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Abstract: For the main grain-producing areas worldwide that balance multi-tasks of grain production,
ecological protection, and economic development, quantitatively revealing the correlation between
human activity intensity (HAI) and ecosystem service value (ESV) is conducive to formulating
adapted ecological protection policies and promoting the coordinated development of the regional
economy, society, and ecosystem. In this paper, we took the Songnen Plain of China as an example,
employed a modified Equivalent Factor Method (integrating socio-economic data, the normalized
difference vegetation index (NDVI), and land use data), and the HAI Assessment Model (based on
the data of land use, night-time light, and population spatial distribution) to measure the ESV and
HAI in the Songnen Plain of China for the years 1990, 1995, 2000, 2005, 2010, 2015, and 2020. We
further applied the standard deviational ellipse method, the coupled coordination degree model, and
the bivariate spatial autocorrelation models to reveal the spatiotemporal dynamics and correlation
characteristics of ESV and HAI. The results showed the following: (1) Temporally, the ESV declined
from 950.96 billion yuan in 1990 to 836.31 billion yuan in 2015, and then increased to 864.60 billion
yuan in 2020, with the total loss attributed to the significant decline in the ESV of the natural ecosystem.
Spatially, the ESV in the western and northeastern regions was relatively high, with a significant
increase in the northeast. (2) HAI showed an upward trend from 1990 to 2020, while the high HAI
levels gradually shrank after reaching the peak in 2000. Low HAI levels were mainly distributed
in the northeast and southwest, aligning with the ecological space, while high HAI levels were
distributed in the middle and southeast. (3) The interaction between ESV and HAI was marked by
a negative correlation, transitioning from conflict to coordination. The spatial pattern of HAI and
ESV showed H (HAI)-L (ESV) and L-H clustering, with H-H and L-L scattered distributions. This
study contributes to providing a framework, methods, and suggestions for the sustainable planning
and utilization of land and ecological protection in order to offer scientific references for the Songnen
Plain, other major grain-producing areas, and related studies.

Keywords: ecosystem service value; human activity intensity; Songnen Plain China; coupling
coordination degree; bivariate spatial autocorrelation

1. Introduction

Ecosystem services, including provision services, regulation services, support ser-
vices, and cultural services, refer to the life-supporting goods and services that humans
obtain from the properties, processes, and functions of natural ecosystems directly or indi-
rectly [1–4]; meanwhile, they are also the natural environmental conditions and benefits
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that human beings depend on for survival and development [5,6]. However, with urban-
ization, industrialization, and agricultural modernization as well as the rapid development
of economic and population aggregation, human activities have altered the direction, struc-
ture, and rate of land use, which has damaged the supply and health of natural ecosystem
services, and in turn, greatly weakened the value of ecosystem services (ESV) [7–10]. The
global assessment report from the Intergovernmental Science-Policy Platform on Biodiver-
sity and Ecosystem Services (IPBES) noted that three-quarters of the terrestrial environment
and about 66% of the marine environment have been affected by human activities, which
has and will continue to pose a significant threat to ecosystem services [11–13]. Meanwhile,
the deterioration of ecosystems could, in turn, restrict the sustainable development of
human societies [13]. Therefore, the 15th goal of the United Nations 2030 Agenda for
Sustainable Development has been proposed to control the impact of human activities on
terrestrial ecosystems and promote the harmonious coexistence between humanity and
nature [14,15]. Accordingly, the study of the correlation between human activities and
ecosystem services has become an important issue in the field of human–land interac-
tions [16]. Based on the background of human–land conflict, quantitatively evaluating the
changing trend of ESV and HAI, and portraying the correlation between human activity
and ecosystem services are of great significance for revealing the degradation mechanisms
and improvement methods of regional ecosystems and formulating policies that promote
harmony between ecosystems and humans.

This study on the relationship between human activity intensity (HAI) and ESV
depends on the accurate evaluation of ESV, the quantification of human activities, and the
revelation of the relationship between them.

The calculation of ESV is to quantify the products and services provided by the ecosys-
tem, which is crucial to improving the public awareness of ecosystem preservation and
promoting regional sustainable development [17]. At present, many scholars have evalu-
ated ESV by using the physical assessment method [18], energy assessment method [19],
and monetary valuation method [1,17], and each method has its own advantages and
disadvantages [6]. The monetary valuation method is widely used because its research
results can be adopted by the socio-economic management system. Meanwhile, it can
be used to conduct large-scale and long time series comparative studies, and is more
friendly to regions that lack relevant basic data [17,20]. The monetary valuation method
was first proposed by Costanza et al. [1], which is based on land use data and the classi-
fication of ecosystem service functions and evaluates the value of ecosystem services at
the global scale by establishing the table of equivalence values per unit area of ecosystem
services. Subsequently, in light of the findings of Costanza et al. [1], Chinese scholars
Xie et al. [21] proposed the table of equivalent values per unit area of ecosystem services
in China depending on the characteristics of China’s terrestrial ecosystems and the mag-
nitude of biomass and is continuously improved to reflect the health status of Chinese
ecosystems [17,20,22,23]. This kind of method uses land use data to calculate ESV, but
the reality remains that the ESV per unit area varies even with the same land use types
due to different ecosystem health and vegetation growth conditions. Therefore, the NDVI
(normalized difference vegetation index) and the NPP (net primary productivity) have
been applied by scholars to further modify the monetary valuation method in line with the
table of equivalence values per unit area of ecosystem services [14,24], aiming at reflecting
the change in ESV caused by the ecosystem’s structure and function. In conclusion, the
existing and improved ecosystem service value assessment methods can provide useful
references for this study.

Human activity, which is commonly defined by human activity intensity, is a gen-
eral term for a range of behaviors or activities that humans adopt to meet their needs for
survival and development [25,26]. Among the existing measures of HAI, some studies
have adopted a single indicator to analyze human activities, such as land use data [27],
night-time lighting data [28], population density [29], agriculture [30], and urbanization
level [31]. Since the methods relying on one indicator can only reflect HAI from a certain
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aspect, which is a simplification of human activities, it is difficult to present HAI in different
regions and stages in the process of socio-economic development, and the accuracy of
this assessment is still to be discussed [8,32]. Conversely, other scholars have developed
an integrated indicator system to evaluate HAI, including a variety of indicators. For
example, Correa Ayram et al. [33] assessed the intensity of human impact by selecting
seven variables, such as land use type, rural population density, distance to roads, distance
to settlements, the fragmentation index of natural vegetation, the biomass index relative
to natural potential, and the time of intervention on ecosystems in years, and the results
demonstrated that HAI increased during the study period. Zhang et al. [13] selected 27 in-
dicators involving five aspects, such as agricultural activities, industrial activities, tertiary
industry activities, social development, and ecological engineering, to construct human
activity impact indicators in order to evaluate the interaction between human activities
and the ecological environment. However, the method of constructing comprehensive
indicators encounters several challenges: variations in indicator selection across different
locations and individuals, difficulties in obtaining extensive and long-term data series, dis-
crepancies in weighting methods, and obstacles to regional comparisons [25,32]. Recently,
considering the limitations of the two methods as well as the complexity and diversity
of human activities, some scholars have begun to calculate HAI from the perspective of
the power sources and impact of human activities by using three types of data: popula-
tion density, night-time light, and land use [34,35]. This method can provide reliable and
comparable data support for analyzing ecological problems and formulating policies in
different regions, owing to the availability of data (night-time light data and land use data
are derived from remote sensing data, population density data as regional basic data have
data accessibility), limited indicators, comparability, and revealing characteristics of HAI.

