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Abstract: To unravel the general relationship between bus travel and land use around bus stops and
along bus routes and to promote their coordinated development, this paper explores a method to
estimate passenger flow volumes from and to bus stops based on land use types, intensities, and
spatial distributions around bus stops and along bus routes. Firstly, following the principle of the
gravity model, which considers traffic volumes analogous to gravity based on trip generation and
distance impedance between traffic analysis zones (TAZs), a gravitational logic estimation method
for passenger flow volumes from and to bus stops was constructed with land use elements between
bus stop TAZs and the upstream and downstream collections of bus stop TAZs. Building upon
this, the passenger flow volumes from and to 38 bus stops in the Xueyuan Square area of Dalian
during weekday morning peak hours were taken as the experimental objects. The basic estimation
models of two gravity sets corresponding to passenger flow volumes from and to bus stops were
constructed using the bus travel generation based on the aggregation of area-based origin unit
method and the bus travel distance impedance based on the probability density method. Finally, the
reliability of the estimation method of passenger flow volumes from and to bus stops was verified by
regression fitting between the surveyed values of passenger flow volume and the estimated values
of the basic models. The results indicate that the fuzzy estimation and transformation of bus travel
based on land use elements, which serves as a crucial lever for facilitating strategic alignment in
transit-oriented development (TOD), can be effectively achieved by using the area-based origin unit
method to aggregate bus travel generation and the probability density method to evaluate the bus
travel distance impedance.

Keywords: passenger flow volume estimation method; passenger flow volume from and to bus stop;
land use; trip generation and travel impedance; transit-oriented development; gravity model

1. Introduction

TOD is an urban planning concept aimed at achieving intensive, efficient, and sustain-
able urban mobility by aligning public transportation with land use around the stations [1,2].
It can be divided into station area TOD and citywide TOD based on the research scope [3].
Station area TOD focuses on developing high-density, mixed-use, and pedestrian-friendly
environments around specific transportation nodes, such as railway stations, bus rapid
transit (BRT) stops, and bus stations [4,5]. It prioritizes factors like land use configuration,
the built environment, and station accessibility to enhance ridership and foster sustainable
growth [6]. Citywide TOD seeks to optimize the synergy between public transport, land
use, and resource allocation across urban areas [7,8]. It emphasizes adapting land use
patterns, transit systems, and transit routes (stations) to meet the effective organization and
strategic development of travel demand [9,10]. Due to the characteristics listed above, TOD
has become an important direction of urban renewal efforts [11,12].

As an integral component of public transportation systems and a precursor to high-
capacity transit systems, the role of bus systems in TOD is undeniable [13,14]. Passenger
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flow volumes destined to and originating from service areas of bus stops, referred to as
passenger flow volumes from and to bus stops, serving as a link between the bus system
and its service area, play a vital role in urban bus network planning and optimization,
particularly in TOD contexts where land use is designed to support efficient transit sys-
tems [15]. However, constrained by the unclear relationship between land use along bus
routes and bus travel [16,17], urban renewal planning efforts for station area TOD, which
involve altering land use structures and optimizing pathways from and to bus stops, as
well as those for citywide TOD, which entail adjusting urban functional structures and
upgrading bus routes and stops, face challenges in assessing current issues of passenger
flow volumes and predicting the benefits of proposed updates. Consequently, this situation
often leads to corresponding work either being shelved or confined to the vague growth in
passenger flow volumes, which exacerbates issues like job–housing separation [18], pendu-
lum commuting, and operational losses [19]. The challenge of regulating the relationship
between land use along bus routes and bus travel significantly impedes the high-quality
coordinated development of the two.

The aforementioned unclear relationship corresponds to research inadequacies in
analyzing bus travel. According to relevant studies, existing analyses of bus travel can be
categorized into three levels, micro, meso, and macro, each offering different analytical
perspectives. At the micro level, short-term passenger flow prediction models are crucial
components of intelligent transportation systems for analyzing dynamic variations of pas-
senger flow. These models are typically divided into parametric and non-parametric models.
Parametric models rely on theoretical assumptions and specific conditional parameters to
analyze linear models of historical passenger flow data, providing greater interpretability.
Examples include linear time series models [20,21], historical average models, Kalman filter
models [22], and multi-source data regression models [23]. Non-parametric models, on the
other hand, utilize machine learning methods to analyze nonlinear models of historical
passenger flow data, offering better objectivity. Examples include nonlinear time series
models [24], support vector machine models [25], and neural network models [26–30]. At
the meso level, passenger flow forecasting models are used to support the adjustment and
optimization of bus networks by analyzing bus travel relationships. These models are typi-
cally divided into aggregation and decomposition models. Aggregation models iteratively
calculate recent travel distributions based on statistical regularities of historical data and the
relatively stable relationship of bus travel, featuring a relatively simple structure. Examples
include the constant growth factor method and the average growth factor method. Decom-
position models, on the other hand, are based on detailed traffic distribution surveys and
behavioral analysis to conduct systematic analysis of traffic flow distribution correspond-
ing to comprehensive models [31], with stronger regularity. Examples include the gravity
model method [32], intervention opportunity model method, and maximum entropy model
method [33]. At the macro level, bus travel demand forecasting models are based on the
analysis of land use relationships between bus stops to support integrated development of
land use and bus travel. However, perhaps influenced by micro-level development orienta-
tion, compared with macro-strategic forecasting based on the classical scientific reductionist
approach, which aims to uncover the general principles and underlying laws behind the
complex travel phenomena to support strategic planning initiatives, existing research ad-
vocates micro-intelligent predictions based on the contemporary scientific paradigm of
complexity theory, which focuses on unraveling the dynamics and mechanisms inherent in
complex travel phenomena to aid precise control in design solutions. Moreover, passenger
flow forecasting models, which are associated with relationships between land use along
bus routes and bus travel, typically rely on the four-stage method [34,35], which involves
dividing TAZs according to the service areas of bus stops [36], utilizing survey results of
the bus travel OD matrices between TAZs as a simulation basis, and constructing complex
bus network models based on trip generation and distance impedance of bus travel [37–40].
Perhaps it is the unclear logical relationship in distance decay [41–43] that leads to misuse
of passenger flow forecasting theories and methods. Alternatively, the complexity of bus
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network models superimposes various differences in land use attributes, and stringent
standards of bus travel OD matrix volume simulation magnify the differences in land use
attributes [44,45]. This results in the segmentation, alienation, and mingling of land use
elements in the analysis of bus travel demand. Consequently, the predominant role of land
use generation relationships and bus travel distance impedance is weakened, while the
subjective influence of non-land use factors such as household and individual attributes
is strengthened. Land use idiosyncrasies gradually replace common patterns, resulting
in a state of overfitting. In addition to increasing the difficulty of data acquisition and
interpretation, as well as issues regarding model portability, this also leads to a disconnect
between land use and bus travel demand. Consequently, it becomes challenging to advance
bus travel demand management at the land use level.

