinez, R.M.; Baerenklau, K.A. Controlling for misclassified land use data: A post-classification latent multinomial logit approach. Remote Sens. Environ. 2015, 170, 203–215. [Google Scholar] [CrossRef]
- Diriye, A.W.; Jama, O.M.; Diriye, J.W.; Abdi, A.M. Public preference for sustainable land use policies—Empirical results from multinomial logit model analysis. Land Use Policy 2022, 114, 105975. [Google Scholar] [CrossRef]
- Sharma, S.; Bajaj, D.; Dharmapuri Tirumala, R. Determinants of residential land value—A study of Delhi, India. Prop. Manag. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Anglin, P.M.; Dale-Johnson, D.; Gao, Y.M.; Zhu, G.Z. Patterns of growth in Chinese cities: Implications of the land lease. J. Urban Econ. 2014, 83, 87–107. [Google Scholar] [CrossRef]
- Wubet Shita, M.; Ayalew Tefera, T.; Ayalew Gebru, M. Determinants of urban land lease price using artificial neural network and hedonic regression model: Case of Addis Ababa, Ethiopia. J. Urban Plan. Dev. 2022, 148, 04022031. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, R.R.; Liu, H.Y.; Zhang, H. Land leasing and local government behaviour in China: Evidence from Beijing. Urban Stud. 2015, 52, 841–856. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.T.; Liu, Y.; Qian, J.F. Does the land price subsidy still exist against the background of market reform of industrial land? Land 2021, 10, 963. [Google Scholar] [CrossRef]
- Wu, G.Y.L.; Feng, Q.; Li, P. Does local governments’ budget deficit push up housing prices in China? China Econ. Rev. 2015, 35, 183–196. [Google Scholar] [CrossRef]
- Chen, J.H.; Guo, F.; Wang, H.; Wang, Z.F.; Wu, Y. Urban land revenue and sustainable urbanization in China: Issues and challenges. Sustainability 2018, 10, 2111. [Google Scholar] [CrossRef]
- Cai, M.N. Revenue, time horizon, and land allocation in China. Land Use Policy 2017, 62, 101–112. [Google Scholar] [CrossRef]
- Du, H.; Mulley, C. Understanding spatial variations in the impact of accessibility on land value using geographically weighted regression. J. Transp. Land Use 2012, 5, 46–59. [Google Scholar]
- Li, L.H. The dynamics of the Shanghai land market—An intra city analysis. Cities 2011, 28, 372–380. [Google Scholar] [CrossRef]
- Cheng, J. Analysis of the factors influencing industrial land leasing in Beijing of China based on the district-level data. Land Use Policy 2022, 122, 106389. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Sun, W.Z.; Wang, R. Land supply and capitalization of public goods in housing prices: Evidence from Beijing. J. Reg. Sci. 2014, 54, 550–568. [Google Scholar] [CrossRef]
- Dai, P.; Sheng, R.; Miao, Z.; Chen, Z.; Zhou, Y. Analysis of spatial–temporal characteristics of industrial land supply scale in relation to industrial structure in China. Land 2021, 10, 1272. [Google Scholar] [CrossRef]
- Jens, J.K. Productivity and structural change: A review of the literature. J. Econ. Surv. 2008, 22, 330–363. [Google Scholar]
