Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing
Abstract
:1. Introduction
2. Methods
2.1. Overview of the Study Area
2.2. Indicator Selection and Data Sources
2.3. Research Methods
2.3.1. Land Use Type Transfer in the EPLS
2.3.2. Eco-Environment Quality Index (EQI)
2.3.3. Ecological Contribution Rate (ECR)
2.3.4. Random Forest Model
3. Results
3.1. Evolution Characteristics of EPLS Land Use Transitions
3.1.1. Spatio-Temporal Pattern of EPLS Land Use
3.1.2. Land Use Transition of EPLS
3.2. Ecological Effects of Land Use Transition in EPLS
3.2.1. Temporal Characteristics of Regional EQI
3.2.2. Spatial Characteristics of Regional EQI
3.3. Analysis of Factors Influencing Regional EQI Changes
3.3.1. Significance and Relative Importance of Feature Variables
3.3.2. Nonlinear Relationships of Influence Forces of Regional EQI Changes
4. Discussion
4.1. Main Characteristics of EPLS Land Use Transition in the Central Urban Area
4.2. Ecological Environmental Effects of Land Use Transition
4.3. Analysis of Influencing Factors and Mechanism Exploration
4.4. Limitations and Future Outlook
5. Conclusions
- Over the past 20 years, the living space in the central urban area has significantly expanded, with the increase in urban living space being the most pronounced. Agricultural production space has decreased substantially, with a cumulative reduction of 743.37 km2. The expansion of industrial and mining production land reflects the strong demand for industrial development driven by economic growth. Overall, there is a trend of reduction in ecological space, particularly a sharp decrease in forestland, highlighting the contradiction between ecological protection and economic development.
- Land use transformation significantly affects EQ, with a downward trend in the overall EQI. The conversion of agricultural production space to forest ecological space contributes the most to the optimization of the eco-environment, validating the ecological benefits of the policy of returning farmland to forests. However, the conversion of agricultural production space to industrial and mining production space, as well as the conversion of forest ecological space to agricultural production space, has negative impacts on EQ, revealing shortcomings in the implementation of ecological protection policies.
- The random forest model analysis shows that pesticide usage, grain production, and the added value of the primary industry are the main factors affecting EQ. Among them, pesticide usage has a significant negative impact on EQ, indicating the need for the judicious use of chemicals in agricultural production. The impact of grain production and the added value of the primary industry on EQ is complex, reflecting the importance of agricultural production methods and resource management.
- There are significant spatial differences in EQ. Shapingba District experienced a decline in EQ due to excessive urbanization, while Beibei District maintained a relatively high level of EQ due to its topography and policy protection. This indicates that regional ecological protection policies need to be tailored, implementing differentiated management strategies.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuang, W.H.; Liu, J.Y.; Dong, J.W.; Chi, W.F.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Zhang, J.P.; Li, Z.H. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.J.; Yang, H.; Zhong, T.Y. Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [Google Scholar] [CrossRef]
