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Abstract: The functional structure of territorial space is an important factor for analyzing the interac-
tion between humans and nature. However, the classification of remote sensing images struggles
to distinguish between multiple functions provided by the same land use type. Therefore, we pro-
pose a framework to combine multi-source data for the recognition of dominant functions at the
block level. Taking the Guangdong–Hong Kong–Macau Greater Bay Area (GBA) as a case study,
its block-level ‘production–living–ecology’ functions were interpreted. The whole GBA was first
divided into different blocks and its total, average, and proportional functional intensities were then
calculated. Each block was labeled as a functional type considering the attributes of human activity
and social information. The results show that the combination of land use/cover data, point of
interest identification, and open street maps can efficiently separate the multiple and mixed functions
of the same land use types. There is a great difference in the dominant functions of the cities in the
GBA, and the spatial heterogeneity of their mixed functions is closely related to the development of
their land resources and socio-economy. This provides a new perspective for recognizing the spatial
structure of territorial space and can give important data for regulating and optimizing landscape
patterns during sustainable development.

Keywords: production–living–ecological (PLE) function; land use/cover change (LUCC); points of
interest (POI); open street map (OSM)

1. Introduction

Since its reform and opening policy was promulgated in 1978, China has been ex-
periencing rapid urbanization [1]. However, its long-term spatial planning concept has
caused the steady deterioration of the ecological environment, which directly affects the
sustainable development of cities [2,3]. To promote the transformation of their urbaniza-
tion development mode, the Chinese government has promoted the construction of an
ecological civilization to a national strategy [4,5]. In 2012, the 18th National Congress of the
Communist Party of China (CPC) listed “Beautiful China” as the goal of the construction
of an ecological civilization and formally proposed the national space governance goals of
“intensive and efficient production space, livable and moderate living space and beautiful
ecological space”. The status of ecological functions, at a national level, has been gradually
enhanced, and the value of spatial planning for high-quality development has been grad-
ually formulated [6]. This indicates that the optimal arrangement of production, living,
and ecology (PLE) functions is a crucial task for China in the construction of an ecological
civilization [7]. Therefore, the spatial pattern of PLE functions can reasonably reflect the
actual conditions of territorial space; it can also provide key data for evaluating the coor-
dination degree between different PLE functions and exploring optimal combinations of
functional units.
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The concept of PLE functions originated from research on multiple agricultural func-
tions [8,9]. An area in which people engage in production activities provides a specific
production function; a regional unit for people’s daily activities mainly provides a living
function; and a spatial unit has a dominant ecological function when it is mainly used to
provide ecological products and services. Therefore, a land use area can be interpreted
as being of a specific type according to its dominant function (a production, living, or
ecological function) [10,11], and then a city can be accordingly separated into a combination
of different PLE function units. This is generally performed at two typical scales: the
microscale and macroscale.

At the microscale, such interpretations generally follow the principle of emphasizing
functional attributes based on land use/cover data [12]. The type of land use/cover
classified from remote sensing images is usually recognized as one of the PLE functions
and only considers this single function. For instance, Fu et al. reclassified different land use
types into specific divided PLE spaces to divide Wuhan into different functional spaces [13].
Zhang et al. divided land into three types (P-L-E) of spaces and two types of composite
spaces corresponding to different land use/cover types and further evaluated the PLE
spaces of Feixi County [14]. In actuality, although sophisticated land use data can be
obtained, multiple and mixed functions cannot yet be distinguished for the same land
use type [9]. In rural areas, agriculture and forestry farms provide important production
and ecological functions [15]; thus, they cannot be simply defined as a production unit
or ecological unit according to their land use/cover type [16]. Moreover, commercial
premises and residential neighborhoods frequently coexist in the same area of a city and
have different functions, and it is incorrect to describe these areas as single objects [17].
To address this, researchers have commonly used expert scoring methods to measure the
functional intensity of each land use type [18–20]. A function classification system is first
set, and each type of land use is categorized into a function class with the same parameters.
Then, a score is given for each function according to expert experience. A score for the
PLE function is then obtained for each land use unit. For example, Gao et al. constructed
the multi-functional assignment system of production–living–ecological spaces for land
use types and assigned different land categories to the LUCC data based on the strength
of the function of their PLE space [21]. Although this method can distinguish multiple
functions within the same land use type and overcomes the limitation of reclassifying land
use/cover data, it cannot yet reflect the functional heterogeneity of each land use type. The
same type of land use in different regions may result in unequal function scores, which
means that although a function score for each land use area can be obtained, its dominant
function cannot be recognized. Obviously, although land use classification can identify
ground objects on a finer scale based on the division of physical space [17], its result only
explores the underlying semantic information of the region. The components of urban
functional spaces are extremely similar visually, and relying only on the visual features of
remote sensing imagery pixels is insufficient for accurately dividing the functional areas
within a city [22]. To overcome this limitation, it is essential to incorporate other data on
social and economic attributes to better reflect functional differences between the same
land use types and interpret their dominant functions [23–25].