- Wu, S.S.; Cheng, J.; Lo, S.M.; Chen, C.C.; Bai, Y.X. Coordinating urban construction and district-level population density for balanced development: An explorative structural equation modeling analysis on Shanghai. J. Clean. Prod. 2021, 312, 127646. [Google Scholar] [CrossRef]
- Brambill, M.; Ronchi, S. The park-view effect: Residential development is higher at the boundaries of protected areas. Sci. Total Environ. 2016, 569, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Leigh, N.G.; Hoelzel, N.Z. Smart growth’s blind side: Sustainable cities need productive urban industrial land. J. Am. Plan. Assoc. 2012, 78, 87–103. [Google Scholar] [CrossRef]
- Cheng, J.; Xie, Y.; Zhang, J. Analyzing the urban hierarchical structure based on multiple indicators of economy and industry: An econometric study in China. CMES-Comput. Model. Eng. Sci. 2022, 131, 1831–1855. [Google Scholar] [CrossRef]
Classification | Variable |
---|---|
Land attribute | Area for a piece of land |
Transaction price for a piece of land | |
Location of the district | |
Supply mode of a piece of land | |
District-level economy and polity | Foreign investment in actual use of the district |
Investment in fixed assets of the district | |
Average wage of employees of the district | |
Fiscal gap of the district | |
District chief tenure | |
Land accessibility | Distance between a piece of land and the location of the district government |
Distance between a piece of land and the location of Shenzhen Citizen Center | |
Distance between a piece of land and Shenzhen Bao’an International Airport | |
Distance between a piece of land and the nearest metro station | |
Distance between a piece of land and the nearest municipal key high school | |
Distance between a piece of land and the nearest public park | |
Distance between a piece of land and the nearest industrial park |
Variable | Unit | Observation | Mean | Standard Deviation | VIF |
---|---|---|---|---|---|
LA | m2 | 936 | 55,768.55 | 214,525.6 | 1.04 |
TP | CNY | 936 | 5.87 × 108 | 1.71 × 109 | 1.19 |
LC1 | - | 936 | 0.2628 | 0.4404 | 4.68 |
LC2 | - | 936 | 0.4594 | 0.4986 | 2.9 |
MD1 | - | 936 | 0.906 | 0.292 | 5.34 |
MD2 | - | 936 | 0.0759 | 0.2649 | 5.13 |
FV | CNY | 936 | 4.04 × 109 | 3.71 × 109 | 2.9 |
FX | CNY | 936 | 5.73 × 1010 | 3.81 × 1010 | 3.14 |
WG | CNY | 936 | 53,193.11 | 48,811.59 | 2.02 |
FG | CNY | 936 | 4.13 × 109 | 5.61 × 109 | 2.14 |
DC | Year | 936 | 2.7019 | 1.402 | 1.86 |
DG | m | 936 | 26,336.94 | 15,400.37 | 1.1 |
CC | m | 936 | 22,816.33 | 10,868.27 | 1.15 |
AP | m | 936 | 31,302.95 | 17,437.83 | 3.28 |
MS | m | 936 | 9670.762 | 10,576.31 | 3.33 |
KH | m | 936 | 7743.832 | 6564.297 | 2.71 |
PP | m | 936 | 568.0807 | 477.1932 | 1.22 |
IT | m | 936 | 413.4986 | 284.0499 | 1.11 |
Use Type of Land | Variable | Coefficient | Standard Error | z-Statistics |
---|---|---|---|---|
Residence | Land attribute | |||
LA | −0.48389 ** | 0.24323 | −1.99 | |