- Erb, K.H. How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol. Econ. 2012, 76, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Fu, H.; Yan, J.; Li, Z. How does energy utilization affect rural sustainability development in traditional villages? Re-examination from the coupling coordination degree of atmosphere-ecology-socioeconomics system. Build. Environ. 2024, 257, 111541. [Google Scholar] [CrossRef]
- Zhong, Q.; Li, Z. Long-term trends of vegetation greenness under different urban development intensities in 889 global cities. Sustain. Cities Soc. 2024, 106, 105406. [Google Scholar] [CrossRef]
- Yang, Y.Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Long, H.L. Land use policy in China: Introduction. Land Use Policy 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Ni, X.J.; Parajuli, P.B.; Ouyang, Y.; Dash, P.; Siegert, C. Assessing land use change impact on stream discharge and stream water quality in an agricultural watershed. Catena 2021, 198, 105055. [Google Scholar] [CrossRef]
- Zou, L.; Xia, J.; She, D.X. Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: A Case Study in the Wei River Basin, China. Water Resour. Manag. 2018, 32, 1421–1438. [Google Scholar] [CrossRef]
- Talukder, B.; Ganguli, N.; Matthew, R.; VanLoon, G.W.; Hipel, K.W.; Orbinski, J. Climate change-triggered land degradation and planetary health: A review. Land Degrad. Dev. 2021, 32, 4509–4522. [Google Scholar] [CrossRef]
- Yin, R.; Kardol, P.; Thakur, M.P.; Gruss, I.; Wu, G.L.; Eisenhauer, N.; Schädler, M. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biol. Biochem. 2020, 147, 107847. [Google Scholar] [CrossRef] [PubMed]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Li, J.S.; Sun, W.; Li, M.Y.; Meng, L.L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Liu, N.; Zhong, Q.; Zhu, K. Unveiling the Dynamics of Rural Revitalization: From Disorder to Harmony in China’s Production-Life-Ecology Space. Land 2024, 13, 604. [Google Scholar] [CrossRef]
- Li, J.X.; Song, C.H.; Cao, L.; Zhu, F.G.; Meng, X.L.; Wu, J.G. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Du, X.J.; Huang, Z.H. Ecological and environmental effects of land use change in rapid urbanization: The case of hangzhou, China. Ecol. Indic. 2017, 81, 243–251. [Google Scholar] [CrossRef]
- Martin, K.L.; Hwang, T.; Vose, J.M.; Coulston, J.W.; Wear, D.N.; Miles, B.; Band, L.E. Watershed impacts of climate and land use changes depend on magnitude and land use context. Ecohydrology 2017, 10, 1870. [Google Scholar] [CrossRef]
- Zhang, W.J.; Xu, H.Z. Effects of land urbanization and land finance on carbon emissions: A panel data analysis for Chinese provinces. Land Use Policy 2017, 63, 493–500. [Google Scholar] [CrossRef]
- Gries, T.; Redlin, M.; Ugarte, J.E. Human-induced climate change: The impact of land-use change. Theor. Appl. Climatol. 2019, 135, 1031–1044. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Li, H.L.; Peng, J.; Liu, Y.X.; Hu, Y.N. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Khan, M.S.; Ullah, S.; Sun, T.; Rehman, A.U.R.; Chen, L.D. Land-Use/Land-Cover Changes and Its Contribution to Urban Heat Island: A Case Study of Islamabad, Pakistan. Sustainability 2020, 12, 3861. [Google Scholar] [CrossRef]