In the study of the interaction between human activities and ESV, previous studies
have employed the spatial autocorrelation analysis [36], the grey correlation analysis [13],
and the coupling coordination degree analysis [37] to reveal the spatial–temporal correla-
tion and coupling coordination relationship of the two systems at different scales (including
the global scale [38], national scale [10], and regional scale [39]) based on Geoda [40] and
ArcGIS software [33]. The results suggest that the relationship between human activities
and ecosystem services is diverse, non-linear, or complex in different regions and stages of
development [16,41,42]. For example, Huang et al. [37] found that there was an inverted
U-shaped curve between human footprint and ESV in the Pearl River Delta Urban Ag-
glomeration (PRDUA) from 2000 to 2020, indicating a non-linear coupling relationship
between the two indicators. Ai et al. [40] elucidated the relationship between human
disturbance intensity (HDI) and ESV using the Bivariate Local Moran Index and spatial
autocorrelation analysis, and the results showed that areas with high ecosystem service
values were relevant to low levels of HDI, while regions with low ecosystem service values
were impacted by high levels of HDI. Quintas-Soriano et al. [43] discussed the relationship
between land use change and ecosystem services in Spain and pointed out that different hu-
man activities have diverse impacts on ecosystem services, such as the fact that greenhouse
horticulture negatively affects all ecosystem services, while intensive agricultural services
have a positive effect on it. The variations in results are associated with the scale of the
study and the regional natural, social, and economic characteristics. For China, a country
undergoing rapid socio-economic development and transformation, and at the same time
affected by global climate change, scholars have been actively exploring the relationship be-
tween human activities and ecosystem services in ecologically fragile areas such as arid and
semi-arid regions and the Qinghai-Tibet Plateau [16,24], and the economically developed
regions such as the Pearl River Delta Urban Agglomeration and the Chengdu-Chongqing
Urban Agglomeration [37,40], and attempting to reveal the spatial and temporal correla-
tion between them. However, there is a lack of theoretical and empirical studies on the
major grain-producing areas, particularly in Northeast China, which plays an important
role in guaranteeing food security and ecological security in the north. This study may
provide a useful reference for other similar areas to promote socio-economic development,
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improve human well-being, and realize the virtuous cycle of ecosystems. In addition, the
results of previous studies have focused more on the quantitative analysis of results [44],
and the application of the results concentrated on the extraction of the main controlling
factors [13] and the measures to promote the improvement of ESV [40]. Currently, there are
few thorough studies on ecological policies that aim to promote socio-economic and ecolog-
ical development in the region from the perspective of serving government management,
especially in the context of climate change and the spatial variations of ecosystems.

The Songnen Plain, located in the world’s four major black soil belts, is also an
important grain-producing area and commodity grain base in China [45], yet the ecological
environment is relatively fragile [46]. With the rapid development of the economy and
global warming in the past 30 years, the region is experiencing a series of problems
such as the expansion of build-up land, the sharp decline of ecological land, serious soil
erosion, the degradation of black soil, salinization, and the deterioration of the ecological
environment [45,47]. Among them, the irrational land use (land use transformation)
triggered by the high intensity of human disturbances has been proven to be the main reason
for the decline in ecological service functions and quality in the study area [48]. As the
cornerstone for ensuring national food security and an important ecological function area in
northern China, it is necessary to balance the relationship between economic development
and ecological protection and then promote the improvement of the ecological environment.
However, existing studies on the ecosystem services of Songnen Plain have focused on
wetland ecosystems [49,50], the impact of land use change on ESV [48], and the ecological
environment of a certain part of the study area [36]. There are research gaps in this area.
Firstly, a long time series study on the spatial and temporal patterns of ESV evolution for
the whole region is insufficient. Secondly, there are few studies on the mechanisms of ESV
change from the perspective of the interaction between human activities and ecosystems.
Thirdly, there is a lack of policy recommendations to serve the high-quality development of
the main grain-producing areas, considering grain production, ecological protection, and
economic revitalization in the context of climate change. The objectives of this research
are to (1) calculate the spatiotemporal changes of ESV and HAI in the Songnen Plain;
(2) quantitatively reveal the spatial and temporal relationship between ESV and HAI over
the past 30 years in the Songnen Plain; and (3) put forward the policy recommendations
on ecological protection to realize the sustainable development of the region’s society,
economy, and ecology. The research framework and methods employed in this study are
suitable for other regions worldwide that are investigating ESV, HAI, and their interactive
feedback relationships. The policy implications provided in this study for balancing food
security, protecting the ecological environment, and promoting economic development, as
well as addressing climate warming, are applicable to other major grain-producing areas
facing similar challenges and threats.

2. Materials and Methods
2.1. Study Area

The Songnen Plain, one of the three major plains in Northeast China, located in the
central part of Northeast China (42◦30′–51◦20′ N,121◦40′–128◦30′ E), has a total area of
230,300 km2. It includes the provinces of Heilongjiang and Jilin and looks like a rhombus
shape formed by the Songhua and Nenjiang rivers’ alluvial deposits (Figure 1), with an
elevation ranging from 92 m to 1696 m. The terrain is characterized by a high value in
the surroundings and a low value in the middle. It has a temperate semi-humid and
semi-arid continental monsoon climate with four distinct seasons, and rain and heat
simultaneously. The mean annual temperature ranges from −2 ◦C to 7 ◦C, and the mean
annual precipitation occurs from 350 mm to 600 mm [45]. The main soil types are black soil,
black calcium soil, and meadow soil [45]. The land use types include cropland, forestland,
wetland, grassland, water area, built-up land, and unused land, among which wetlands
are widespread, and most wetlands are inland saline wetlands concentrated in ecologically
fragile areas transitioning from semi-humid to semi-arid areas. This area, with adequate
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conditions of light, heat, and water resources, is one of China’s five major grain-producing
areas and an important commercial grain production base, which plays an important role in
guaranteeing national food security [46]. Moreover, it is also an important energy and heavy
industry base in China. However, during the last 30 years, with the rapid development of
the economy and global warming, the region has experienced deforestation, the return of
farmland to forests, the conversion of dry land to paddy land, overgrazing, urbanization,
and the outflow of population, etc. The ecological environment in this region is highly
fragile due to the continuing disturbances from human activities [46].
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2.2. Data Sources and Processing

The data in this study mainly included land use data, socio-economic statistical
yearbook data, night-time light data, and population spatial distribution data, etc.

2.2.1. Land Use Data

The land use remote sensing monitoring data for 1990, 1995, 2000, 2005, 2010, 2015,
and 2020, with a resolution of 30 m × 30 m, were obtained from the Data Center for
Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) [51], and
projection transformation, mask extraction, and reclassification were performed in the
ArcGIS platform. The land use types included cropland (dry land and paddy land),
forestland (broad-leaved and shrub), grassland, water area, wetland, built-up land, and
unused land, and the overall classification accuracy was above 90% [52].

2.2.2. Socio-Economic Data

The socio-economic data such as sown area and the production data of grain crops
from 1990 to 2020 were acquired from the Statistical Yearbook of Heilongjiang Province
and Statistical Yearbook of Jilin Province, the China Economic and Social Big Data Research
Platform [53]. The data were used to calculate the value of ecosystem services per unit area
of cropland.