At the macroscale, PLE functions are typically interpreted at administrative levels
such as county, city, or country [10]. Social and economic indices are commonly coupled
with land use data to measure comprehensive functional intensity. The areas, values, and
proportions of these indices determine the functional intensity of each statistical unit, which
is then classified as a PLE function type according to the estimated function intensity. For
example, Wubuli et al. integrated socio-economic indicators, DEM data, meteorological
data, and land use change data to assess the land use suitability of various functional
rural land types using capacity grade patches as evaluation units and further classified
the PLE space of rural villages in central and western China through superposition matrix
analysis [26]. However, while straightforward to implement, this method lacks sensitivity
to local heterogeneity for the functions of the sub-units within administrative areas. It
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ignores the multifunctional characteristics of the same land use type at finer scales. In
particular, the final spatial structure of PLE functions generated by this method greatly
relies on available statistical data.

Related research suggests that the fine structure of PLE functions in cities can be
interpreted with the advent of big data and social sensing data [27–29]. Accordingly, point
of interest (POI) data have been widely adopted owing to their advantages of large sample
size, ease of access, and detailed information coverage [11,30,31]. POI data contain extensive
information about production, living, and ecological functions within a city, making it
possible to accurately identify specific locations such as residential areas, productive areas,
and consumer services, parks, and green spaces. Based on this, POI data have been
successfully applied to identify urban functional land (e.g., residential land, industrial
land, commercial land) in central urban areas by analyzing the relationship between the
attributes of POIs and land use functions [32–34]. However, this can be carried out only
when a sufficient number of POIs are available. If POIs are lacking in rural areas, the type
of functions particularly ecological function at a refined scale cannot be distinguished in
large cities.

As China’s urbanization enters a new stage, urban areas have become the main spatial
carrier [35]. The accurate identification of functional areas and their spatial structure is
particularly crucial for urban spatial planning and constructing an ecological society [36].
Spatial scales and geographical characteristics among sub-units of urban agglomeration are
more complex than those of a single city [37]. Consequently, it is challenging to interpret
the refined structure of PLE functions for an entire urban agglomeration using only land
cover/use or POIs. In high-density urban agglomerations with complex structures, urban
blocks divided by road networks are basic units directly impacting residents’ lifestyles
and the overall urban environmental quality through their size, shape, and functional
characteristics [38]. From the perspective of planning, a block is also generally regarded
as the most suitable and meaningful unit, usually being planned with a dominant PLE
function [39]. Accurately recognizing the structure of PLE functions at the block level in
whole urban agglomerations is of great importance for territorial spatial planning [40].
However, a unified and efficient method for the specific identification of block-level PLE
functions in urban agglomerations is currently lacking. Previous research has indicated
that refined road networks and administrative boundaries can provide suitable data for
block divisions. For example, Ni et al. used irregular blocks segmented by road network
data as spatial analysis units to identify PLE space in urban built-up areas on the Jiaodong
Peninsula [41]. Chen et al. utilized road network and POI data to identify the urban
functional zones in Shenyang City [42]. The PLE functions of each block can be accurately
distinguished according to the attributes of POIs. The dominant function of a block, that is,
the type of function with an absolute higher proportion, can be determined based on the
complex mapping relation between the attributes of POIs and land cover/use types.

Therefore, this study attempts to integrate open-source data, including POI, land
cover/use data from GlobalLand30, and OpenStreetMap (OSM) data, to identify block-
level PLE functions in urban agglomerations. Taking the Guangdong–Hong Kong–Macao
Greater Bay Area (GBA) as a case study, we not only investigate whether the introduction of
open-source data improves the identification resolution of PLE functions, but also focus on
the inner structure of dominant functions in the GBA. The goals of this work are to provide
significant data analyzing spatial differentiation of PLE functions and a new perspective
for recognizing territorial space structure, which can provide key evidence for land use to
form optimal structures in territorial spatial planning.

2. Material and Methods

In this study, we identified and analyzed the block-level PLE functions in the GBA
using open-source data. The methodology comprises five main steps: (1) the division of
spatial units in the GBA and labeling of PLE primary types; (2) preprocessing the POI
data; (3) a functional contribution calculation of each POI; (4) PLE function identification of
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each block; and (5) a PLE structure analysis of the GBA. A technical flowchart is shown
in Figure 1.
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2.1. Study Area and Block Division

The GBA, located in the southern China, is an urban agglomeration covering an
area of approximately 5.6 × 104 km2. It includes nine cities in Guangdong Province
(Guangzhou, Shenzhen, Zhuhai, Foshan, Dongguan, Zhongshan, Huizhou, Jiangmen, and
Zhaoqing) and two special districts, Hong Kong and Macao. By 2020, the GBA had over
80 million permanent residents and a gross domestic product (GDP) exceeding 10 trillion
CNY. A recent study showed that the GBA is the largest morphologically contiguous urban
agglomeration in the world [43]. Rapid urbanization has greatly influenced the spatial
structure of PLE functions, resulting in a lopsided spatial pattern. Therefore, identifying
high-resolution PLE functions is of great significance for the regulation of land use in
territorial spatial planning.