The systematic analysis of the time-and-distance decay law [46], which reflects the
impedance of bus travel distance in passenger flow forecasting models, contained within
residents’ travel time and distance distributions, lays the groundwork for understanding
the general relationship between land use along bus routes and bus travel. In order to
unravel the general relationship above and to foster coordinated development, the rest of
this paper is organized as follows.

Based on the principle of the gravity model, Section 2 deconstructs the point–line units
of bus travel, taking bus stop service areas as bus stop TAZs and passenger flow volumes
from and to bus stops as estimation objects. The gravitational logic estimation method
corresponding to passenger flow volumes from and to bus stops is constructed by land
use types, intensities, and spatial distributions between bus stop TAZs and the respective
upstream and downstream collections of bus stop TAZs.

Subsequently, Section 3 takes the passenger flow volume from and to 38 bus stops in
the Xueyuan Square area of Dalian during weekday morning peak hours as the experimen-
tal object, and the basic estimation models of two gravity sets corresponding to passenger
flow volumes from and to bus stops are constructed using the bus travel generation ag-
gregation of area-based origin unit method and the bus travel distance impedance of the
probability density method.

With passenger flow volumes from and to bus stops surveyed and the walking and
bus travel distance impedance obtained, Section 4 verifies the reliability of the estimation
method of passenger flow volumes from and to bus stops through regression fitting between
the surveyed values of passenger flow volume and the estimated values of the basic models.

2. Theoretical Foundation
2.1. The Estimation Principle of Passenger Flow Volumes from and to Bus Stops

The gravity model method, rooted in trip generation and distance impedance between
TAZs, provides a theoretical framework for estimating passenger flow volumes from and
to bus stops based on land use types, intensities, and spatial distributions around bus
stops and along bus routes. The improved gravity model formula can be expressed as
Equation (1):

Qαβ = k·Pα·Aβ·f (lαβ), (1)

In Equation (1), Qαβ represents traffic volume (corresponding the gravity) from TAZ
α to TAZ β; k is the normalization factor; Pα denotes traffic production volume at TAZ
α; Aβ signifies traffic attraction volume at TAZ β; and f (lαβ) denotes the traffic distance
impedance function from TAZ α to TAZ β.

According to the gravity model principle mentioned above, the service area of a bus
stop (serves multiple routes and nearby stops) can be regarded as a TAZ, specifically termed
the bus stop TAZ. Passenger flow volumes from and to the bus stop correspond to the total
bus travel volumes between the bus stop TAZ and its upstream and downstream collections
of bus stop TAZs, as illustrated in Figure 1a. By translating the above corresponding
relationship into the gravitational logic of bus travel, passenger flow volumes from and to
the bus stop can be translated into bus travel generation and distance impedance based
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on land use elements between the experimental bus stop TAZ and its upstream and
downstream collections of bus stop TAZs, as depicted in Figure 1.
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Figure 1. Schematic of the estimation method for passenger flow volumes from and to bus stops:
(a) illustration of the gravitational relationship of passenger flow volumes from and to the bus stop;
(b) bus travel generation of area-based origin unit method; (c) bus travel distance impedance of
probability density method.