2.2.3. The Normalized Difference Vegetation Index (NDVI)

The NDVI data from 1990 to 2020 (five-year interval) came from RESDC [51], which is
a year-by-year maximum NDVI dataset calculated based on Landsat 5/8 remote sensing
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imagery from the United States of America, reflecting the distribution and change of
vegetation cover. The data, at a 1 km spatial resolution, was used to adjust ESV in the
study area.

2.2.4. Night-Time Light Data

The night-time light data for 1992, 1995, 2000, 2005, 2010, 2015, and 2020, reflecting
the intensity of human social and economic activities on the land surface, were provided
by the Harvard Dataset Platform [24,54,55]. Night-time light data in 1990 was replaced by
1992 data because of data unavailability. The spatial resolution of the night-time light data
is 1 km.

2.2.5. Population Density Data

The population density data from 1990 to 2019 (five-year interval), revealing the
spatial distribution pattern of population in a certain area, were derived from the China
Population Spatial Distribution Kilometer Grid Dataset of RESDC [51]. The data have a
spatial resolution of 1 km. Due to the lack of data in 2020, the data from 2019 were used as
a substitute.

To ensure the accuracy of the data, we preprocessed the spatial data in ArcGIS. The
spatial coordinate systems were uniformed to the Krasovsky_1940_Albers and the reso-
lution of all data was unified to 30 m. The detailed information of the data is shown in
Table 1.

Table 1. Details about the data in this study.

Data Description Resolution Time Period

Land use data

Land use data types included cropland (dry land and
paddy field), forestland (broad-leaved and shrub),
grassland, water area, wetland, build-up land, and
unused land

30 m Every five years from
1990 to 2020

NDVI Reflecting changes in vegetation coverage and biomass 1 km Every five years from
1990 to 2020

Night-time light data Revealing the intensity of human social and economic
activities on the land surface 1 km Every five years from

1990 to 2020

Population
density data Spatial distribution of population 1 km Every five years from

1990 to 2020

Crops Calculation of the value of a standardized equivalence
factor based on sown area and yield data City scale 1990–2020

2.3. Methods
2.3.1. Evaluation of Ecosystem Service Value

This study evaluated ESV based on the table of equivalent values per unit area of
ecosystem services proposed by Xie et al. [20] and coupled with the conditions of the
Songnen Plain. We took the cell as the study unit to measure ESV and HAI. After many
repeated experiments, the study area generated a total of 26,339 cells, and each cell had a
size of 3 km × 3 km by using ArcGIS. In the calculation steps, the key of the method was to
determine the value of a standard equivalent factor, the equivalent factor coefficient, and
the correction coefficient of ESV, on the basis of which ESV was estimated.

(1) Value of the standard equivalent factor
The standard equivalent factor in the study area was determined by 1/7 of the eco-

nomic value of the grain yield per unit area [21]; the expression is as follows:

D = 1/7 × P × Q (1)
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where D stands for the standard equivalent factor, P denotes the price per unit of grain
yield (yuan/kg), and Q represents the grain yield per unit area (kg/hm2).

In this study, Q was the grain yield per unit area of the Songnen Plain from 1990
to 2020, which is 5479.02 kg/hm2. Meanwhile, to eliminate the influence of grain price
changes on ESV each year and to reflect the real ecosystem service function and ecological
environment quality in the study area, P was determined by the price per unit of grain
yield of the region in 2020, which is 2.73 yuan/kg. Thus, the standard equivalent factor for
the area was calculated to be CNY 2136.82/hm2.

(2) Equivalent factor coefficients and the correction coefficient of ESV
The equivalent factor coefficient of Xie et al. [20] was determined according to the

vegetation biomass of China’s terrestrial ecosystem. For the Songnen Plain, the equivalent
factor coefficient would be adjusted in accordance with the biomass of the region. The
formula of the correction coefficient is as follows [16]:

F =
NDVIs

NDVIc
(2)

where NDVIs indicates the average value of vegetation cover in the study area, NDVIc
designates the average value of vegetation cover in China, and F refers to the correction
coefficient of ESV in the study area. The average correction coefficient of the plain was
finally calculated to be 1.33.

In addition, since broad-leaved forests accounted for more than 85% of the arbor
(coniferous, mixed coniferous, and broad-leaved) [56,57], the equivalent factor coefficient
of forests other than shrubs adopted the value of broad-leaved forests. The grassland in the
region is dominated by meadow [58], so the equivalent factor coefficient of grassland was
equal to the meadow. Referencing the research by Chu et al. [59], we set the built-up land
equivalent factor coefficient as the value of desert due to the lack of the equivalent factor
coefficient for built-up land in the table of equivalent values per unit area of the ecosystem
services of Xie et al. [20].

Finally, the ESV coefficients of different ecosystem service types in the study area were
obtained by multiplying the standard equivalent factor of the region with the coefficients
of the equivalent factor (Table 2).

Table 2. The ESV coefficients of different ecosystem service types in the Songnen Plain (CNY/hm2).

Primary
Types

Secondary
Types Pf Dl Bl Su Gl Wa Wl Bl Ul

Provision
services

FP 3777.90 2361.19 805.58 527.79 611.13 2222.29 1416.71 27.78 0.00
MP 250.01 1111.15 1833.39 1194.48 916.70 638.91 1388.93 83.34 0.00
WS −7305.79 55.56 944.47 611.13 500.02 23,028.51 7194.67 55.56 0.00

Regulation
services

GR 3083.43 1861.17 6027.97 3916.79 3166.77 2138.96 5277.95 305.57 55.56
CR 1583.38 1000.03 18,056.13 11,750.37 8389.16 6361.31 10,000.32 277.79 0.00
EP 472.24 277.79 5361.28 3555.67 2777.87 15,417.16 10,000.32 861.14 277.79
HR 7555.80 750.02 13,167.08 9305.85 6139.08 284,009.02 67,307.69 583.35 83.34

Support
services

SR 27.78 2861.20 7361.34 4777.93 3861.23 2583.42 6416.87 361.12 55.56
NC 527.79 333.34 555.57 361.12 305.57 194.45 500.02 27.78 0.00
BP 583.35 361.12 6694.66 4361.25 3527.89 7083.56 21,861.81 333.34 55.56

Cultural
services AL 250.01 166.67 2944.54 1916.73 1555.60 5250.17 13,139.31 138.89 27.78

Abbreviations: FP, MP, WS, GR, CR, EP, HR, SR, NC, BP, and AL refer to food production, material production,
water supply, gas regulation, climate regulation, environmental purification, hydrological regulation, soil retention,
nutrient cycling, biodiversity protection, and esthetic landscape, respectively. Pf, Dl, Bl, Su, Gl, Wa, Wl, Bl, and Ul
refer to paddy field, dry land, broad-leaved, shrub, grassland, water area, wetland, built-up land, and unused
land, respectively.
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(3) Calculation of ESV
ESV was measured using the following equation:

ESV =
n

∑
k=1

(VCk × Ak) (3)

ESVf =
n

∑
k=1

(VCkf × Ak) (4)

In the formula, ESV indicates the estimated ecosystem service value; VCk refers to the
ESV coefficient of land use type k (CNY/hm2); Ak stands for the area of land use type k
(hm2); ESVf is the value of the ecosystem service function f; and VCkf denotes the value
coefficient of ecosystem service function f for the land use type k.