The GBA was first divided into different blocks using a combination of land cover
data, road networks, and administrative boundaries. The GlobalLand30 V2020 product,
provided by the Ministry of Natural Resources of China (http://www.globallandcover.
com/) (accessed on 10 August 2023), was used to extract information on land cover/use.
Cultivated land, forest land, grasslands, water bodies, and artificial surfaces were classified

http://www.globallandcover.com/
http://www.globallandcover.com/
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for the GBA (Figure 2), with an overall accuracy of approximately 85.72% [44]. The road
network for 2020 was derived from OpenStreetMap data (https://www.openstreetmap.
org/) (accessed on 1 December 2021), which is an important open source for collecting
traffic data. We first converted GlobalLand30 into vector format to obtain land cover/use
patches, and then the land cover/use patches were overlaid with the road network and
administrative boundaries to divide the blocks. During this process, rivers were not
separated by the traffic network to maintain their integrity (Figure 2a). Other natural
elements, such as forests, farms, and grasslands, were kept as large patches and only
separated into different parts when traffic roads passed through them (Figure 2b). As
the superposition will produce many fine raw polygons, we eliminated polygons with
an area less than 9 × 104 m2, as the Code of Urban Residential Areas Planning & Design
(GB 50180-2018) [45] provides a criterion that small residential areas are generally between
2 × 104 m2 and 9 × 104 m2. Finally, the entire GBA was divided into 49,618 blocks. Then,
according to the PLE space classification system proposed by Fu et al. [46], we reclassified
different land use types and labeled the primary type of PLE function for each block.
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2.2. Capturing and Preprocessing POI Big Data

In this study, the POI data of the GBA in 2020 were captured from the AutoNavi
electronic navigation map (https://www.amap.com/) (accessed on 1 December 2021), a
well-known electronic map in China. These data include information about the location and
type of labeled POIs. The original data were complex, comprising more than 1.16 million
points, and thus required reclassification before being used to identify PLE functions. POIs
in the AutoNavi map are labeled at three levels, namely, major, middle, and sub-categories,
with 23 first-level types, 267 second-level types, and 869 third-level types (details available
at https://lbs.amap.com/api/webservice/download) (accessed on 1 December 2021). In
this study, to efficiently recognize PLE functions, POI big data were primarily processed as
follows: (1) POIs with nonfunctional attributes, including “Place name & Address”, “Indoor
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facilities”, and “Incidents and Events”, were removed. (2) Some categories of POIs were
reorganized. For example, accommodations, office buildings, industrial parks, and other
built types were originally marked as commercial spaces. These buildings have essentially
different functions and must be separated and labeled as new types for each POI. POIs
with residential buildings are marked as residential areas, while other POIs with business
buildings are marked as business areas. Moreover, enterprises engaged in agriculture,
forestry, animal husbandry, and fishery production are often marked as companies in POIs.
Although the enterprise attributes are correct, these POIs contribute more to ecological
functions. For example, many of these POIs in the GBA are located within gardens and
flower companies. Therefore, it is necessary to mark these areas as ecological function
units. After reclassification, all POIs were divided into 18 types (Table 1), with a total of
879,565 POIs being used to identify PLE function units.

In general, locations providing functions related to human activities, such as produc-
tion and living activities, must be labeled with POIs. Conversely, blocks without POI points
can be directly identified as primary ecological function units, reclassified according to land
cover/use type. Our overlay analysis revealed that a few blocks contain no efficient POIs,
and these areas are mostly natural elements, such as great mountains or rivers. Accordingly,
these blocks were identified as ecological function units. Based on the primary type of PLE
functions reclassified from land cover/use, the functional contribution of each POI to its
corresponding block was calculated to further identify the function type of most blocks
with POIs. Referring to previous research, the weight for the functional contribution of
each POI was set based on its relevance and influence [47]. Therefore, the relevance of
the POI is mainly based on the correlation between the functions of different POIs and
the various types of PLE functions. For example, residential POIs generally have a higher
relevance to living functions than those of shopping services. The relevance index (α in
Table 1) was determined using expert sorting and the analytic hierarchy process (AHP).
AHP is a decision analysis method that facilitates the systematic analysis of complex prob-
lems within hierarchical structures. This method assigns a weight value to each element
according to the relative importance of each level by constructing a judgment matrix; it has
been widely used in weighting analyses of indices in PLE function recognition studies [21].
We consulted a total of 10 experts to set the scores of POIs belonging to each specific type
and then calculated the relevance values of POIs for various PLE function types using AHP.
In addition to the number of POIs in a block, the physical area of the POI type also plays
an important role in recognizing PLE functions. For example, the number of industrial
POIs, such as catering or finance, in a residential community is much larger than that of
residential POIs. However, the total area of residential POIs is much larger than that of
industrial POIs, and consequently, this residential community is recognized as a living
function unit. Therefore, the average area of various POIs in a block is used as a reference
index to determine their influence on the identification of the PLE function. The larger
the average area, the higher the influence value. This reference index was determined by
sampling and analyzing the study area. First, 100 POIs of each type were randomly selected,
and the land use areas occupied by each POI were calculated from a 0.5 m resolution remote
sensing image. These areas were then accurately corrected through field surveys and web
crawler data. The average area of each POI type was estimated and then normalized, with
values ranging from 0 to 1. This value was used as the influence value (β in Table 1) to
determine the function type of each POI.
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Table 1. POI classification and weight determination for PLE identification.