As commonly understood, the primary bus travel demand of residents within a spe-
cific area and time remains relatively stable, alongside a similar stability in the correlation
between land use (building space) catering to residents’ activity requirements and the num-
ber of activities. Therefore, bus travel generation is closely correlated with land use types
and their area scales (intensities), which can be effectively aggregated using the area-based
origin unit method. This method treats areas of the same land use type as homogeneous
under certain conditions, while considering the average production and attraction volume
of bus travel per unit area of land use or building, as illustrated in Figure 1b. Similarly,
the correlation between residents’ bus travel spatial distributions and the proportionate
distribution of residents’ bus travel distance remains relatively stable. Therefore, bus travel
distance impedance is closely correlated with land use spatial distributions. It can be
effectively aggregated using the probability density method, which deciphers the decay
probability of different bus travel distances under certain conditions [47]. Due to the com-
plete process of bus travel includes the three stages of “to (from)–onboard–from (to)”, its
distance impedance can be decomposed into “from and to” distance impedance related
to land use around the bus stop and “on-board” distance impedance related to land use
around the surrounding areas of the bus stops upstream and downstream, as illustrated in
Figure 1c.
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2.2. Travel Time and Distance Decay Law

The analysis [46] of the time and distance decay law contained within the proportionate
distributions of residents’ travel time and distance (by a certain travel mode and for a certain
purpose) that ensures relatively accurate estimation of bus travel distance impedance is
a crucial theoretical basis for the estimation method proposed in this paper. The research
process is depicted in Figure 2.
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Figure 2. The research process of the residents’ travel time and distance distribution law:
(a) 124 groups of residents’ travel time and distance distributions; (b) relative time and distance
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relationship of relative time and distance; (e) regression fitting curve of relative time and distance
distribution; (f) cumulative proportional distribution of relative time and distance.

Firstly, the 124 groups of residents’ travel time and distance distributions with sig-
nificant differences depicted in Figure 2a were standardized relative to their own mean
travel time and distance, resulting in the stable and regular law of residents’ travel time and
distance distributions relative to their mean values, as shown in Figure 2b. From the holistic
spatiotemporal perspective of “supply–travel time and distance–demand”, the relative time
and distance distribution abstractly represents an attraction relationship between standard
supply and demand within the context of relative time and distance, while twice the mean
of travel time and distance abstractly represents the scale of the supply–demand domain.

Secondly, the explanatory mechanism for the relative time and distance distribution
shown in Figure 2d was constructed based on the utility of relative time and distance scale
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(illustrated in Figure 2c) and the utility of relative time and distance decay. For a facility
point P in Figure 2c, the demand from individuals from different layers of relative time and
distance (denoted as x) should exhibit a scale growth proportional to 2πx. However, due
to the influence of relative time and distance decay following a pattern of λexp(−λx), the
distribution stabilizes as depicted in Figure 2d.

Finally, the relative time and distance distribution data shown in Figure 2b were fitted
with the equation y = 2πx·λexp(−λx), validating the interpretability of the relative time
and distance distribution mechanism (as seen in Figure 2e), and yielding a relative time
and distance decay parameter λ of 2.07 (after adjustment, the parameter value is 2.08).
Additionally, from the cumulative proportion distribution of relative time and distance
shown in Figure 2f, it was deduced that the threshold of resident travel time and distance
is twice the mean travel time and distance.

3. Experimental Methods and Materials
3.1. The Estimation Method of Passenger Flow Volumes from and to Bus Stops

Building on the aforementioned estimation principle, this paper selects 19 pairs of
conventional bus stops (totaling 38 bus stops as shown in Figure 3) in the Xueyuan Square
area of Dalian, Liaoning Province, China, as experimental subjects, takes the passenger
flow volumes from and to these bus stops during weekday morning peak hours (primarily
for commuting) as estimation objects, and aims to examine the feasibility and effectiveness
of the estimation principle and method by constructing an estimation model of passenger
flow volumes based on land use between the experimental bus stop TAZs and upstream
and downstream collections of bus stop TAZs.
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By treating passenger flow volumes from and to bus stops as analogous to gravita-
tional forces between the experimental bus stop TAZs and their respective upstream and
downstream collections of bus stop TAZs, the estimation model can be broken down into
two gravity sets: the walking from-and-to models, which account for walking distance
impedance within the experimental bus stop TAZs (since walking constitutes the absolute
majority of travel from and to the bus stops in the survey area); and the bus travel from-
and-to models, which incorporate bus travel distance impedance within the upstream and
downstream bus stop TAZs. In this context, the corresponding relationship is illustrated in
Figure 4, and the model formulas are expressed as Equations (2) and (3):

Qf
s = Af

s·Pf
s (2)

Qt
s = Pt

s·At
s (3)
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“t” stands for “to”, measured in passengers per hour (p·h−1); Pt
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to” models; and At
s represents the “bus travel from” models.

3.2. Key Data for the Estimation Method
3.2.1. Passenger Flow Volumes from and to Bus Stops

The passenger flow volumes from and to experimental bus stops during weekday
morning peak hours, which are the objects of fitting and validating the estimation model
(corresponding to two basic estimation models), can be obtained by deducting the trans-
fer passenger flow volumes from the drop-off and pick-up passenger flow volumes of
experimental bus stops. Following the experimental design, the process for obtaining these
volumes is outlined below, with Figure 5 illustrating the relevant content.

Firstly, from 10 to 11 October 2018, video surveillance was conducted at 38 experimen-
tal bus stops and 1 transfer subway station (Xueyuan Square) to capture passenger flow
information. The video equipment is shown in Figure 5a, the equipment setup is shown in
Figure 5b, and the video footage is shown in Figure 5c.