2.3.2. Standard Deviational Ellipse Method

The standard deviation ellipse was used to analyze the spatial distribution trend of
ESV in different periods, in which the mean center, long, and short axes of the ellipse can
reveal the dynamics of its center of gravity, extension direction, and range [60]. The formula
is expressed as follows:

−
X= ∑n

i=1 Xiwi

∑n
i=1 wi

,
−
Y=

∑n
i=1 yiwi

∑n
i=1 wi

(5)

θ =
arctan/(∑n

i=1 x
′2
i − ∑n

i=1 y
′2
i )+

√(
∑n

i=1 x′2
i − ∑n

i=1 y′2
i ) + 4

(
∑n

i=1 x′
iy

′
i
) 2

2x∑n
i=1 x′

iy
′
i

(6)

δx =

√
n

∑
i=1

(
x′

icos θ−y′
isinθ)

2
/n δy =

√
n

∑
i=1

(
x′

isin θ−y′
i cos θ)

2
/n (7)

where (
−
X,

−
Y) signifies the weighted mean center; (xi, yi ) represents the geometric center

coordinates; wi represents the ESV of the i-th grid; θ denotes the azimuth angle of the
standard deviation ellipse; x′ and y′ refer to the deviation of the coordinates from the center
of the study area to the mean center, respectively; and δx and δy stand for the x and y axes
of the standard deviation ellipse’s spatial distribution for ESV.

2.3.3. Assessment of Human Activity Intensity

Considering the power sources of human disturbance to the ecosystem and its conse-
quences [34], the HAI comprehensive evaluation model was constructed using the night-
time light index, population density, and conversion coefficients of different land use types
for the built-up land equivalent (CI) proposed by Xu et al. [25] to depict the intensity of
human activity in the study area. The model is more applicable for calculating the ESV
of the Songnen Plain, which has undergone urbanization, industrialization, LUCC, and
population loss.

The CI in the study area was determined according to the land use types of the
Songnen Plain (shown in Table 3) [25]. The HAI could be calculated with Equation (8):

HAI =nNTL + pPD + lCI (8)

where NTL represents the normalized night-time lighting index; PD denotes population
density; CI refers to the conversion coefficients of different land use types for built-up land
equivalents; and n, p, and l stand for the indicator weights of NTL, PD, and CI. Referring
to the research results of Chen et al. [34], n, p, and l are set as 0.3, 0.3, and 0.4, respectively,
and the HAI is standardized to [0, 100].
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Table 3. Conversion coefficients of different land use types for the built-up land equivalent of the
Songnen Plain [25].

Land Use Types Explanations of Characteristic Signs CI

Cropland Paddy field Dry land Natural cover of land surface changes and
annual crops are planted. 0.2

Forestland / Natural cover of land surface does not
change and is not used. 0

Grassland / Natural cover of land surface does not
change but is used. 0.067

Water area
River/lake Natural cover of land surface does not

change and is not used. 0

Reservoir Natural cover of land surface changes. The
exchanges of air and heat are blocked. 0.6

Wetland / Natural cover of land surface does not
change and is not used. 0

Built-up land /
There are artificial insulation layers on the
surface. The exchanges of water, nutrients,

air, and heat are blocked.
1

Unused land / Natural cover of land surface does not
change and is not used. 0

2.3.4. Coupled Coordination Degree Model

The degree of coupled coordination is widely used to evaluate the degree of coor-
dinated dependence between different systems in an interaction relationship [61]. In
this paper, the coupled coordination degree model was applied to quantify the degree of
interaction between ESV and HAI in the study area. The specific formula is as follows:

C =

√√√√ ESV · HAI[
ESV+HAI

2

]2 (9)

T = αESV + βHAI (10)

D =
√

C · T (11)

where C refers to the degree of coupling between ESV and HAI, 0 ≤ C ≤ 1; a higher value
indicates a closer relationship between the two systems. ESV and HAI are standardized
values, T signifies the integrated development coefficient, α and β stand for the degree of
importance of ESV and HAI; both α and β are assigned a value of 0.5 due to their equal
importance [62], D designates the degree of coordination between ESV and HAI, 0 ≤ D ≤ 1;
a larger value indicates that the coordination of the two systems is higher, and vice versa.

2.3.5. Bivariate Spatial Autocorrelation Models

Spatial autocorrelation is an important indicator reflecting the correlation between the
attribute values or phenomena of adjacent spaces, and the characteristics of local spatial
agglomeration, which is specifically divided into global spatial autocorrelation and local
spatial autocorrelation (denoted by global Moran’s I and local Moran’s I, respectively) [62].
Given the great spatial correlation between HAI and ESV, this paper applied the bivariate
spatial autocorrelation model to analyze the spatial correlation between the two indicators.
The global Moran’s I index was calculated as follows:

I =
∑n

i=1 ∑n
j=1 Wij(Yi −

−
Y)(Yj −

−
Y)

S2∑n
i=1 ∑n

j=1 Wij
(12)
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S2 =
1
n∑n

i=1 (Yi −
−
Y)2 (13)

where I refers to the bivariate global spatial autocorrelation index; n is the number of spatial

units; Yi and Yj denote the attribute values of spatial units i and j;
−
Y represents the average

value of the observed values of all grids; and Wij stands for the spatial weight matrix based
on the proximity relationship of spatial units i and j.

The local Moran’s I index is expressed as follows:

Ii
lm = zi

l∑
n
j=1 Wijz

j
m =

Xi
l −

−
Xl

σl
∑n

j=1 Wij
Xj

m −
−
Xm

σm
(14)

where Xi
l designates the observed value of the attribute l of spatial unit i; Xj

m denotes the
observed value of the attribute m of spatial unit j; σl and σm stand for the variances of the
observed values of attributes l and m, respectively; Ii

lm represents the bivariate local spatial
autocorrelation index; and zi

l and zj
m are the normalized values of the standard deviation

of spatial cell i and cell j for attribute value l and attribute value m.
This study’s technical framework is depicted in Figure 2.
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3. Results
3.1. Land Use Changes in 1990–2020

The dominant land types in the Songnen Plain from 1990 to 2020 were dry land (about
49.2–52.4% of the total area), forestland (about 14.0–14.6% of the total area), grassland
(about 7.5–10.7% of the total area), and wetland (about 7.0–8.9% of the total area), among
which dry land made up the largest proportion, accounting for approximately 50% of
the total area (Table 4). Regarding to the degree of change, the paddy fields, dry land,
and built-up land showed an overall upward trend during 1990–2020, with growth rates
of 56.43%, 3.94%, and 15.53% respectively, while grassland area had the highest loss of
29.64% with a decrease in area of 7319.47 km2, followed by water area and wetland, which
decreased by 17.10% and 10.54%, respectively.
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Table 4. Land use type changes in the Songnen Plain in 1990–2020.