TP | 5.20527 *** | 0.5223 | 9.97 | |
LC1 | −1.14154 * | 0.60294 | −1.89 | |
LC2 | −0.38853 | 0.3977 | −0.98 | |
MD1 | −3.7681 *** | 1.09203 | −3.45 | |
MD2 | −1.76371 | 1.12347 | −1.57 | |
District-level economy and polity | ||||
FV | 0.50322 *** | 0.19466 | 2.59 | |
FX | −0.0425 | 0.21282 | −0.2 | |
WG | −0.34157 ** | 0.18009 | −1.9 | |
FG | −0.19716 | 0.15878 | −1.24 | |
DC | −0.13244 | 0.11801 | −1.12 | |
Land accessibility | ||||
DG | 0.01091 | 0.11308 | 0.1 | |
CC | 0.07255 | 0.11663 | 0.62 | |
AP | 0.34622 * | 0.20778 | 1.67 | |
MS | 0.151217 | 0.19103 | 0.79 | |
KH | −0.12554 | 0.17377 | −0.72 | |
PP | −0.28383 ** | 0.12258 | −2.32 | |
IT | 0.53705 *** | 0.12085 | 4.44 | |
Constant | 3.71491 *** | 1.13899 | 3.26 | |
Commerce | Land attribute | |||
LA | 0.02375 | 0.0763 | 0.31 | |
TP | 5.09271 *** | 0.52014 | 9.79 | |
LC1 | 1.511134 *** | 0.56176 | 2.69 | |
LC2 | −0.63308 | 0.43899 | −1.44 | |
MD1 | −2.52471 * | 1.36919 | −1.84 | |
MD2 | 0.1827 | 1.40468 | 0.13 | |
District-level economy and polity | ||||
FV | 0.16115 | 0.18481 | 0.87 | |
FX | 0.1187 | 0.20661 | 0.57 | |
WG | −1.00793 *** | 0.18718 | −5.38 | |
FG | −0.56158 *** | 0.16581 | −3.39 | |
DC | −0.20856 ** | 0.10145 | −2.06 | |
Land accessibility | ||||
DG | 0.145388 | 0.12794 | 1.14 | |
CC | 0.1055 | 0.133 | 0.79 | |
AP | 0.15993 | 0.21269 | 0.75 | |
MS | −0.46884 * | 0.24879 | −1.88 | |
KH | −0.34838 * | 0.20117 | −1.73 | |
PP | −0.03533 | 0.13721 | −0.26 | |
IT | 0.5278 *** | 0.12078 | 4.37 | |
Constant | 1.93225 | 1.41641 | 1.36 | |
Public facility | Land attribute | |||
LA | −7.79811 ** | 3.35715 | −2.32 | |
TP | 2.67607 *** | 0.89797 | 2.98 | |
LC1 | 2.1762 ** | 0.94555 | 2.3 | |
LC2 | −0.33912 | 0.7075 | −0.48 | |
MD1 | 8.49464 | 444.9765 | 0.02 | |
MD2 | 12.10961 | 444.9768 | 0.03 | |
District-level economy and polity | ||||
FV | 0.01449 | 0.30191 | 0.05 | |
FX | 0.63509 ** | 0.33771 | 1.88 | |
WG | −1.13683 *** | 0.28248 | −4.02 | |
FG | 0.02592 | 0.30297 | 0.09 | |
DC | −0.01292 | 0.17854 | −0.07 | |
Land accessibility | ||||
DG | 0.81151 *** | 0.27388 | 2.96 | |
CC | −0.41962 * | 0.24774 | −1.69 | |
AP | 0.64499 ** | 0.35764 | 1.8 | |
MS | −0.57104 | 0.44592 | −1.28 | |
KH | −0.036325 | 0.33692 | −0.11 | |
PP | −0.58756 * | 0.32495 | −1.81 | |
IT | 0.54483 *** | 0.19991 | 2.73 | |
Constant | −13.22932 | 444.9776 | −0.03 | |
Observation | 936 | |||
0.3452 |
Use Type of Land | Observation | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
Residential | 936 | 0.17522 | 0.19971 | 5.72 × 10−8 | 0.95529 |
Industrial | 936 | 0.58867 | 0.32842 | 0 | 0.99302 |
Commercial | 936 | 0.19551 | 0.22808 | 0.00069 | 0.96835 |
Public facility | 936 | 0.0406 | 0.06428 | 0 | 0.48823 |
Use Type of Land | Variable | Coefficient | Standard Error | z-Statistics |
---|---|---|---|---|
Residence | Land attribute | |||
LA | −0.47209 * | 0.24175 | −1.95 | |
TP | 5.21884 *** | 0.52144 | 10.01 | |
LC1 | −0.92726 * | 0.50529 | −1.84 | |