Secondly, images and spatiotemporal information of drop-off and pick-up of passen-
gers at each bus stop and the transfer subway station were captured and annotated during
the morning peak hours (from 07:00 to 09:00) over the two days, as shown in Figure 5d.
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Finally, based on the technique of pedestrian appearance feature re-identification,
an Access database containing appearance features such as age, gender, attire, head-
wear, hairstyle, and carried items was constructed. Through feature correlation queries
traversing image data, it identified transferring passengers, including both intra-stop
transfers and inter-stop transfers, among drop-off and pick-up passengers of bus stops
(as shown in Figure 5e). The final passenger flow volumes were calculated using the
following Equations (4) and (5), with the corresponding survey data shown in Table A2 of
Appendix A.

Qf
s = Gf

s − Hf
s, (4)

Qt
s = Gt

s − Ht
s, (5)

In Equations (4) and (5), Gf
s and Gt

s represent the drop-off and pick-up passenger flow
volumes, respectively, during the morning peak hours, measured in passengers per hour
(p·h−1). Hf

s and Ht
s represent the drop-off and pick-up transfer passenger flow volumes,

respectively, during the morning peak hours, measured in passengers per hour (p·h−1).

3.2.2. Walking and Bus Travel Distance Impedance

Based on the distribution law of residents’ travel time and distance mentioned above,
the distance thresholds and the distance decay probabilities of walking and bus travel
from and to the experimental bus stops, which correspond to the impact range of land use
and distance impedance in the method proposed in this paper, can be obtained through a
questionnaire survey on residents’ walking and bus travel distance from and to bus stops
during the morning peak hours in the research area, conducted simultaneously with video
surveillance. We collected 158 valid questionnaires, and the corresponding distribution
results, along with their distance thresholds and impedances, are shown in Figure 6.

According to the survey results shown in Figure 6a,c, the mean distances of walking
and bus travel from-and-to distance distributions are 0.4 km and 5.0 km, respectively.
Consequently, the distance threshold for walking from and to experimental bus stops is set
at 0.8 km, with the probability distance impedance function represented as exp(−2.08x/0.4),
while the distance threshold for bus travel from and to experimental bus stops is set at
10.0 km, with the probability distance impedance function represented as exp(−2.08x/5).
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to distance distribution; (b) walking from-and-to distance impedance; (c) bus travel from-and-to
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3.3. Construction of the Basic Estimation Models
3.3.1. The Walking from-and-to Models

The walking from-and-to models correspond to the gravity set associated with the
generation and distance impedance of land use within the 38 experimental bus stop TAZs.
Taking into account considerations such as the commuting and schooling service character-
istics of bus travel during the morning peak hours, as well as the moderate simplification
of the aggregation models, the generation estimation in the area-based origin unit method
categorizes land use within experimental TAZs into four types: educational, residential,
office, and commercial land uses. Their building areas are then aggregated to calculate the
production volume and attraction volumes of bus travel in TAZs.

In the distance impedance estimation using the probability density method, where
the probability decay function and distance threshold for walking distance from and to
the experimental bus stops are known, the walking from and to distances are uniformly
segmented, and the median distance decay probability of each segment is used to estimate
the spatial distance impedance within the walking from-and-to distance segment. Based
on the actual conditions of land use, walking path, and the competitive relationship of the
experimental bus stop services, this paper constructs the walking from (Af

s) and to (Pt
s)

models. The calculation formula and model example (Figure 7) are as follows:

Af
s = Σn

i[Si·(Me
iTe + Mr

iTr + Mo
iTo + Mc

iTc)], (6)

Pt
s = Σn

i[Si·(Me
iOe + Mr

iOr + Mo
iOo + Mc

iOc)], (7)

In Equations (6) and (7), Si represents the distance decay probability for walking
from-and-to distance segments, where i ranges from 1 to 4; Me

i, Mr
i, Mo

i, and Mc
i represent

the areas of educational, residential, office, and commercial buildings within the respective
distance segments of bus stop TAZs, measured in hectares (ha); and Oe, Or, Oo, and Oc

represent the relative bus travel production parameters, while Te, Tr, To, and Tc represent
the relative bus travel attraction parameters, all measured in passengers per hectare per
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hour (P·h−1·ha−1), with “e”, “r”, “o”, and “c” denoting educational, residential, office, and
commercial buildings, respectively.
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3.3.2. The Bus Travel from-and-to Models

The bus travel from-and-to models correspond to the gravity set associated with the
generation and distance impedance of land use within the upstream and downstream
collections of bus stop TAZs. Considering that it is only necessary to simulate the total
gravity of the gravity set, in the generation estimation using the area-based origin unit
method, it may be feasible to treat educational, residential, office, and commercial land
uses, collectively referred to as “generation land use”, within the service area of upstream
and downstream collections of bus stop TAZs as homogeneous (fuzzy land use types,
intensities, structure and spatial distributions without considering variations in generation
parameters), and to take the area of “generation land use” to aggregate the production and
attraction volumes of bus travel within the upstream and downstream collections of bus
stop TAZs.