- Xu, L.Y.; Xie, X.D.; Li, S. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing. Environ. Pollut. 2013, 178, 102–114. [Google Scholar] [CrossRef]
- Chen, Y.X.; Huang, B.Y.; Zeng, H. How does urbanization affect vegetation productivity in the coastal cities of eastern China? Sci. Total Environ. 2022, 811, 152356. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Li, T.A.; Shilling, F.; Thorne, J.; Li, F.M.; Schott, H.; Boynton, R.; Berry, A.M. Fragmentation of China’s landscape by roads and urban areas. Landsc. Ecol. 2010, 25, 839–853. [Google Scholar] [CrossRef]
- Fedele, G.; Locatelli, B.; Djoudi, H.; Colloff, M.J. Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS ONE 2018, 13, e0195895. [Google Scholar] [CrossRef]
- Guo, L.Y.; Di, L.P.; Li, G.; Luo, Q.Y.; Gao, M.J. GIS-based detection of land use transformation in the Loess Plateau: A case study in Baota District, Shaanxi Province, China. J. Geogr. Sci. 2015, 25, 1467–1478. [Google Scholar] [CrossRef]
- Lu, X.; Shi, Y.Y.; Chen, C.L.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Ruan, X.F.; Qiu, F.; Dyck, M. The effects of environmental and socioeconomic factors on land-use changes: A study of Alberta, Canada. Environ. Monit. Assess. 2016, 188, 446. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.K.; Yang, Y.Y.; Zou, L.L. How to reconcile land use conflicts in mega urban agglomeration? A scenario-based study in the Beijing-Tianjin-Hebei region, China. J. Environ. Manag. 2021, 296, 113168. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Bao, W.K.; Li, Y.H.; Wang, Y.S.; Chen, Z.F. Land Use Transition and Its Eco-Environmental Effects in the Beijing-Tianjin-Hebei Urban Agglomeration: A Production-Living-Ecological Perspective. Land 2020, 9, 285. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.L.; Xie, B.G.; Liang, Y.; Li, X.Q.; Zhou, K.C. Decoupling the Effect of Climate and Land-Use Changes on Carbon Sequestration of Vegetation in Mideast Hunan Province, China. Forests 2021, 12, 1573. [Google Scholar] [CrossRef]
- Xiong, N.N.; Yu, R.X.; Yan, F.; Wang, J.; Feng, Z.K. Land Use and Land Cover Changes and Prediction Based on Multi-Scenario Simulation: A Case Study of Qishan County, China. Remote Sens. 2022, 14, 4041. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environ. Dev. Sustain. 2020, 22, 661–692. [Google Scholar] [CrossRef]
- Zhou, X.L.; Okaze, T.; Ren, C.; Cai, M.; Ishida, Y.; Watanabe, H.; Mochida, A. Evaluation of urban heat islands using local climate zones and the influence of sea-land breeze. Sustain. Cities Soc. 2020, 55, 102060. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, D.; Kang, M.L. Urban Land Expansion, Interior Spatial Population Distribution, and Urban Economic Growth: Evidence from China. Emerg. Mark. Financ. Trade 2023, 59, 27–38. [Google Scholar] [CrossRef]
- Chen, M.J.; Bai, Z.K.; Wang, Q.R.; Shi, Z.Y. Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project. Land 2021, 10, 796. [Google Scholar] [CrossRef]
- Gu, L.; Yan, J.B.; Li, Y.R.; Gong, Z.W. Spatial-temporal evolution and correlation analysis between habitat quality and landscape patterns based on land use change in Shaanxi Province, China. Ecol. Evol. 2023, 13, e10657. [Google Scholar] [CrossRef] [PubMed]
- Buddendorf, W.B.; Malcolm, I.A.; Geris, J.; Fabris, L.; Millidine, K.J.; Wilkinson, M.E.; Soulsby, C. Spatio-temporal effects of river regulation on habitat quality for Atlantic salmon fry. Ecol. Indic. 2017, 83, 292–302. [Google Scholar] [CrossRef]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environ. Monit. Assess. 2020, 192, 487. [Google Scholar] [CrossRef] [PubMed]