PLE Type POI Type Relevance
(α)

Influence
(β)

Weight
(ω = α × β)

P

P1 Auto services 0.083 70 5.81
P2 Enterprises 0.314 90 28.26
P3 Business buildings 0.195 60 11.7
P4 Finance & insurance services 0.069 40 2.76
P5 Logistics & warehousing 0.056 60 3.36
P6 Major transportation facilities 0.145 70 10.15
P7 General transport facilities 0.043 20 0.86
P8 Government organizations & social groups 0.095 40 3.8

L

L1 Residential districts 0.502 90 45.18
L2 Shopping services 0.055 60 3.3
L3 Daily life services 0.106 60 6.36
L4 Food & beverage services 0.078 20 1.56
L5 Medical services 0.053 60 3.18
L6 Science/cultural & education services 0.106 60 6.36
L7 Sports & recreation services 0.026 20 0.52
L8 Accommodation services 0.074 20 1.48

E
E1 Tourist attractions 0.75 90 67.5
E2 Agriculture, forestry, grazing and fishing 0.25 80 20

2.3. Calculating the Total, Average, and Ratio of Function Intensity

With the support of GIS tools, the weights for each type of POI were associated with
each POI, and then the functional intensities of the productive services (P), living services
(L), and ecological services (E) in the blocks were obtained by multiplying the POIs in each
unit and their corresponding weights. Function intensity is calculated using Formula (1):

Fn
(P,L,E) =

m

∑
i

Pn
i(P,L,E) × ωi (1)

where F is the function intensity of P, L, and E in spatial block n; Pn
i is the POI point

i (i = 1, 2, · · · , m) that located in block n; and ω is the weight of each POI type. As the
area of each block is inconsistent, using the total function intensity may hinder comparisons
between different blocks. Thus, the value of the total function intensity in a block is further
transformed into the average ground intensity, and the function proportions of P, L, and E
in each block are calculated accordingly to determine the type of PLE function, which can
be expressed as Formula (2).

Rn
(P,L,E) =

Fn
(P,L,E)/An

Fn
(PLE)/An , Fn

(PLE) = Fn
(P) + Fn

(L) + Fn
(E) (2)

where Rn
(P,L,E) is the ratio of P, L, and E in spatial block n; An is the area (ha) of block n; and

Fn
(PLE) represents the total function intensity of P, L, and E in block n.

3. Results

According to the above methods, the total, average, and ratio of the function intensity
for the PLE in each block were calculated; the results are shown in Figure 3. The total
function intensity only considers the number of POIs and their contribution to PLE function,
with a higher number of POIs corresponding to a higher functional intensity of the block.
However, when considering the difference in block area, the pattern of the function intensity
in the PLE unit presents obvious spatial differences. The proportion of function intensity
for a PLE unit can effectively be used to analyze the dominant types of P, L, and E in each
block, which plays an important role in identifying PLE units.
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3.1. Definition and Spatial Pattern of PLE Functions in the GBA

Based on the function intensity proportion for the PLE functions in each block, the
attributes of production, living, and ecological function units were determined according
to the following decision-tree rules. First, if the proportion of any function type is higher
than that of the other two types, the block is directly classified as having that dominant
function. Second, if the proportions of the three functions are very close, the block is likely
to be marked as a mixed unit labeled PLE. Third, if the proportions of any two function
types are close, the block is labeled as another mixed space composed of these two function
types. There are many mixed spaces within the city, such as commercial and residential
complexes, which provide both residential and commercial services. To quantitatively
express the above decision-tree rules, we set the tri-sectional and intermediate proportions
as breaking points, as shown in Figure 4. For example, if the proportion of production,
living, and ecological functions is 67%, 25%, and 8%, respectively, the block unit can
be directly classified as a production unit. If the proportion of production, living, and
ecological functions is 45%, 40%, and 15%, respectively, the block unit can be directly
classified as a PL unit.
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Based on the above principle, the identified pattern of PLE blocks in the GBA is shown
in Figure 5. In general, ecological spaces occupy the largest proportion of the total area in the
GBA, while living–ecological (LE) spaces account for the smallest. The spatial distribution
of ecological spaces covers almost the entire GBA region. However, the size of ecological
spaces in the central area of the GBA is significantly smaller than that in the peripheral
zones. This reflects a weaker ecological function in the central part of the GBA, possibly due
to landscape fragmentation resulting from intensive human activities [48]. Living spaces
are mainly concentrated in the central and eastern parts of the GBA, with particularly dense
distribution in the coastal zones, but generally scattered and small in size. In contrast,
production spaces are more prominent in the northern and western regions of the GBA,
characterized by strong connectivity and extensive coverage. In terms of the composite
spaces, production–living (PL) and production–ecological (PE) areas encompass a larger
area than that of LE. The production–living–ecological spaces are commonly observed
in economically developed coastal cities such as Guangzhou, Shenzhen, and Hong Kong
(Figure 5b,c,e,g,h).
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3.2. Accuracy Validation of PLE Recognition

To validate the accuracy of PLE recognition using multiple-source data, 10% of the
blocks in each category were randomly selected to evaluate the identification result. A
visual interpretation of 0.5 m resolution images from Google Earth, supplemented by field
interviews and street view data, was used as ground truth data. A point-to-point compari-
son was conducted to calculate recognition accuracy. If the proportion of PLE functions in
a block was similar to that interpreted from the 0.5 m images, then the recognition result
was considered accurate. Several typical examples were selected to further examine the
recognition efficiency. A comparison is shown in Figure 6.