The distance impedance in the bus travel from-and-to models comprises two compo-
nents: walking distance impedance and bus travel distance impedance within the upstream
and downstream collections of bus stop TAZs. In the distance impedance estimation using
the probability density method, the bus travel distance is evenly segmented, and a buffer
is applied to the walking form and to distance. By combining the probabilities of both
components, it becomes possible to estimate the spatial distance impedance within the bus
travel from-and-to distance segment. This paper constructs the bus travel from (Pf

s) and to
(At

s) models based on the actual conditions of land use and bus route system within the
upstream and downstream collections of bus stop TAZs. The calculation formula and a
model example (Figure 8) are as follows:

Pf
s = Σn

iΣ
m

j[Si·Rj·(h1Ff
ij + h2Nf

ij)], (8)
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At
s = Σn

iΣ
m

j[Si·Rj·(h1Ft
ij + h2Nt

ij)], (9)
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In Equations (8) and (9), Rj represents the distance decay probability corresponding to
the bus travel from-and-to distance segments, where j ranges from 1 to 5; Ff

ij, Nf
ij, Ft

ij, and
Nt

ij represent the area of “generation land use” within the independent and overlapping
regions (some experimental bus stops serve multiple bus routes, resulting in overlapping
land use areas) within the buffer zones i and j, measured in square kilometers (km2);
and h1 and h2 represent land use coefficients in these regions, set empirically to 1 and 2,
respectively. This indicates that overlapping areas served by multiple routes are calculated
at twice their per-unit area, measured in hectares per unit area (km−2).

4. Results
4.1. The Basic Estimation Models’ Parameters

Based on the construction of two basic estimation models, data from 38 experimental
bus stops, corresponding to 68 groups (including 8 first or last bus stops with unidirectional
data only), were investigated and collected, as shown in Tables A1 and A2 of Appendix A.
The decay probabilities of walking from-and-to distance segments, as well as bus travel
from-and-to distance segments obtained from Figure 6, are presented in Tables 1 and 2. By
fitting the surveyed values of passenger flow volumes from and to 38 experimental bus
stops with the basic estimation models, the relative production and attraction parameters
of four types of land use (the unit building area) in the study area were determined, and
the stepwise regression results are shown in Tables 3 and 4.

Table 1. The decay probabilities of walking from-and-to distance segments.

Parameter Symbol S1 S2 S3 S4

Distance segment (km) (0.0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8)
Estimated value (%) 59.46 21.02 7.43 2.63
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Table 2. The decay probabilities of bus travel from-and-to distance segments.

Parameter Symbol R1 R2 R3 R4 R5

Distance segment (km) (0.0, 2.0) (2.0, 4.0) (4.0, 6.0) (6.0, 8.0) (8.0, 10.0)
Estimated value (%) 65.98 28.72 12.50 5.44 2.37

Table 3. The relative production parameters of four types of land use (the unit building area).

Land Use Type Educational Residential Office Commercial

Parameter symbol
(person·ha−1·h−1) Oe Or Oo Oc

Fitted relative value 13.2948 4.0310 52.6219 14.1178

Table 4. The relative attraction parameters of four types of land use (the unit building area).

Land Use Type Educational Residential Office Commercial

Parameter symbol
(person·ha−1·h−1) Te Tr To Tc

Fitted relative value 15.9049 3.8221 26.9189 17.2681

4.2. Fit Validation of the Estimation Method

To test the explanatory power of the basic estimation models and validate the feasibility
of the estimation method of passenger flow volumes from and to bus stops based on land
use elements, a linear regression analysis was conducted between the surveyed values of
passenger flow volumes of the 68 groups and the models’ estimated values (the related data
are shown in Table A2 of Appendix A), which can demonstrate the correlation between the
two sets of values. The results are shown in Figure 9.
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The correlation analysis in Figure 9 shows a strong linear relationship between es-
timated and surveyed values, represented by the equation y = 1.00x. With an R2 of 0.86,
the model provides a good fit, indicating that estimated values have a high explanatory
power for surveyed values. Additionally, both the F-test (F = 1007.25, p < 0.05) and t-test
(t = 31.74, p < 0.05) confirm the validity of the linear regression model. These regression
tests suggest the feasibility of the estimation method of passenger flow volumes from and
to bus stops based on land use elements proposed in this paper. In essence, there exists
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a general relationship between bus travel and land use around bus stops and along bus
routes, and passenger flow volumes from and to bus stops can be understood based on
logical relationships between land use types, intensities, and spatial distributions. Fur-
thermore, the combination of area-based origin unit method and distance impedance of
probability density method effectively transforms this relationship.

5. Discussion

The construction of the gravitational logic of bus travel at the land use level using
the bus travel generation aggregation of area-based origin unit method and the bus travel
distance impedance of probability density method offers a theoretical foundation and
methodological support for fostering fair [48,49], orderly [50], efficient, sustainable [51],
and intensified demand organization in TOD.

The bus travel relative generation parameters (corresponding to generation efficiency)
of different land use types in unit area and the bus travel relative distance decay law
(corresponding to distance impedance, related to bus travel distance service levels), provide
an orderly framework for coordinated development between land use and bus travel. In
station area TOD, the basic unit order logic includes, the land use type layout should be
organized based on generation efficiency to meet the bus travel intensity, and the same
type of land use should follow a fair layout to reduce the impact of accessibility differences
on travel efficiency. In citywide TOD, the order between basic units includes, the urban
spatial functions should be relatively balanced to reduce pendulum-like commuting and
the separation of residential and workplace areas, and the urban spatial structures should
align with the operational characteristics (volume, speed, distance traveled, etc.) of different
transportation systems to adapt to the structured upgrading of demand organization.