- Clapcott, J.E.; Collier, K.J.; Death, R.G.; Goodwin, E.O.; Harding, J.S.; Kelly, D.; Leathwick, J.R.; Young, R.G. Quantifying relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshw. Biol. 2012, 57, 74–90. [Google Scholar] [CrossRef]
- Pan, Z.Z.; He, J.H.; Liu, D.F.; Wang, J.W. Predicting the joint effects of future climate and land use change on ecosystem health in the Middle Reaches of the Yangtze River Economic Belt, China. Appl. Geogr. 2020, 124, 102293. [Google Scholar] [CrossRef]
- Monti, M.A.; Brigolin, D.; Franzoi, P.; Libralato, S.; Pastres, R.; Solidoro, C.; Zucchetta, M.; Pranovi, F. Ecosystem functioning and ecological status in the Venice lagoon, which relationships? Ecol. Indic. 2021, 133, 108461. [Google Scholar] [CrossRef]
- Martínez, Y.M.; Coll, D.G.; Aguayo, M.; Casas-Ledón, Y. Effects of landcover changes on net primary production (NPP)-based exergy in south-central of Chile. Appl. Geogr. 2019, 113, 102101. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Chen, X.X.; Wang, Y.D.; Chen, Y.S.; Fu, S.L.; Zhou, N. NDVI-Based Assessment of Land Degradation Trends in Balochistan, Pakistan, and Analysis of the Drivers. Remote Sens. 2023, 15, 2388. [Google Scholar] [CrossRef]
- Wang, C.X.; Yu, C.Y.; Chen, T.Q.; Feng, Z.; Hu, Y.C.; Wu, K.N. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Sci. Total Environ. 2020, 740, 140051. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Suo, M.M.; Gao, S.Q.; Jiao, H.Z. Construction of an Ecological Network Based on an Integrated Approach and Circuit Theory: A Case Study of Panzhou in Guizhou Province. Sustainability 2022, 14, 9136. [Google Scholar] [CrossRef]
- Keshtkar, M.; Mobarghaee, N.; Sayahnia, R.; Asadolahi, Z. Landscape ecological security response to urban growth in Southern Zagros biome, Iran. Ecol. Indic. 2023, 154, 110577. [Google Scholar] [CrossRef]
- Xiong, X.X.; Zhou, T.T.; Cai, T.; Huang, W.; Li, J.; Cui, X.F.; Li, F. Land Use Transition and Effects on Ecosystem Services in Water-Rich Cities under Rapid Urbanization: A Case Study of Wuhan City, China. Land 2022, 11, 1153. [Google Scholar] [CrossRef]
- Ma, M.M.; Zou, Y.F.; Zhang, W.Z.; Chen, C.H. Landscape Pattern Consistency Assessment of 10 m Land Cover Products in Different Ecological Zoning Contexts of Sichuan Province, China. Sustainability 2022, 14, 16673. [Google Scholar] [CrossRef]
- Ma, J.; Khromykh, V.; Wang, J.L.; Zhang, J.P.; Li, W.J.; Zhong, X.Z. A landscape-based ecological hazard evaluation and characterization of influencing factors in Laos. Front. Ecol. Evol. 2023, 11, 1276239. [Google Scholar] [CrossRef]
- Shi, C.C.; Zhu, X.P.; Wu, H.W.; Li, Z.H. Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration of China. Land 2022, 11, 921. [Google Scholar] [CrossRef]
- Carl, G.; Kühn, I. Analyzing spatial ecological data using linear regression and wavelet analysis. Stoch. Environ. Res. Risk Assess. 2008, 22, 315–324. [Google Scholar] [CrossRef]
- Tu, J.; Xia, Z.G. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Sci. Total Environ. 2008, 407, 358–378. [Google Scholar] [CrossRef]
- Mann, D.; Anees, M.M.; Rankavat, S.; Joshi, P.K. Spatio-temporal variations in landscape ecological risk related to road network in the Central Himalaya. Hum. Ecol. Risk Assess. 2021, 27, 289–306. [Google Scholar] [CrossRef]