Year 1990 1995 2000 2005 2010 2015 2020 1990–2020

Land Use
Types

Area
(km2)

Area
(km2)

Area
(km2)

Area
(km2)

Area
(km2)

Area
(km2)

Area
(km2)

Change
(km2)

Change
Rate (%)

Pf 9932.76 15,428.62 14,394.68 13,944.07 13,380.99 14,249.07 15,537.7 5604.94 56.43
DL 113,205.15 115,627.89 117,921.7 119,246.69 120,671 120,111.22 117,663.46 4458.30 3.94

Fl 33,699.9 32,750.95 32,795.18 32,737.8 32,331.93 32,291.23 33,093.11 −606.79 −1.80
Gl 24,692.52 23,727.24 18,589 18,565.31 19,106.9 18,940.74 17,373.05 −7319.47 −29.64
Wa 6600.36 6090.28 5662.97 5347.84 5430.60 5424.73 5471.97 −1128.39 −17.10

Wl 20,560.04 18,386.98 19,090.21 18,486.14 16,389.79 16,224.22 18,392.06 −2167.97 −10.54
Bl 9511.35 9614.69 9707.92 9807.06 10,482.53 10,688.42 10,988.51 1477.16 15.53
Ul 12,120.48 8696.16 12,161.02 12,188.61 12,530.07 12,393.71 11,781.35 −339.13 −2.80

Abbreviations: Pf, DL, Fl, Gl, Wa, Wl, Bl, and Ul refer to paddy field, dry land, forestland, grassland, water area,
wetland, built-up land, and unused land, respectively.

In terms of the direction and intensity of land conversion during the period of 1990 to
2020 (Table 5), the conversion between paddy fields and dry land was one of the significant
land use change characteristics. Specifically, the area of paddy fields that was converted
into dry land is 1694.65 km2, while 4375.20 km2 of dry land was converted into paddy
fields, meaning that the net inflow of paddy fields was massive. Moreover, most of
the increased cropland (paddy field and dry land) was converted from ecological land
(forestland, grassland, and wetland). For instance, 3140.08 km2 of forestland, 6415.21 km2

of grassland, and 1286.72 km2 of wetland were transferred into dry land; meanwhile,
1190.63 km2 of grassland and 1861.87 km2 of wetland were converted into paddy fields.
Thirdly, the expansion of built-up land came primarily from the transfer of dry land, with
an area of 2328.59 km2. Moreover, the conversion of dry land to forestland, water area,
and wetland (Ecological De-farming) could not be ignored (Table 2). Overall, the region
represented the characteristics of cropland converted into build-up land, ecological land
converted into cropland, and dry land transformed into paddy fields.

Table 5. Conversion matrix of land use change in the Songnen Plain during 1990–2020 (km2).

Year 2020

Land Use
Types Pf DL Fl Gl Wa Wl Bl Ul Decreased

Paddy field - 1694.65 28.35 53.00 22.64 349.63 176.28 3.82 2328.37
Dry land 4375.20 - 2066.61 861.61 241.58 524.81 2328.59 314.37 10,712.77

Forestland 93.25 3140.08 - 402.53 96.49 391.30 78.49 30.72 4232.86

19
90

Grassland 1190.63 6415.21 951.48 - 101.83 659.33 168.61 1296.17 10,783.25
Water area 119.34 263.73 58.46 238.80 - 902.77 16.11 655.60 2254.80

Wetland 1861.87 1286.72 214.09 867.03 514.73 - 67.25 401.14 5212.83
Built-up

land 152.88 1199.48 60.47 38.29 13.64 14.48 - 31.50 1510.75

Unused
land 140.15 1172.22 250.79 1003.44 148.74 205.00 152.50 - 3072.82

Increased 7933.31 15,172.08 3630.25 3464.69 1139.66 3047.33 2987.81 2733.33 40,108.46

Abbreviations: Pf, DL, Fl, Gl, Wa, Wl, Bl, and Ul refer to paddy field, dry land, forestland, grassland, water area,
wetland, built-up land, and unused land, respectively.

3.2. Temporal and Spatial Evolution of ESV
3.2.1. Temporal and Spatial Patterns of Change in ESV

The ESV of the Songnen Plain from 1990 to 2020 was calculated (Table 6) using
Formulas (3) and (4). The results indicated that ESV fell continuously and then rose in
1990–2020. The total value decreased from 950.96 billion yuan in 1990 to 836.31 billion yuan
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in 2015 and then increased to 864.60 billion yuan in 2020. In terms of the contribution of
various land use types to ESV, taking 2020 as an example (Table 6, Figure 3), wetlands had
the highest contribution of 30.74% (although only accounting for 7.99% of the total area),
followed by forestland (23.23%) and water area (22.08%). It is noticeable that wetlands,
forestland, and water areas were the primary contributors to ESV in the region. During
the period of 1990–2020, the natural ecosystem of the study area (i.e., forestland, grassland,
water area, and wetland) declined from 810.55 billion yuan to 712.73 billion yuan, which
dropped by 12.07% (Table 6). Among them, the reduction in ESV for water area, wetland,
and grassland made up 40.25%, 32.03%, and 23.76% of the total ESV loss, respectively.
The artificial (semi-artificial, semi-ecological) ecosystem (i.e., paddy field, dry land, and
built-up land) increased by 8.21%, from 139.74 billion yuan to 151.22 billion yuan, with
paddy field and dry land contributing 52.78% and 43.28%, respectively.

Table 6. Ecosystem service value and its change in the Songnen Plain from 1990 to 2020.

Land
Use

Types

ESV/(1010 CNY·hm−2) ESV Change 1990–2020 (%) ESV
(%)

1990 1995 2000 2005 2010 2015 2020 1990–
1995

1995–
2000

2000–
2005

2005–
2010

2010–
2015

2015–
2020 2020

Pf 1.07 1.67 1.56 1.51 1.45 1.54 1.68 55.33 −6.70 −3.13 −4.04 6.49 9.04 1.94
DL 12.61 12.88 13.14 13.28 13.44 13.38 13.11 2.14 1.98 1.12 1.19 −0.46 −2.04 15.16
Fl 20.47 19.33 19.80 19.76 19.95 19.93 20.09 −5.60 2.45 −0.21 0.98 −0.12 0.79 23.23
Gl 7.84 7.53 5.90 5.89 6.07 6.01 5.52 −3.91 −21.66 −0.13 2.92 −0.87 −8.28 6.38
Wa 23.03 21.25 19.76 18.66 18.95 18.93 19.09 −7.73 −7.02 −5.56 1.55 −0.11 0.87 22.08
Wl 29.71 26.57 27.59 26.71 23.68 23.44 26.58 −10.57 3.82 −3.16 −11.34 −1.01 13.36 30.74
Bl 0.29 0.29 0.30 0.30 0.32 0.33 0.34 1.09 0.97 1.02 6.89 1.96 2.81 0.39
Ul 0.07 0.05 0.07 0.07 0.07 0.07 0.07 −28.25 39.84 0.23 2.80 −1.09 −4.94 0.08

Total 95.10 89.57 88.10 86.18 83.93 83.63 86.46 −5.81 −1.64 −2.18 −2.62 −0.36 3.38 100