Land 2024, 13, 1148 10 of 20 
 

Figure 5. Distribution pattern of different dominant function types in the GBA, where (a–h) are the 
local spatial distribution in Zhaoqing, western Guangdong, southern Guangzhou, Foshan, Shen-
zhen, Jiangmen, Zhongshan, Hong Kong. 

3.2. Accuracy Validation of PLE Recognition 
To validate the accuracy of PLE recognition using multiple-source data, 10% of the 

blocks in each category were randomly selected to evaluate the identification result. A 
visual interpretation of 0.5 m resolution images from Google Earth, supplemented by field 
interviews and street view data, was used as ground truth data. A point-to-point compar-
ison was conducted to calculate recognition accuracy. If the proportion of PLE functions 
in a block was similar to that interpreted from the 0.5 m images, then the recognition result 
was considered accurate. Several typical examples were selected to further examine the 
recognition efficiency. A comparison is shown in Figure 6. 

 
Figure 6. Accuracy validation of PLE identification by comparison of high-resolution images and 
street view map, where ①–④ are examples of PLE identification results in this study. 

As shown in Figure 6, block ① is in Guangzhou City and the proportions of produc-
tion, living, and ecological functions calculated from multiple open-source data are ap-
proximately 18.61%, 79.07%, and 2.32%, respectively. The proportions of PLE space calcu-
lated from the visual interpretation for this block are approximately 25.79%, 68.24%, and 
5.98%, respectively. Although the proportions of PLE functions from these two methods 
are different, both indicated that this block is dominated by living function. Further, we 

Figure 6. Accuracy validation of PLE identification by comparison of high-resolution images and
street view map, where 1⃝– 4⃝ are examples of PLE identification results in this study.

As shown in Figure 6, block 1⃝ is in Guangzhou City and the proportions of pro-
duction, living, and ecological functions calculated from multiple open-source data are
approximately 18.61%, 79.07%, and 2.32%, respectively. The proportions of PLE space cal-
culated from the visual interpretation for this block are approximately 25.79%, 68.24%, and
5.98%, respectively. Although the proportions of PLE functions from these two methods
are different, both indicated that this block is dominated by living function. Further, we
checked the street view map of this block and found that it mainly includes a university
campus while the surrounding area mainly includes catering and other services. Only
a very small area of companies and enterprises faces the street in the north. Therefore,
identifying this block as a living function unit is reasonable.

Another set of typical examples is shown in blocks 2⃝ and 3⃝, and their recognition
accuracy is easy to validate. They were labeled as ecological and production units with the
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assistance of POI big data. In fact, they can also be easily recognized from high-resolution
remote sensing images. Block 2⃝ is Qixinghu Park of Zhaoqing City; it is a water body
in the image and was correctly detected with multiple open-source data. Block 3⃝ is an
industrial development zone in Jiangmen. The image shows that it is far from the town
and is represented as an impervious surface. Classifying this block as a production unit
is accurate. Block 4⃝ is identified as a mixed function unit for both production and living
functions in Hong Kong; the proportions of production, living, and ecological functions are
45.86%, 46.69%, and 7.45%, respectively. The proportions of production and living functions
are very close and both lower than 50%. This indicates that the distribution of land use in
this block presents a very tight and mixed assignment dominated by production and living
functions, with a mixed distribution of a few ecological function areas. Street-view images
further show that many high-rise residential areas and commercial areas are included
in this block. Therefore, this block can reasonably be considered as a unit mixed with
different functions.

All selected samples were validated by individual comparisons based on the above
methods, with most recognition accuracies exceeding 95%. Recognition errors mainly
occurred in blocks within large communities where residential and commercial land use
showed a mixed distribution, and the number of collected POIs for each type of function
was unbalanced. A small deviation in the quantitative calculation of function intensity with
the assistance of POI big data can directly result in significant variations in the detection
results. In general, it is difficult to exactly identify function types, even when using high-
resolution satellite images and street view maps. Overall, the accuracy validation verified
that using POI big data as important auxiliary data to identify PLE function units can
meet the application requirements of territorial spatial planning and decision-making in
the GBA.