- Hu, J.Y.; Zhang, J.X.; Li, Y.Q. Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H.T. Coupling coordination analysis and spatio-temporal heterogeneity between urbanization and eco-environment along the Silk Road Economic Belt in China. Ecol. Indic. 2021, 121, 107014. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a Random Forests Model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Peters, J.; De Baets, B.; Verhoest, N.E.C.; Samson, R.; Degroeve, S.; De Becker, P.; Huybrechts, W. Random forests as a tool for ecohydrological distribution modelling. Ecol. Model. 2007, 207, 304–318. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, Q.G.; Yu, L.A. Response of resources and environment carrying capacity under the evolution of land use structure in Chongqing Section of the Three Gorges Reservoir Area. J. Environ. Manag. 2020, 274, 111169. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Fu, L.; Dávid, L.D.; Zhong, Q.; Zhu, K. Bridging Gaps towards the 2030 Agenda: A Data-Driven Comparative Analysis of Government and Public Engagement in China towards Achieving Sustainable Development Goals. Land 2024, 13, 818. [Google Scholar] [CrossRef]
- Song, Y.Y.; Xia, S.Y.; Xue, D.Q.; Luo, S.; Zhang, L.W.; Wang, D.H. Land Space Change Process and Its Eco-Environmental Effects in the Guanzhong Plain Urban Agglomeration of China. Land 2022, 11, 1547. [Google Scholar] [CrossRef]
- Xia, B.Y.; Zheng, L.C. Ecological Environmental Effects and Their Driving Factors of Land Use/Cover Change: The Case Study of Baiyangdian Basin, China. Processes 2022, 10, 2648. [Google Scholar] [CrossRef]
- Li, X.W.; Fang, C.L.; Huang, J.C.; Mao, H.Y. The Urban Land Use Transformations and Associated Effects on Eco-Environment in Northwest China Arid Region: A Case Study in Hexi Region, Gansu Province. Quat. Sci. 2003, 23, 280–290. [Google Scholar]
- Jin, J.F.; Yin, S.Y.; Yin, H.M.; Bai, X. Eco-Environmental Effects of “Production-Living-Ecological” Space Land Use Changes and Recommendations for Ecological Restoration: A Case Study of the Weibei Dryland in Shaanxi Province. Land 2023, 12, 1060. [Google Scholar] [CrossRef]
- Wu, X.Y.; Ding, J.M.; Lu, B.J.; Wan, Y.Y.; Shi, L.N.; Wen, Q. Eco-Environmental Effects of Changes in Territorial Spatial Pattern and Their Driving Forces in Qinghai, China (1980–2020). Land 2022, 11, 1772. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xia, T.T.; Li, Y.; Li, Z. Land-use function evolution and eco-environmental effects in the tarim river basin from the perspective of production-living-ecological space. Front. Environ. Sci. 2022, 10, 1004274. [Google Scholar] [CrossRef]
- Liao, G.T.; He, P.; Gao, X.S.; Deng, L.J.; Zhang, H.; Feng, N.N.; Zhou, W.; Deng, O.P. The Production-Living-Ecological Land Classification System and Its Characteristics in the Hilly Area of Sichuan Province, Southwest China Based on Identification of the Main Functions. Sustainability 2019, 11, 1600. [Google Scholar] [CrossRef]
- Yates, M.C.; Fraser, D.J. Does source population size affect performance in new environments? Evol. Appl. 2014, 7, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Cui, E.Q.; Ren, L.J.; Sun, H.Y. Evaluation of variations and affecting factors of eco-environmental quality during urbanization. Environ. Sci. Pollut. Res. 2015, 22, 3958–3968. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.H.; Jiang, W.G. Evaluation of the Spatiotemporal Variations in the Eco-environmental Quality in China Based on the Remote Sensing Ecological Index. Remote Sens. 2020, 12, 2462. [Google Scholar] [CrossRef]