The construction of the estimation method of passenger flow volumes from and to
bus stops provides actionable ideas for the straightforward analysis and optimization of
TOD-related issues, as shown in Figure 10.
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As depicted in Figure 10, within the constraints of the study area and time period and
with the calibration of parameters such as production, attraction, and distance impedance
in the basic estimation models, the application scenarios of the estimation method may
include three main categories, as follows.

(a) Estimating passenger flow volumes within bus stop TAZs: When the relationship
between land use around bus stops and along bus routes is known, but passenger flow
volumes from and to bus stops are unknown, this estimation method can be used to
estimate these volumes and diagnose potential deficiencies in passenger flow in terms of
land use types, intensities, and spatial distributions.

(b) Updating land use within bus stop TAZs for station area TOD: For bus stops where
the relationship between land use around bus stops and along bus routes is known, this
estimation method can not only assess walking inhibition from and to the bus stops (due
to inconvenient paths, unreasonable layout relationship, etc.) under the current land use
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layout but also evaluate improvements in passenger flow volumes after adjusting land use
layouts and optimizing access paths. This facilitates organic land use renewal within bus
stop TAZs from a bus travel perspective.

(c) Updating land use within upstream and downstream bus stops TAZs for citywide
TOD: For bus routes where the land use generation and distance impedance are known,
the estimation method can not only assess the benefits in passenger flow volumes from
scenarios such as adding or removing bus stops, optimizing spacing, and adjusting routes
but also consider the redistribution of passenger flow volumes for integrated development
in the service area and structural upgrades to meet increased demand.

6. Conclusions

To unravel the general relationship between bus travel and land use around bus stops
and along bus routes and to foster their coordinated development, this paper explores the
estimation method of passenger flow volumes from and to bus stops (serving as a link
between the bus system and its service area) based on land use elements. Through the
analysis of the gravity model principle and method of estimating passenger flow volumes,
the construction of basic estimation models corresponding to the gravity set based on land
use elements and empirical testing of the estimation method, the main conclusions obtained
are as follows.

Regression results demonstrate the feasibility of estimating passenger flow volumes
based on land use elements. In other words, passenger flow volumes from and to bus stops
can be derived from the land use types, intensities, and spatial distributions on both sides
connected by these volumes by treating the land use elements as the gravity set, which
is related to the supply and demand of passenger flow volumes. Decoding this general
relationship provides a fair and orderly methodological framework for the coordinated
development and strategic decision-making on bus travel and land use around bus stops
and along bus routes, particularly in the context of TOD planning updates.

In contrast to existing complex and non-transferable analytic predictions concerning
bus network relationships, this paper introduces the concept of passenger flow volumes
from and to bus stops, deconstructing the point–line units corresponding to these volumes
from bus network relationships to simplify the estimation of passenger flow volumes at
the land use level. By using the area-based origin unit method, which hypothesizes the
bus travel generation is closely correlated with land use types and their corresponding
area scales, and the bus travel distance impedance of probability density method, which
deciphers the decay probability of different bus travel distances under certain conditions, a
portable estimation method based on gravity relationships is constructed and empirically
verified.

While the function model has been tested and confirmed with relatively high confi-
dence, ensuring the reliability of the estimation approach and method, there are limitations
in its application and extension. The estimation model primarily simulates passenger flow
volumes from and to bus stops during the morning peak period in the experimental area,
so future research should expand the study area and time period for broader verification
of the estimation method. Additionally, the simplified basic estimation models used for
experimentation may suffer from issues such as poor representativeness of parameter val-
ues, inadequate transfer considerations, and insufficient prediction accuracy. To improve
the model, it is necessary to minimize the interference of random factors in estimation of
passenger flow volumes from and to bus stops and refine the aggregation of generation and
distance impedance while improving the aggregation of transfer passenger flow volumes
of bus travel.
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Appendix A

Table A1. Statistical data on building areas for four types of land use within four walking distance
segments (km).

No.
Me

i (ha) Mr
i (ha) Mo

i (ha) Mc
i (ha)

(0.0,
0.2)

(0.2,
0.4)

(0.4,
0.6)

(0.6,
0.8)

(0.0,
0.2)

(0.2,
0.4)

(0.4,
0.6)

(0.6,
0.8)

(0.0,
0.2)

(0.2,
0.4)

(0.4,
0.6)

(0.6,
0.8)

(0.0,
0.2)

(0.2,
0.4)

(0.4,
0.6)

(0.6,
0.8)