3.3. Structure of PLE Functions in the GBA at the City Scale

The proportion of each dominant function type in each city was calculated and the
results are shown in Figure 7. According to the national garden city standards proposed
by China’s government, all types of green areas and waters within a built-up area should
account for at least 43% of the total built-up area [17]. Therefore, achieving a balance
between the development of living and production spaces and ecological conservation is
crucial. A disordered spatial pattern of PLEs within the same region can exert pressure on
limited land resources, resulting in the inefficient use of spatial resources and undermining
the coordinated and sustainable development of urban structures [49]. An excessively
high proportion of a production-related function types can encroach upon living spaces
in urban agglomerations. Conversely, a more balanced structure of PLE functions can
satisfy residents’ daily needs more easily [17]. Great differences are observed in the
dominant function types among cities, and most of the cities in the GBA are dominated
by ecological function based on the area proportion of function intensity in PLE blocks.
Over 40% of the total area in Macao and Shenzhen is dominated by production and
living functions; more than 50% of the total area in Jiangmen, Huizhou, and Hong Kong is
dominated by ecological functions; while approximately 50% of the total area of Zhongshan,
Zhuhai, and Guangzhou is dominated by ecological functions. Regarding the type of mixed
functions, Zhaoqing and Huizhou have a relatively higher ratio of dominant functions
that include production and ecological services; Shenzhen, Macau, and Dongguan have
a relatively high ratio of dominant functions that include production and living services;
and Guangzhou, Dongguan, and Hong Kong have a higher relative ratio of dominant
functions than other cities that include production, living, and ecological services. The ratio
of mixed functions is closely related to the development of land resources and the level of
social and economic development. Shenzhen, Dongguan, Foshan, and Zhaoqing, which
are important production bases in the GBA and have many manufacturing businesses,
high-tech enterprises, and forest plantations, have the highest proportion of production
functions among the 11 cities. Among the core cities in the GBA (excluding edge cities such
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as Zhaoqing, Jiangmen, and Huizhou), Hong Kong has the best coordinated development
of PLE functions, which can be explained by the following two aspects. First, Hong Kong
has controlled the proportion of human activity space to within 50% of the total area; and
second, the proportions of mixed, production, and living functions are relatively similar.
Taking Jiangmen as an example, the proportion of production spaces significantly exceeds
that of living spaces, while mixed spaces are insufficient, indicating a need to optimize
the land spatial pattern. This illustrates how the composition of different PLE function
types within a city can help understand and resolve conflicts between human activities
and territorial spatial layout, and mixed spaces can ensure a sustainable and healthy
living environment for residents. Moreover, our research reveals that mixed spaces are
relatively rare in the GBA cities, and peripheral areas are predominantly composed of
single or dual function types (Figure 5), highlighting the necessity for optimization in these
regions. Generally, as population and GDP grow, the overall ecological function of urban
agglomerations tends to decline [21]. For sustainable development in the GBA, it is crucial
to enrich the land use multifunctionality, promote urban layouts based on PLE functional
distribution heterogeneity, and further facilitate the high-quality development of territorial
spatial patterns.
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4. Discussion

The spatial distribution characteristics of PLE function types in the GBA observed in
our study align closely with findings from other relevant research [21,50]. For example, our
analysis of GBA PLE function types in 2020 revealed that ecological spaces constitute the
largest proportion, with living spaces being predominantly distributed in the central and
eastern parts, while production spaces are more prominent in the northern and western
areas. These findings are consistent with the conclusions drawn by Gao et al. and Wang
et al. [21,50]. However, it is noteworthy that Gao et al. discovered that the order of PLEs
in the GBA were ecological space > production space > living space, whereas Wang et al.
concluded the following: ecological space > living space > production space. This discrep-
ancy may be attributed to the fact that neither study mentioned the spatial distribution
of mixed function types or the inherent difficulty in distinguishing between living and
production spaces [17]. To our knowledge, no previous studies have investigated the
spatial distribution patterns of both single and composite PLE functional types in the GBA
region at the block-level. Therefore, our study results may serve as a pioneering example in
this regard.
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4.1. Recognition Influenced by Proportions of POIs

Coupling POI big data with land cover/use types can reasonably be used to identify
dominant PLE function patterns and structures. In general, POI big data reflect human
activity characteristics. With enough equally distributed POIs, PLE function spatial patterns
can be reliably identified. However, in practical applications, PLE functions are not in
equilibrium, and POI type, quantity, and quality are not completely balanced in geo-space.
For instance, in this study, 53.82%, 43.28, and 2.9% of the 879565 POIs were collected for
production, living, and ecological functions, respectively. POIs recording P2, P7, L2, P8, L6,
L1, P4, P3, L8, and L4 types accounted for 87.89% (Figure 8). This unbalanced collection of
POIs may correspondingly reduce the recognition accuracy of the PLE function units. When
the collected POIs in each block present an unbalanced distribution among types, different
judgments of PLE functions will occur. For example, Zhaoqing’s higher proportion of
production blocks was largely due to many forests being labeled as POIs providing forest
product services, thus identifying these areas as production blocks.
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On the other hand, there may not be enough POIs in rural areas. Actually, the distri-
bution of POIs basically reflects the intensity of human activity, thus directly determining
the function intensity of land use. If there are few POIs in some blocks, it means that the
land uses in those blocks generally serve ecological functions. The number of POIs cannot
influence the function intensity of those blocks. In this study, primary PLE functions were
first identified using land cover/use data, with POIs being applied to improve recognition
accuracy, providing acceptable PLE recognition results, even in rural areas.