Abbreviations: Pf, DL, Fl, Gl, Wa, Wl, Bl, and Ul refer to paddy field, dry land, forestland, grassland, water area,
wetland, built-up land, and unused land, respectively.
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The values of ecosystem service functions in the Songnen Plain are displayed in
Figure 4. Taking the value in 2020 as an example, among the value of primary services,
regulation services contributed the highest (66.73%), followed by support services (18.76%),
provision services (9.71%), and cultural services (4.80%). Of the secondary service values,
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hydrological regulation service had the highest value, with a proportion of 40.82%, making
it the primary ecosystem service function in the region. Moreover, ecosystem service
functions such as biodiversity, soil protection and retention, gas regulation, environmental
purification, and food production also contributed markedly, accounting for 8.89%, 8.93%,
7.22%, 6.23%, and 4.75%, while the contribution of nutrient cycling service was lowest
at only 0.93%. According to the rate of change from 1990 to 2020 (Figure 4), the overall
ecosystem service function showed a downward trend except for food production (which
increased by 5.44%). The ESV of water supply decreased significantly by 31.23%, followed
by hydrological regulation (−11.81%), esthetics landscape (−9.82%), and biodiversity
(−9.42%). The declining rate of material production was the lowest (−2.09%).
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To exhibit the spatial and temporal distribution characteristics of ESV, we used the
natural breaks method and classified ESV into five levels, namely low value (ESV ≤ 2373),
medium-low value (2373 < ESV ≤ 5023), medium value (5023 < ESV ≤ 9708), medium-high
value (9708 < ESV ≤ 19,078), and high value (ESV > 19,078) (Figure 5). Overall, the ESV in
the western and northeastern regions was relatively high, and was the opposite in other
regions. The high-value areas of ESV mainly occurred in the ecological areas, including
water areas, wetlands, and forested areas, while the low value of ESV overlapped with
areas of intensive human activity and ecological vulnerability, especially located in the dry
land, built-up land, and unused land. Moreover, there were no significant changes in most
areas during 1990–2020 (Figure 5), and the areas with a significant increment in ESV were
mostly clustered in water areas and wetlands, while the areas with a significant decline
in ESV were centered on the northeast of Baicheng, the west of Daqing, and certain areas
in Qiqihar.
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3.2.2. The Spatial Pattern Evolution Characteristics of ESV

The spatial change characteristics of ESV in the Songnen Plain from 1990 to 2020 were
analyzed based on Formulas (5)–(7), and the results are shown in Table 7, Figure 6. The
area of the standard deviation ellipse showed an overall expanding trend, meaning that
the difference in ESV between the inside and outside of the ellipse was reduced, and areas
of poor ecological quality were improved.

Table 7. Standard deviation ellipse parameters of ESV.

Year Center of Gravity
Longitude

Center of Gravity
Latitude

Long
Semi-Axis (km)

Short
Semi-Axis (km) Rotation (◦) Area

(104 km2)

1990 125.42 46.43 157.80 241.09 14.87 11.95
1995 125.43 46.41 156.28 246.25 14.54 12.08
2000 125.49 46.45 158.70 242.64 14.56 12.09
2005 125.51 46.46 158.63 243.76 14.41 12.14
2010 125.50 46.45 161.15 244.10 14.45 12.35
2015 125.50 46.45 161.28 244.33 14.46 12.37
2020 125.52 46.47 160.06 244.39 13.51 12.28

The centroid of ESV was located in the central part of the study area, which is the
southwest of Suihua City. Temporally, the centroid of ESV first migrated to the southeast by
1.98 km and then moved to the northeast by 12.56 km as a whole, which confirmed that the
ESV in the northeast has increased significantly and the ecological structure and function
have improved. Meanwhile, the rotation angle of the standard deviation ellipse fluctuated
around 14◦, indicating that the spatial distribution of ESV followed a northeast–southwest
direction, which is basically consistent with the distribution pattern of the study area.
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3.3. Temporal and Spatial Distribution Patterns of HAI

In this paper, we measured HAI in the Songnen Plain from 1990 to 2020 using
Formula (8), and analyzed the spatiotemporal pattern characteristics at the grid scale
(Figures 7 and 8). According to the data distribution, HAI was classified into five levels: low
impact (HAI ≤ 7), medium-low impact (7 < HAI ≤ 15), medium impact (15 < HAI ≤ 20),
medium-high impact (20 < HAI ≤ 30), and high-impact (HAI > 30).
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For the temporal dimension, the highest proportion of the low HAI level showed an
overall slowly declining tendency (decreased by 10.14%), and the medium-low HAI level
exhibited a slight decrease (reduced by 4.27%). However, the medium-high and medium
HAI levels showed a fluctuating upward trend generally (increased by 25.78%), confirming
that the study area’s HAI gradually increased. Moreover, the high HAI level gradually
shrank after reaching the peak in 2000, occupying 4.16% (Figure 7).

For the spatial dimension, HAI was generally characterized by a low level in the
northeast and southwest, and a high level in the middle and southeast during 1990–2020
(Figure 8). The high HAI level mostly occurred in Qiqihar, Suihua, Harbin, and Changchun
and was dispersed as dots in the urban centers, including Harbin, Changchun, and Daqing,
which are relatively economically developed regions. The medium-high HAI level over-
lapped with the medium HAI level in space and was distributed in the shape of a “7”.
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The areas with a low HAI level were mainly located in the ecological space, including
forestland areas in the northeastern and eastern regions as well as wetland and water area
in the western part of the region.
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3.4. Analysis of Coupling Coordination Degree between HAI and ESV

The coupling degree and coordination degree of HAI and ESV in the Songnen Plain
from 1990 to 2020 were calculated based on Formulas (9)–(11) (Figure 9). The coupling
degree was relatively stable and within the range of 0.7–0.8, which was in the running-in
stage [13], indicating that HAI and ESV interacted with each other closely. Meanwhile,
the coordination degree increased from 0.2645 in 1990 to 0.2670 in 2020, and the value
of “center of mass” was 0.2651, revealing that the coordination level was in a moderate
disorder stage [62], but it clearly showed an upward trend. This study indicates that,
although the high HAI level had an adverse effect on the ecosystem service, the two
systems are transitioning from conflict to coordination.
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3.5. Bivariate Spatial Autocorrelation Analysis of HAI and ESV

Based on the bivariate spatial autocorrelation model, we constructed the spatial
weight matrix and plotted a Moran’s I scatterplot by using the GeoDa spatial analysis
tool (Figure 10). The global Moran’s I values between HAI and ESV were significant with
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P = 0.001 at 99.9% confidence level and were −0.276, −0.266, −0.288, −0.264, −0.252,
−0.243, and −0.242, respectively, for the seven years. The results indicate that there is
a negative spatial correlation between the two in the study area. During 1990–2020, the
Moran’s I values were all less than 0 and had the weakest correlation in 2020, indicating
that human activity and ecosystems are shifting from conflict to coordination. The results
can be corroborated by the study on the degree of coupling coordination.
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By using the local spatial autocorrelation analysis, the bivariate LISA clustering map
of HAI and ESV in the study area was obtained (Figure 11a). In Figure 11a, H-H stands for
high HAI and high ESV; L-L denotes low HAI and low ESV; L-H signifies low HAI and
high ESV; and H-L represents high HAI and low ESV. Taking the 2020 LISA clustering map
as an example, the region had significant spatial heterogeneity. The areas with the H-L
cluster had the widest distribution (20.75% of the total area), concentrating in the majority
of Changchun, the western part of Harbin, the eastern part of Qiqihar, and the northern
and southern regions of Suihua. The L-H areas mainly occurred in the water area and the
eastern forestland. The areas with H-H cluster were scattered in the study area, accounting
for only 2.73% of the region (Figure 11b). The L-L areas were mainly located in the parts of
Qiqihar, Suihua, Baicheng, and Songyuan. In general, the study area was characterized by
the clustering of H-L and L-H, and the scattered distribution of H-H and L-L.
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4. Discussion
4.1. Spatial–Temporal Change Characteristics of Land Use and ESV