1 0.00 0.00 1.77 0.00 2.24 2.43 3.39 2.64 0.00 0.34 0.11 0.27 0.00 0.16 0.00 0.00
2 0.00 0.00 0.00 0.00 2.64 2.06 2.41 3.25 0.06 1.57 0.09 0.15 0.13 0.426 0.00 0.00
3 0.00 1.60 4.29 8.95 9.81 10.62 12.95 0.00 1.64 0.01 2.58 0.18 2.52 0.30 0.00 2.48
4 0.00 1.70 9.31 13.14 6.30 10.91 15.23 4.10 1.64 0.01 1.05 2.76 2.31 0.54 0.04 0.00
5 0.96 11.93 1.18 5.11 5.91 6.23 11.59 7.73 0.99 0.00 1.14 0.00 0.04 0.17 0.00 0.00
6 2.51 7.13 4.27 0.61 1.90 8.21 14.84 4.17 0.99 0.00 1.14 0.00 0.00 0.11 0.10 0.32
7 0.00 5.82 2.54 0.00 5.08 23.00 9.90 7.29 1.04 1.99 0.96 0.11 1.32 0.76 0.24 0.07
8 0.00 0.79 12.35 12.76 0.00 14.21 26.22 14.52 0.29 2.76 0.00 0.962 3.31 1.89 1.71 0.18
9 0.00 0.79 12.35 12.76 0.00 14.21 26.22 14.52 0.29 2.76 0.00 0.96 3.31 1.89 1.71 0.18
10 0.00 5.82 2.54 0.00 5.08 23.00 9.90 7.29 1.04 1.99 0.96 0.11 1.32 0.76 0.24 0.07
11 0.00 0.79 12.35 12.76 0.00 14.21 26.22 14.52 0.29 2.76 0.00 0.96 3.31 1.89 1.71 0.18
12 0.00 0.79 12.35 12.76 0.00 14.21 26.22 14.52 0.29 2.76 0.00 0.96 3.31 1.89 1.71 0.18
13 1.42 5.37 10.12 15.25 2.22 9.92 22.37 12.44 0.00 0.20 2.74 0.26 3.76 2.86 0.29 0.49
14 1.42 5.37 10.12 15.25 2.22 9.92 22.37 12.44 0.00 0.20 2.74 0.26 3.76 2.86 0.29 0.49
15 1.42 5.37 10.12 15.25 2.22 9.92 22.37 12.44 0.00 0.20 2.74 0.26 3.76 2.86 0.29 0.49
16 2.21 9.56 13.39 14.13 6.45 8.69 4.71 0.00 0.00 0.10 0.00 0.00 2.42 0.89 0.18 0.00
17 1.47 6.75 11.45 11.94 6.08 9.40 4.38 1.06 0.00 0.22 0.00 1.83 1.37 1.85 0.21 0.00
18 4.16 7.41 8.75 0.66 2.88 9.01 3.75 4.55 0.00 0.10 0.00 3.97 1.39 4.28 1.95 0.38
19 2.83 8.10 2.47 1.62 6.95 9.77 5.74 2.44 0.00 0.10 0.00 2.047 2.84 2.77 1.95 0.38
20 0.00 7.85 13.47 4.14 10.27 10.02 9.09 14.94 0.00 0.00 0.00 2.05 0.18 2.80 3.43 0.73
21 0.00 7.85 13.47 4.14 10.27 10.02 9.09 14.94 0.00 0.00 0.00 2.05 0.18 2.80 3.43 0.73
22 1.02 5.00 3.25 7.83 6.76 5.33 13.39 3.87 0.00 0.00 0.16 2.46 0.18 0.00 0.19 0.11
23 1.02 5.00 3.25 7.83 6.76 5.33 13.39 3.87 0.00 0.00 0.16 2.46 0.18 0.00 0.19 0.11
24 4.63 1.11 0.00 0.00 0.86 6.35 2.26 5.65 0.00 0.04 0.45 1.04 0.06 0.32 0.11 0.05
25 3.41 1.92 4.73 6.02 4.38 11.47 6.62 5.78 0.04 0.04 2.67 0.58 0.06 0.71 0.08 0.05
26 0.00 0.00 3.53 2.41 5.18 2.11 0.00 0.00 0.20 0.19 0.00 0.00 0.09 0.39 0.00 0.00
27 0.00 0.00 3.53 2.41 5.18 2.11 0.00 0.00 0.20 0.19 0.00 0.00 0.09 0.39 0.00 0.00
28 0.00 1.77 2.21 1.12 4.38 4.01 0.92 3.98 0.10 0.97 0.06 1.60 0.05 0.17 1.92 2.55
29 0.00 1.77 2.21 1.12 4.38 4.01 0.92 3.98 0.10 0.97 0.06 1.60 0.05 0.17 1.92 2.55
30 0.14 9.90 15.06 15.25 3.66 11.93 5.64 9.48 0.04 0.14 1.17 0.22 0.71 0.11 0.00 0.12
31 0.14 9.90 15.06 15.25 3.66 11.93 5.64 9.48 0.04 0.14 1.17 0.22 0.71 0.11 0.00 0.12
32 1.32 1.62 0.07 0.00 6.21 11.03 9.97 8.79 1.37 1.64 0.57 1.73 0.20 0.26 0.25 1.74
33 1.32 1.62 0.07 0.00 6.21 11.03 9.97 8.79 1.37 1.64 0.57 1.73 0.20 0.26 0.25 1.74
34 0.00 3.76 0.38 0.00 8.11 18.58 23.48 18.89 2.54 0.00 8.79 6.83 0.60 2.28 1.17 0.20
35 1.39 2.75 0.00 0.00 8.84 26.21 19.23 5.42 2.54 3.36 11.26 1.53 1.71 1.75 0.35 0.11
36 1.39 2.75 0.00 0.00 8.84 26.21 19.23 5.42 2.54 3.36 11.26 1.53 1.71 1.75 0.35 0.11
37 0.00 3.01 1.13 0.00 5.99 20.29 16.50 15.82 2.54 0.00 8.38 4.98 0.60 2.69 0.53 0.09
38 0.00 3.01 1.13 0.00 5.99 20.29 16.50 15.82 2.54 0.00 8.38 4.98 0.60 2.69 0.53 0.09



Land 2024, 13, 971 16 of 18

Table A2. Surveyed values of passenger flow volumes and models’ estimated values (including
aggregate data from two basic models).