4.2. Recognition Influenced by Relevance and Influence

To recognize the dominant PLE function type of a block, the values of relevance and
influence for each POI are required. Relevance was determined using expert sorting and
AHP, which combines subjective and objective methods for determining the relevance
weight. Experts with sufficient experience and knowledge of the relationship between PLE
functions and POI attributes can provide relatively objective and reliable judgments. As
for the influence, we considered both POI number and area as main factors in block type
recognition, with the influence weight being set according to the average area of POI type,
determined by random sampling analysis. Accuracy validation reflects that identification
errors mainly occur in blocks within large residential areas, where the POIs collected for
each type present an unbalanced distribution. Usually, large residential communities
are designed as a closed scope and absolutely dominated by residential areas, and it is
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reasonable to divide large communities into living units from the perspective of practical
functions. However, large communities in China are usually surrounded by commercial
entities with larger areas than other functional units. Meanwhile, the number of residential
POIs is smaller than that of commercial POIs. Based on these factors, when identifying the
block type, the contribution of residential areas to functions cannot eliminate the influence
of commercial POIs.

Taking Zhongcun Street, Panyu District, Guangzhou City as an example, several
typical large communities are observed, as shown in Figure 9. Area A is Clifford Es-
tates, a famous and typical large residential community in the GBA, with a total area of
500 ha and a permanent resident population of exceeding 300,000. This area was correctly
identified as a living function unit based on the collected POIs. However, block B, which
is subdivided from region A, was misjudged as a small production and living function
unit. The main reason was that this block was classified as artificial land based on the
30 m resolution land cover/use data, and all the collected POIs in this block are parking
lots (i.e., P7 type), an issue that persists even when using a combination of POIs and land
cover/use data for identification. In fact, high-resolution remote sensing images indicate
that it is a pond, and it would be more reasonable to label this block as an ecological unit,
considering its physical attributes and dominant functions. Refined land cover/use data
are needed to improve the identification accuracy. Areas C and E are also large residential
communities with thousands of houses. As the surrounding street includes a few small
companies, such as decoration design, garages, retail stores, and others, the number of
POIs in non-residential areas is significantly higher. Consequently, these two blocks were
misinterpreted as production units, which resulted in a miscalculation. Regarding block D,
although it is similar to block C and was classified as artificial land in 30 m resolution land
cover products derived from remote sensing images, it is mainly composed of building
material companies. Because a few POIs only capture such information, it was correctly
recognized as a production block.

Land 2024, 13, 1148 14 of 20 
 

identification errors mainly occur in blocks within large residential areas, where the POIs 
collected for each type present an unbalanced distribution. Usually, large residential com-
munities are designed as a closed scope and absolutely dominated by residential areas, 
and it is reasonable to divide large communities into living units from the perspective of 
practical functions. However, large communities in China are usually surrounded by 
commercial entities with larger areas than other functional units. Meanwhile, the number 
of residential POIs is smaller than that of commercial POIs. Based on these factors, when 
identifying the block type, the contribution of residential areas to functions cannot elimi-
nate the influence of commercial POIs. 

Taking Zhongcun Street, Panyu District, Guangzhou City as an example, several typ-
ical large communities are observed, as shown in Figure 9. Area A is Clifford Estates, a 
famous and typical large residential community in the GBA, with a total area of 500 ha 
and a permanent resident population of exceeding 300,000. This area was correctly iden-
tified as a living function unit based on the collected POIs. However, block B, which is 
subdivided from region A, was misjudged as a small production and living function unit. 
The main reason was that this block was classified as artificial land based on the 30 m 
resolution land cover/use data, and all the collected POIs in this block are parking lots 
(i.e., P7 type), an issue that persists even when using a combination of POIs and land 
cover/use data for identification. In fact, high-resolution remote sensing images indicate 
that it is a pond, and it would be more reasonable to label this block as an ecological unit, 
considering its physical attributes and dominant functions. Refined land cover/use data 
are needed to improve the identification accuracy. Areas C and E are also large residential 
communities with thousands of houses. As the surrounding street includes a few small 
companies, such as decoration design, garages, retail stores, and others, the number of 
POIs in non-residential areas is significantly higher. Consequently, these two blocks were 
misinterpreted as production units, which resulted in a miscalculation. Regarding block 
D, although it is similar to block C and was classified as artificial land in 30 m resolution 
land cover products derived from remote sensing images, it is mainly composed of build-
ing material companies. Because a few POIs only capture such information, it was cor-
rectly recognized as a production block. 
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The above analysis shows that the identification accuracy of PLE blocks meets the
requirements for analyzing territorial spatial structures in the GBA. The weight set for the
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function contribution of each POI to the corresponding PLE block has proven to be rational,
and the method of determining PLE functions at the block level could be applied to other
regions. However, deficiencies were observed when more precise influence and relevance
values were required, and refined results of PLE blocks are provided at higher resolutions.

4.3. Comparing the PLEs with the Land Use Product Derived from High-Resolution Images

To better illustrate the advantages of our proposed PLE function type identification
method over traditional classification results that solely rely on land use/cover data, urban
blocks with different proportions of PLE functions were randomly sampled and compared
with the ESA global land cover product at 10 m resolution (https://worldcover2020.esa.
int/) (accessed on 15 October 2023). The interpretation accuracy of the PLE blocks was
further validated using high-resolution imagery from Google Earth (Figure 10).
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PLE identification results in this study. (b) ESA land cover product at 10 m resolution. (c) Google
Earth images. 1⃝– 4⃝ are the examples for the comparison.