LC2 | −0.2535 | 0.35737 | −0.71 | |
MD1 | −3.78762 *** | 1.0927 | −3.47 | |
MD2 | −1.80104 | 1.12337 | −1.60 | |
District-level economy and polity | ||||
FV | 0.50517 *** | 0.19505 | 2.59 | |
FX | −0.04481 | 0.21298 | −0.21 | |
WG | −0.35545 ** | 0.17499 | −2.03 | |
FG | −0.20145 | 0.15781 | −1.28 | |
DC | −0.13863 | 0.11799 | −1.17 | |
Land accessibility | ||||
DG | 0.01601 | 0.11219 | 0.14 | |
CC | 0.07177 | 0.11654 | 0.62 | |
AP | 0.40482 ** | 0.18119 | 2.23 | |
MS | 0.0967 | 0.16668 | 0.58 | |
PP | −0.29055 ** | 0.1222 | −2.38 | |
IT | 0.51426 *** | 0.1189 | 4.33 | |
Constant | 3.62806 *** | 1.13144 | 3.21 | |
Commerce | Land attribute | |||
LA | 0.02321 | 0.07652 | 0.30 | |
TP | 5.09976 *** | 0.51943 | 9.82 | |
LC1 | 2.05596 *** | 0.45962 | 4.47 | |
LC2 | −0.29543 | 0.39009 | −0.76 | |
MD1 | −2.57864 * | 1.37914 | −1.87 | |
MD2 | 0.15296 | 1.4135 | 0.11 | |
District-level economy and polity | ||||
FV | 0.16215 | 0.18445 | 0.88 | |
FX | 0.12431 | 0.20571 | 0.60 | |
WG | −1.06458 *** | 0.18428 | −5.78 | |
FG | −0.54493 *** | 0.16205 | −3.36 | |
DC | −0.19209 ** | 0.1013 | −1.90 | |
Land accessibility | ||||
DG | 0.15538 | 0.12763 | 1.22 | |
CC | 0.10237 | 0.13277 | 0.77 | |
AP | 0.30805 | 0.19191 | 1.61 | |
MS | −0.66484 *** | 0.22536 | −2.95 | |
PP | −0.04623 | 0.13203 | −0.35 | |
IT | 0.49009 *** | 0.11743 | 4.17 | |
Constant | 1.65224 | 1.41819 | 1.17 | |
Public facility | Land attribute | |||
LA | −7.7537 ** | 3.34713 | −2.32 | |
TP | 2.63477 *** | 0.89546 | 2.94 | |
LC1 | 2.28759 *** | 0.82636 | 2.77 | |
LC2 | −0.31891 | 0.6475 | −0.49 | |
MD1 | 7.84074 | 329.5867 | 0.02 | |
MD2 | 11.4504 | 329.5872 | 0.03 | |
District-level economy and polity | ||||
FV | 0.01451 | 0.30191 | 0.05 | |
FX | 0.64599 * | 0.33708 | 1.92 | |
WG | −1.15594 *** | 0.28005 | −4.13 | |
FG | 0.02617 | 0.30231 | 0.09 | |
DC | −0.01949 | 0.17589 | −0.11 | |
Land accessibility | ||||
DG | 0.80619 *** | 0.27134 | 2.97 | |
CC | −0.41221 * | 0.2457 | −1.68 | |
AP | 0.68288 ** | 0.3404 | 2.01 | |
MS | −0.582612 | 0.39872 | −1.46 | |
PP | −0.60387 * | 0.32865 | −1.84 | |
IT | 0.5385 *** | 0.19724 | 2.73 | |
Constant | −12.60416 | 329.588 | −0.04 | |
Observation | 936 | |||
0.3436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J. Analysis of the Government’s Decision on Leasing Different Lands under Public Ownership of Land. Land 2024, 13, 944. https://doi.org/10.3390/land13070944
Cheng J. Analysis of the Government’s Decision on Leasing Different Lands under Public Ownership of Land. Land. 2024; 13(7):944. https://doi.org/10.3390/land13070944
Chicago/Turabian StyleCheng, Jing. 2024. "Analysis of the Government’s Decision on Leasing Different Lands under Public Ownership of Land" Land 13, no. 7: 944. https://doi.org/10.3390/land13070944
APA StyleCheng, J. (2024). Analysis of the Government’s Decision on Leasing Different Lands under Public Ownership of Land. Land, 13(7), 944. https://doi.org/10.3390/land13070944