This study identified the significant spatial and temporal heterogeneity of ESV in the
study area. Temporally, ESV in the Songnen Plain exhibited a trend of initially declining and
then increasing from 1990 to 2020. Moreover, the rate of decline slowed down distinctly after
2010 and reached the lowest value in 2015 (Table 6). This may be the result of the intensity
and direction of human activities on the ecosystem, which changed the land use pattern
and regional ESV. From 1990 to 2010, the Songnen Plain, serving as an important national
commodity grain base and heavy industry base, faced the dual pressures of ensuring
food security and promoting economic development [48]; therefore, the areas of wetland,
forestland, grassland, and water area declined considerably, while paddy field, dry land,
and built-up land significantly increased (Table 4). The decline in ESV during this period
is largely attributed to the conversion of natural ecosystems into artificial (semi-artificial)
ones. After 2010, the rate of ESV decline slowed, and ESV bottomed out after 2015, which
is related to the downturn in the regional economy, population outflow, the construction of
ecological civilization, and the implementation of the second round of policies on returning
farmland to forestland and grassland, etc. In detail, the population of the region decreased
by 13%, from 4.19 × 107 people in 2010 to 3.65 × 107 people in 2020 [63,64], which greatly
lessened the pressure on the ecological environment. Meanwhile, China put forward the
goal of “ecological civilization construction” in 2007 [65]; subsequently, in 2012, ecological
protection and sustainable socio-economic development were placed in equally important
positions, deepening the concept of ecological protection [66]. Moreover, in 2014, China
launched a new round of returning farmland to forestland (grassland and wetland) [67].
In the year 2015, policy documents such as the Guidelines on Accelerating Ecological
Civilization and the Integrated Reform Plan for Promoting Ecological Civilization were
successively issued [66]; concurrently, relevant measures were implemented in order to
improve the eco-environment, such as the drawing of the ecological protection red line
and compensating for ecological protection activities [66]. These policies and measures
had a positive impact on stabilizing and increasing the area of natural ecosystems and
improving ecosystem service capabilities, which enabled ESV increases. In terms of the
degree of change in various service functions, the ESV of water supply experienced the
most significant decline, followed by hydrological regulation, esthetic landscape, and
biodiversity (Figure 4). In the Songnen Plain, due to climate warming, the decline of
precipitation [68], and the expanding of croplands (paddy fields and dry lands) (Table 4),
the high water resource demand for agricultural irrigation [69,70] has led to a significant
decline in the ESV of water supply. In addition, the long-term transformation of natural
ecosystems to artificial (semi-artificial) ones in the study area (Table 5) diminished the
functions of biodiversity and hydrological regulation, which in turn weakened the value
of the corresponding ecosystem services. Spatially, regions with high ESV values were
primarily concentrated in ecological areas such as water areas, wetlands, and forestland,
while areas with low ESV values were mainly located in areas with intensive human
activities and ecological fragility (dry land, built-up land, and unused land). Overall, this
spatial pattern is related to the fact that natural ecosystems have higher ecosystem service
value equivalents and provide more ESV than artificial (semi-artificial) ones.

4.2. The Feedback Mechanism between HAI and ESV

The results of the coupling coordination degree between HAI and ESV illustrated that
human activities and ecosystem services were closely related and interactive (Figure 9).
This is consistent with previous studies [13,16,37]. Zhang et al. [13] analyzed the coupling
relationship between human activities and ESV in Xinjiang during 2000–2015 based on the
coupling degree model, and the results demonstrated that the two were highly coupled (all
higher than 0.797), indicating a strong interaction. Huang et al. [37] observed that there was
a non-linear coupling relationship between human footprint and ESV in the Pearl River
Delta Urban Agglomeration from 2000 to 2020, with mutual influences and constraints.
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Eigenbrod et al. [71] concluded that there would be an interaction between urbanization
and ecosystem service provision in the UK, meaning that ecosystem services were affected
by human activities. The main reason for the mutual feedback between human activities
and ecosystem service is that human production and survival are inseparable from the
support of ecological products and ecosystem service functions. For example, provision
services provide raw materials such as food and wood for human survival, and cultural
services fulfil spiritual pleasures [1,72]. Meanwhile, human activities also have an effect
on the ecosystem by altering the structure and function of the ecosystem [73,74], which
includes negative pressure [74–76] and positive effect [77] (Figure 12). It can be seen that
human activities and ecosystem services are interrelated and mutually restrained.
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Furthermore, the temporal pattern of the coordination degree and the bivariate spatial
autocorrelation between ESV and HAI in the Songnen Plain showed that high HAI levels
exerted a strong negative impact on ESV, but they are transitioning from conflict to coordina-
tion. The results demonstrated that the positive effects of human activities on ecosystems in
the study area were gradually increasing, and the negative pressures were lowering steadily
(Figures 9 and 10). Relevant studies have shown that human activities had varied bearing
on ecosystems in different regions and stages of socio-economic development [13,77,78].
Zhang et al. [13] pointed out that, since the agricultural expansion from 2000 to 2015,
the ESV in Xinjiang declined with the exception of the value of food supply, indicating
an overall negative influence of human activities on the ESV in the region. Sinchembe
and Ellery et al. [78] noticed that the hydrological health of wetlands in South Africa has
suffered from road construction and invasive alien plants, resulting in wetland degradation
and a reduction in the supply capacity of wetland indirect ecosystem services, suggesting a
negative implication of human activities on wetland ecosystems. Conversely, Mao et al. [77]
found that ecological conservation policies and ecological projects can increase ecological
land and improve regional ecosystem service capacity, which suggested that human activ-
ities can aid the betterment of ecosystem services as well. The possible mechanisms for
the impact of human activities on ecosystems are as follows: In the stage of rapid urban
development, along with the advancement of urbanization, industrialization, and agricul-
tural modernization, human beings intend to achieve urban development and economic
growth through the expansion of built-up land and cropland, as well as the compression
of ecological space [79]. At the same time, high-intensity human activities also affect the
physical, chemical, biological, and hydrological properties of the soil [8,80]. Such changes
in the quantity and quality of ecosystems bring about the alterations in ecosystem structure
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and function and the decline of ecosystem service capacity [37,81]. When ecosystems reach
a certain level of degradation and begin to constrain socio-economic development, the
government is inclined to enact ecological conservation policies; simultaneously, with
the deepening of the concept of ecological conservation and the promotion of ecological
conservation technology, humans tend to balance economic development and ecological
conservation [77]. For example, measures such as crop rotation and fallow, rest grazing, and
grazing prohibition are adopted to improve the ecological service capacity of cropland and
grassland [82]; the red line of the urban development boundary is delineated to restrict the
expansion of built-up land; Ecological De-farming is promoted to increase the supply area
of ecosystem service [46]; and the improvement of ecosystem service capacity is achieved
by reducing pollutant emissions and through ecological restoration [77] (Figure 12).

4.3. Policy Implications

Benefiting from ecological conservation policies and its implementation, pressures
on ecological systems induced by human activities have been alleviated to some extent
(the proportion of the high HAI level in the study area decreased (Figure 7)). Nevertheless,
most of these policies were promoted at the national level and fell short of considering the
special ecosystem structure and function and the socio-economic development situation of
the Songnen Plain. In addition, the research area also undertakes multiple tasks such as
revitalizing Northeast China, ensuring national food and ecological security, protecting the
black soil, and facing the challenges of climate change. Taking into account the regional
characteristics, spatial differences, and climate challenges, the following recommendations
can be given.