No. Me
i·Si

(ha)
Mr

i·Si
(ha)

Mo
i·Si

(ha)
Mc

i·Si
(ha)

Af
s

(P·h−1) Pf
s

Af
s·Pf

s
(P·h−1)

Qf
s

(P·h−1)
Pt

s
(P·h−1) At

s
Pt

s·At
s

(P·h−1)
Qt

s
(P·h−1)

1 0.13 2.16 0.09 0.03 13.26 0.99 13.2 17.0 15.49 0.86 13.3 27.5
2 0.00 2.27 0.37 0.17 21.62 0.86 18.5 8.5 31.19 0.99 31.0 12.0
3 0.89 9.03 1.17 1.63 108.39 1.59 172.7 191.0 133.00 1.82 242.5 293.0
4 1.40 7.28 1.13 1.49 106.09 1.82 193.4 254.0 128.29 1.59 204.3 262.0
5 3.30 5.89 0.67 0.06 94.19 1.72 161.9 78.0 103.89 1.63 169.0 149.0
6 3.33 4.07 0.67 0.04 87.22 1.63 141.8 146.0 96.53 1.72 165.9 195.0
7 1.41 8.78 1.11 0.97 102.64 0.87 89.0 31.0 126.33 0.86 108.2 37.0
8 1.42 5.32 0.78 2.49 106.91 1.17 125.5 131.0 116.44 1.03 119.6 124.0
9 1.42 5.32 0.78 2.49 106.91 1.18 125.7 142.0 116.44 0.88 103.0 135.0

10 1.41 8.78 1.11 0.97 102.64 0.86 87.9 48.0 126.33 0.87 109.5 42.0
11 1.42 5.32 0.78 2.49 106.91 1.03 109.8 89.0 116.44 1.17 136.7 149.5
12 1.42 5.32 0.778 2.49 106.91 0.88 94.5 76.0 116.44 1.18 136.9 120.5
13 3.12 5.40 0.25 2.87 126.75 0.57 72.5 103.0 — — — —
14 3.12 5.40 0.25 2.87 126.75 0.92 117.1 151.0 117.18 1.07 125.7 151.0
15 3.12 5.40 0.25 2.87 — — — — 117.18 0.57 67.0 96.5
16 4.69 6.02 0.02 1.64 126.52 0.89 112.2 130.5 110.89 0.70 77.3 67.0
17 3.46 5.95 0.09 1.22 101.28 1.26 127.1 177.5 92.08 1.61 148.6 167.5
18 4.70 4.01 0.12 1.88 125.90 0.55 68.8 49.5 111.75 0.24 26.6 8.5
19 3.61 6.68 0.07 2.43 126.87 0.24 30.2 10.5 113.10 0.55 61.8 29.0
20 2.76 9.28 0.05 0.97 — — — — 90.61 0.53 47.6 12.0
21 2.76 9.28 0.05 0.97 97.55 0.53 51.3 46.0 — — — —
22 2.11 6.24 0.08 0.12 61.53 0.18 11.0 15.5 58.91 0.55 32.3 33.0
23 2.11 6.24 0.08 0.12 61.53 0.55 33.7 34.0 58.91 0.18 10.5 15.5
24 2.99 2.16 0.07 0.11 59.57 0.57 34.1 51.0 53.65 0.10 5.4 2.0
25 2.94 5.66 0.25 0.19 78.32 0.10 7.9 7.0 77.52 0.57 44.3 80.0
26 0.33 3.52 0.16 0.14 25.21 0.04 1.0 2.0 28.70 0.56 16.1 39.5
27 0.33 3.52 0.16 0.14 25.21 0.56 14.1 29.0 28.70 0.04 1.1 2.0
28 0.57 3.62 0.31 0.28 — — — — 42.40 0.57 24.1 67.5
29 0.57 3.62 0.31 0.28 35.97 0.57 20.4 20.5 — — — —
30 3.68 5.35 0.14 0.45 — — — — 84.40 0.52 44.2 114.0
31 3.68 5.35 0.14 0.45 90.62 0.52 47.4 56.5 — — — —
32 1.13 6.98 1.25 0.24 82.36 0.49 40.3 47.5 112.21 0.12 13.9 5.0
33 1.13 6.98 1.25 0.24 82.36 0.12 10.2 17.0 112.21 0.49 54.9 62.5
34 0.82 10.97 2.34 0.93 134.10 0.22 29.4 30.0 191.55 0.48 91.7 109.0
35 1.41 12.34 3.09 1.41 177.19 1.50 266.5 260.0 251.15 1.32 332.3 284.0
36 1.41 12.34 3.09 1.41 177.19 1.32 234.5 192.0 251.15 1.50 377.8 344.5
37 0.72 9.47 2.26 0.97 125.23 0.34 42.3 48.0 180.50 0.48 86.5 94.0
38 0.72 9.47 2.26 0.97 125.23 0.96 119.9 154.0 180.50 0.49 87.6 118.0
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