- Zhou, J.B.; Liu, W.Q. Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index (RSEI) in Taihu Lake Basin, China. Sustainability 2022, 14, 5642. [Google Scholar] [CrossRef]
- Wu, A.B.; Zhao, Y.X.; Qin, Y.J.; Liu, X.; Shen, H.T. Analysis of Ecological Environment Quality and Its Driving Factors in the Beijing-Tianjin-Hebei Region of China. Sustainability 2023, 15, 7898. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Yang, P.; Xia, J.; Qi, K.L.; Wang, W.Y.; Cai, W.; Chen, N.C. Research and Analysis of Ecological Environment Quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sens. 2021, 13, 4475. [Google Scholar] [CrossRef]
- Maity, S.; Das, S.; Pattanayak, J.M.; Bera, B.; Shit, P.K. Assessment of ecological environment quality in Kolkata urban agglomeration, India. Urban Ecosyst. 2022, 25, 1137–1154. [Google Scholar] [CrossRef]
- Song, W.; Deng, X.Z. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Hou, Y.F.; Chen, Y.N.; Ding, J.L.; Li, Z.; Li, Y.P.; Sun, F. Ecological Impacts of Land Use Change in the Arid Tarim River Basin of China. Remote Sens. 2022, 14, 1894. [Google Scholar] [CrossRef]
- Gu, J.J.; Yang, B.; Brauer, M.; Zhang, K.M. Enhancing the Evaluation and Interpretability of Data-Driven Air Quality Models. Atmos. Environ. 2021, 246, 118125. [Google Scholar] [CrossRef]
- Liang, B.Y.; Liu, H.Y.; Cressey, E.L.; Xu, C.Y.; Shi, L.; Wang, L.; Dai, J.Y.; Wang, Z.; Wang, J. Uncertainty of Partial Dependence Relationship between Climate and Vegetation Growth Calculated by Machine Learning Models. Remote Sens. 2023, 15, 2920. [Google Scholar] [CrossRef]
- Wang, Z.L.; Ye, H.; Zhang, L.Y. Understanding the characteristics and mechanism of land use transition in mountainous economic zone: A case study of the Chengdu-Chongqing region in southwestern China. Front. Environ. Sci. 2022, 10, 963197. [Google Scholar] [CrossRef]
- Li, L.Y.; Wang, L.; Qi, Z.X. The spatiotemporal variation of farmland use transition and its critical influential factors in coordinated urban-rural regions: A case of Chongqing in western China. Sustain. Cities Soc. 2021, 70, 102921. [Google Scholar] [CrossRef]
- Huang, X.; Huang, X.J.; Liu, M.M.; Wang, B.; Zhao, Y.H. Spatial-temporal Dynamics and Driving Forces of Land Development Intensity in the Western China from 2000 to 2015. Chin. Geogr. Sci. 2020, 30, 16–29. [Google Scholar] [CrossRef]
- Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W.P. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy 2016, 54, 188–199. [Google Scholar] [CrossRef]
- Li, K.; Zhang, B.Y.; Xiao, W.D.; Lu, Y. Land Use Transformation Based on Production-Living-Ecological Space and Associated Eco-Environment Effects: A Case Study in the Yangtze River Delta Urban Agglomeration. Land 2022, 11, 1076. [Google Scholar] [CrossRef]
- Balthazar, V.; Vanacker, V.; Molina, A.; Lambin, E.F. Impacts of forest cover change on ecosystem services in high Andean mountains. Ecol. Indic. 2015, 48, 63–75. [Google Scholar] [CrossRef]
- Li, L.Y.; Qi, Z.X.; Xian, S.; Yao, D. Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective. Land 2021, 10, 275. [Google Scholar] [CrossRef]