Firstly, differentiated policies should be formulated to achieve accurate management in
heterogeneity areas. In the H-L areas with relatively well developed economic activity, such
as Changchun City, Harbin City, and Qiqihar City (Figure 11a), the occupation of ecological
land and cropland by build-up land should be strictly controlled, and the existing build-up
land should be fully used. Additionally, green industries should be actively developed
to reduce pollution emissions. Whereas, in the L-H zones, namely the areas of water
area, wetland, and forestland (Figure 11a), it is urgent to identify ecological protection
zones, strictly abide by ecological red lines, construct ecological corridors, and enhance the
regional ecosystem service capacity. For cropland that needs to harmonize grain production
and ecological services, the red line for 1.8 billion acres of cropland should be safeguarded to
prevent the uncontrolled expansion of cropland; meanwhile, conservation tillage and other
technologies should be promoted to increase soil organic matter, protect the biodiversity of
cropland ecosystems, reduce the dosage of chemical fertilizers and pesticides, and improve
ecosystem service capacity and health [82].

Secondly, it is necessary to formulate targeted ecological policies for ecologically fragile
areas to curb ecosystem deterioration. In the Songnen Plain, there are many rolling hilly
regions (Keshan County, Baiquan County, and Kedong County in Qiqihar City) with severe
soil and water erosion [36]. In these areas, service functions of cultivated ecosystems, such
as soil conservation, water supply, and food production, have been declining under the dual
influence of natural and human factors. Moreover, the region also includes ecologically
fragile areas such as saline-alkali land [9] and agro-pastoral ecotone [83]. In light of this, the
intensity of human disturbance in the fragile ecological environment should be weakened,
and the ecological restoration should also be implemented. In addition, it is essential
to monitor the carrying capacity and carrying threshold of the ecosystem dynamically,
provide early warning of ecological disasters, and restore the degraded ecosystem.

Thirdly, the government should unveil ecological policies to actively respond to the
challenges posed by climate warming on the regional ecosystems. Previous studies have
shown that climate warming and economic interests have led to a gradual expansion of rice
planting areas and a northward shift of the cultivation area [69,77]. This phenomenon, the
significant expansion of the paddy field area at the end of the study period in the Songnen
Plain, is also proved by this study (Table 4). The expansion of paddy fields, along with
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the existing dry land planting, will further aggravate the consumption of water resources,
lower the capacity of water supply in ecosystem services, increase additional pressure
on groundwater, river, and lake resources [13,84], and also bring about soil degradation
and a series of related problems [85]. Consequently, policymakers ought to enact relevant
policies in response to climate change, controlling the scale of dry land-to-paddy conversion
and implementing water-saving irrigation technology and soil and water conservation
measures so as to promote the coordinated development of humans and ecosystems.

Finally, it is worth mentioning that, apart from the Songnen Plain, such grain produc-
tion areas worldwide as the Midwestern United States, Brazil’s Cerrado Region, and the
Pampas Region of Argentina [86–88] may face multiple challenges in sustainable food pro-
duction, ecosystem conservation, economic development, and adaptation to global climate
change. These regions (and their countries), when formulating sustainable development
policies, could conduct research based on the “assessment-correlation-policy” framework
of this study to enhance the specificity and scientific rigor of their policies. They could
also apply the “modified Equivalent Factor Method” and the “HAI Assessment Model”
from this study, which adequately consider local social, economic, and natural conditions,
to assess ESV and HAI, offering high applicability. Based on further understanding of
the spatiotemporal correlation between regional ESV and HAI and using the research
outcomes and policy measures from the Songnen Plain as a reference, targeted strategies
could be developed for diverse regions and ecologically fragile areas. These strategies
may include monitoring ecosystem dynamics, controlling land conversion, expanding
ecological reserves, and implementing ecological technologies, aiming to achieve regional
socio-economic synergy and sustainable development.

5. Conclusions

In this research, we analyzed the Songnen Plain land use changes using land use
data every five years between 1990 and 2020 and measured ESV and HAI, employing
the modified Equivalent Factor Method and HAI Assessment Model (based on land use,
night-time light, and population spatial distribution data). Furthermore, we explored the
spatiotemporal correlations between the two utilizing the coupled coordination degree and
the bivariate spatial autocorrelation model. The conclusions are as follows:

(1) The dominant land types in the Songnen Plain from 1990 to 2020 were dry land (about
49.2–52.4% of the total area), forestland (about 14.0–14.6% of the total area), grassland
(about 7.5–10.7% of the total area), and wetland (about 7.0–8.9% of the total area);
overall, the region represented the following characteristics: cropland converted into
build-up land, ecological land converted into cropland, and dry land transformed
into paddy fields.

(2) From 1990 to 2020, ESV declined from 950.96 billion yuan in 1990 to 836.31 billion yuan
in 2015, and increased to 864.60 billion yuan in 2020. The ESV of natural ecosystems
showed a declining tendency, while artificial (semi-artificial) ones showed a rising
trend. Except for the significant increase in ESV of food production (5.44%), the ESV
of other ecosystem service functions showed a downward trend. Among them, the
ESV of water supply decreased dramatically (31.23%). In terms of spatial distribution,
the ESV in the western and northeastern regions was relatively high, and the ESV in
other regions was the opposite. The high ESV areas were mainly distributed in the
ecological areas such as water areas, wetlands, and forestland. The distribution of the
low ESV areas coincided with the areas of intensive human activities and ecological
fragility, such as dry land, build-up land, and unused land. Moreover, ESV increased
significantly in the northeast during the study period.

(3) During 1990–2020, HAI showed an upward trend, and the spatial distribution charac-
teristic was generally low in the northeast and southwest, as well as high in the middle
and southeast. The high HAI levels gradually shrank after reaching their peak in 2000
and were dispersed as dots in the urban centers, including Harbin, Changchun, and
Daqing, which are relatively economically developed regions; the areas of medium-
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high HAI levels overlapped with the areas of medium HAI levels in a ‘7’ shape; the
areas of low HAI levels were highly coincident with the ecological space.

(4) HAI had a strong interaction with ESV (the coupling degree was between 0.7 and 0.8),
and the degree of coordination was in a moderate disorder (from 0.2645 to 0.2670).
Although human activities had a negative impact on ESV, they were transitioning
from conflict to coordination. For the spatial dimension, the two systems were H-L
and L-H clustering and H-H and L-L scattered distribution.

(5) In the future, the decision makers should formulate differentiated policies. In econom-
ically developed areas (H-L areas) like Changchun, Harbin, and Qiqihar, strict control
over land occupation and the promotion of green industries are crucial. For ecological
zones (L-H areas), it is urgent to strictly abide by ecological red lines and construct
ecological corridors. For fragile regions, it is essential to weaken the intensity of
human disturbance and implement targeted restoration efforts. Additionally, they
should control the scale of dry land-to-paddy conversion, promote water-saving irri-
gation technologies, and implement soil and water conservation measures to address
climate warming.

(6) The “assessment-correlation-policy” research framework proposed in this study is
suitable for characterizing and understanding the mechanisms of ecosystem services
and human activities. The approaches employed in this study, which fully consider
regional uniqueness, data availability, and inter-regional comparability, can be applied
to quantitatively studying the feedback relationship between ecosystem services and
human activities in other similar regions. Additionally, the policies proposed in
this study could be extended to other major grain-producing areas globally, offering
Chinese theoretical insights and practical references for these regions.
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