Taking blocks 1⃝ and 2⃝ as examples, despite both being categorized as ‘Built-up’ in the
classification product, the actual dominant functions of these two blocks are inconsistent.
According to our recognition results, block 1⃝ is dominated by production function, while
block 2⃝ is interpreted as a unit mixed mainly with production and living functions. This
indicates that while ground objects can be classified from high-resolution images at a
fine scale, functional units within the same land use type cannot be efficiently separated.
Coupling POI big data with classic social attributes can facilitate better interpretations of
production and living functions [22,51]. Although the accuracy of PLE recognition has
improved somewhat, it still has limitations. For instance, a segment of block 3⃝ should
have been defined as an ecological unit according to the high-resolution image from Google
Earth, but the proportion of ecological function calculated from multiple open-source data
was 0% in this study. Two main factors may have contributed to this recognition error.
Firstly, each block was labeled as a primary type of PLE function through reclassifying
land cover/use data. Therefore, any inaccuracies in the land cover/use classification
within the blocks would subsequently affect the identification result. Secondly, the lack
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of ecological attributes in POIs in the block may also lead to the under-identification of
PLE functions. This may require finer land cover data [52] or further coupling with other
big data, such as the spatial relationship between urban functional zones [53], to better
address the issue. As for block 4⃝, this demonstrates that with an accurately classified land
cover product and sufficient POI data in the block, even a small proportion of functional
units can be identified using our method. Overall, although the proposed method may lack
precision when land classifications are inaccurate and POIs are insufficient, it still maintains
a certain level of accuracy and reliability compared to the identification results obtained
solely from high-resolution remote sensing images. In future studies, consideration will
be given to combining finer land use/cover data with other spatial relationship data and
further utilizing the synergy mechanism between remote sensing images and POIs to map
high-precision and wide-range PLE function units.

4.4. Uncertainties and Future Work

It is noteworthy that despite the fact that PLE function identification has received
widespread academic attention in recent years, a clear and unified standard for its classifi-
cation is currently lacking [21]. Building upon previous research, this study utilized land
use/cover data and POI data as the core and assigned weights based on different attributes
and POIs to identify different types of PLE function from a block-level perspective. Overall,
this approach combines human activity characteristics with physical environment char-
acteristics to effectively and extensively identify the PLE function types of urban spaces,
yielding relatively accurate results. This approach provides an effective demonstration case
and data basis for optimizing the identification of function types in urban agglomerations.
However, there remains room for optimization in this methodology. Primarily, the identifi-
cation of PLE function types in this study heavily depended on the types and attributes of
POI data, with the weight assignment process still having potential for improvement. Some
scholars have collected a large number of statistical data or indicators to construct correla-
tion evaluation models to optimize weight assignments [54]. Secondly, the resolution of the
land use/cover data also influences the recognition of PLE function types. A limitation is
that only one type of artificial land use can be classified to describe urban conditions, and
internal structures cannot be separated from each other [15]. Therefore, future research can
consider the incorporation of more human activity characteristics. In addition to existing
human activity data, integrating peak travel patterns and vehicle data [17] could more
effectively assist POI data in distinguishing between production and living functions.

Future research could also combine POI data with innovative classification methods
of remote sensing images at a finer scale. Moreover, a temporal combination dataset of POI,
OSM, and LUCC data should be established to generate dynamic patterns of refined PLE
functions at the block level, which could be used to diagnose the coordination degree of
PLE functions and promote an optimal combination structure.

5. Conclusions

Land use/cover change data, particularly those classified from satellite remote sensing
images, have long been regarded as important materials for recognizing the landscape
structure of earth surfaces in large areas. The main limitation of this method is that
only comprehensive land use/cover types, namely, construction land, water area, and
forest land, can be identified and separated. Thus, this method cannot identify the re-
fined structure of PLE functions regarding human–land relationships for spatial planning
and regulation.

This study proposed a PLE identification framework based on the combined applica-
tion of LUCC, OSM, and POI data in urban agglomerations. The main conclusions can be
summarized as follows: (1) POI big data can further identify PLE functions in large-scale
areas based on remote sensing classification data. (2) This technique can provide more
refined information for analyzing the inner pattern of PLE functions and overcome the
limitations of coarse identifications in dense urban areas based solely on land cover/use
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data. These data can effectively separate dominant functions and different combination
functions at the block level. (3) Our accuracy validation indicated that the combined use of
POIs and land cover/use data can efficiently separate multiple and mixed functions of the
same land use type. (4) A great difference was observed in the dominant function types
among the cities in the GBA, and the ratio of mixed functions presents spatial heterogeneity
and is closely related to the development of land resources and socio-economy. If dynamic
open-source data can be acquired, the evolution pattern of PLE functions can be efficiently
detected, which is highly significant for providing scientific evidence for the regulation of
landscape patterns in territorial spatial planning. In future work, research could be further
improved in two aspects: considering more human activity characteristics and building
high-precision and multi-scale PLE function type recognition.
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