- Benalcazar, P.; Diochon, A.C.; Kolka, R.; Schindelbeck, R.R.; Sahota, T.; McLaren, B.E. The impact of land conversion from boreal forest to agriculture on soil health indicators. Can. J. Soil Sci. 2022, 102, 651–658. [Google Scholar] [CrossRef]
- Bhatti, S.S.; Tripathi, N.K.; Nagai, M.; Nitivattananon, V. Spatial Interrelationships of Quality of Life with Land Use/Land Cover, Demography and Urbanization. Soc. Indic. Res. 2017, 132, 1193–1216. [Google Scholar] [CrossRef]
- Korpilo, S.; Jalkanen, J.; Virtanen, T.; Lehvävirta, S. Where are the hotspots and coldspots of landscape values, visitor use and biodiversity in an urban forest? PLoS ONE 2018, 13, e0203611. [Google Scholar] [CrossRef] [PubMed]
- Samoli, E.; Stergiopoulou, A.; Santana, P.; Rodopoulou, S.; Mitsakou, C.; Dimitroulopoulou, C.; Bauwelinck, M.; de Hoogh, K.; Costa, C.; Marí-Dell’Olmo, M.; et al. Spatial variability in air pollution exposure in relation to socioeconomic indicators in nine European metropolitan areas: A study on environmental inequality. Environ. Pollut. 2019, 249, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Q.; Chen, L.Q.; Li, L.; Zhang, T.; Yuan, L.A.; Liu, R.Y.; Wang, Z.Q.; Zang, J.Y.; Shi, S. Spatiotemporal Characterization of the Urban Expansion Patterns in the Yangtze River Delta Region. Remote Sens. 2021, 13, 4484. [Google Scholar] [CrossRef]
- Larsen, A.E.; Noack, F. Impact of local and landscape complexity on the stability of field-level pest control. Nat. Sustain. 2021, 4, 120–128. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Raffa, C.M.; Chiampo, F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering 2021, 8, 92. [Google Scholar] [CrossRef]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 17008. [Google Scholar] [CrossRef]
- Li, J.D.; Lin, Q.N. Threshold effects of green technology application on sustainable grain production: Evidence from China. Front. Plant Sci. 2023, 14, 1107970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, W.S.; Cui, Z.L.; Schmidhalter, U.; Chen, X.P. Environmental, human health, and ecosystem economic performance of long-term optimizing nitrogen management for wheat production. J. Clean. Prod. 2021, 311, 127620. [Google Scholar] [CrossRef]
- Chen, N.; Cheng, G.; Yang, J.; Ding, H.; He, S. Evaluation of Urban Ecological Environment Quality Based on Improved RSEI and Driving Factors Analysis. Sustainability 2023, 15, 8464. [Google Scholar] [CrossRef]
- Khan, A.; Sicen, L.; Khan, B.; Salman, N. On the influence of demographic structure and industrial growth on environmental quality. J. Environ. Manag. 2021, 288, 112453. [Google Scholar] [CrossRef] [PubMed]
- Koziuk, V.; Dluhopolskyi, O.; Hayda, Y.; Klapkiv, Y. Does educational quality drive ecological performance? Case of high and low developed countries. Glob. J. Environ. Sci. Manag. 2019, 5, 22–32. [Google Scholar] [CrossRef]
- Sun, L.X.; Yang, S.; Li, S.M.; Zhang, Y.D. Does education level affect individuals’ environmentally conscious behavior? Evidence from Mainland China. Soc. Behav. Personal. 2020, 48, 1–12. [Google Scholar] [CrossRef]
- Pao, H.T.; Tsai, C.M. Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy 2011, 36, 685–693. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasreen, S.; Abbas, F.; Anis, O. Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries? Energy Econ. 2015, 51, 275–287. [Google Scholar] [CrossRef]
- Partanen, A.I.; Leduc, M.; Matthews, H.D. Seasonal climate change patterns due to cumulative CO2 emissions. Environ. Res. Lett. 2017, 12, 075002. [Google Scholar] [CrossRef]
- Jiang, Q.J.; Qi, Z.M.; Xue, L.L.; Bukovsky, M.; Madramootoo, C.A.; Smith, W. Assessing climate change impacts on greenhouse gas emissions, N losses in drainage and crop production in a subsurface drained field. Sci. Total Environ. 2020, 705, 135969. [Google Scholar] [CrossRef]
- Solomon, S.; Daniel, J.S.; Sanford, T.J.; Murphy, D.M.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl. Acad. Sci. USA 2010, 107, 18354–18359. [Google Scholar] [CrossRef] [PubMed]
- Yost, M.A.; Kitchen, N.R.; Sudduth, K.A.; Sadler, E.J.; Drummond, S.T.; Volkmann, M.R. Long-term impact of a precision agriculture system on grain crop production. Precis. Agric. 2017, 18, 823–842. [Google Scholar] [CrossRef]
Land Type | Area/km2 | ||||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |
Agricultural production space | 3923.10 | 3848.24 | 3653.90 | 3527.21 | 3179.73 |
Industrial and mining production space | 32.09 | 44.22 | 145.58 | 260.36 | 444.05 |
Rural living space | 53.24 | 72.64 | 77.03 | 79.02 | 89.32 |
Urban living space | 179.27 | 222.26 | 310.30 | 324.22 | 504.72 |
Forest ecological space | 1074.64 | 1074.10 | 1071.86 | 1067.79 | 1031.78 |
Grassland ecological space | 52.29 | 50.40 | 51.81 | 51.31 | 53.35 |
Water ecological space | 147.53 | 150.56 | 153.01 | 153.58 | 160.31 |
Other ecological spaces | 4.14 | 3.88 | 2.83 | 2.82 | 3.06 |
2000~2005 | 2005~2010 | |||||
---|---|---|---|---|---|---|
Spatial Transformation | ECR | Percentage of Contribution | Spatial Transformation | ECR | Percentage of Contribution | |
Leads to ecological optimization | APS-FES | 0.000788 | 65.30% | APS-FES | 0.001746 | 69.21% |
APS-GES | 0.000024 | 2.03% | APS-GES | 0.000147 | 5.81% | |
APS-WES | 0.000174 | 14.43% | APS-WES | 0.000168 | 6.65% | |
RLS-FES | 0.000011 | 0.92% | IPS-APS | 0.000033 | 1.33% | |
ULS-FES | 0.000014 | 1.16% | ULS-FES | 0.000046 | 1.81% | |
GES-FES | 0.000121 | 9.99% | ULS-WES | 0.000039 | 1.56% | |
GES-FES | 0.000121 | 4.79% | ||||
OES-FES | 0.000136 | 5.37% | ||||
Total | 0.001207 | 93.82% | 0.002522 | 96.54% | ||
Leads to ecological degradation | APS-IPS | −0.000219 | 9.95% | APS-IPS | −0.001917 | 32.67% |
APS-RLS | −0.000259 | 11.77% | APS-RLS | −0.000215 | 3.67% | |
APS-ULS | −0.000530 | 24.09% | APS-ULS | −0.001013 | 17.26% | |
FES-APS | −0.000717 | 32.59% | ULS-IPS | −0.000051 | 0.87% | |
FES-IPS | −0.000236 | 10.75% | FES-APS | −0.001164 | 19.84% | |
FES-RLS | −0.000052 | 2.34% | FES-IPS | −0.000911 | 15.53% | |
FES-ULS | −0.000061 | 2.77% | FES-RLS | −0.000102 | 1.74% | |
WES-APS | −0.000041 | 1.88% | FES-ULS | −0.000330 | 5.62% | |
Total | −0.0022 | 96.13% | −0.005867 | 97.20% | ||
2010~2015 | 2015~2020 | |||||
Spatial Transformation | ECR | Percentage of Contribution | Spatial Transformation | ECR | Percentage of Contribution | |
Leads to ecological improvements | APS-FES | 0.000665 | 75.44% | APS-FES | 0.006460 | 67.55% |
APS-GES | 0.000020 | 2.23% | APS-GES | 0.000187 | 1.95% | |
APS-WES | 0.000064 | 7.23% | APS-WES | 0.001100 | 11.50% | |
IPS-APS | 0.000020 | 2.23% | IPS-APS | 0.000248 | 2.59% | |
IPS-FES | 0.000026 | 2.90% | IPS-ULS | 0.000764 | 7.99% | |
RLS-APS | 0.000012 | 1.41% | IPS-FES | 0.000195 | 2.04% | |
RLS-FES | 0.000016 | 1.76% | RLS-FES | 0.000100 | 1.04% | |
ULS-FES | 0.000016 | 1.78% | ULS-FES | 0.000094 | 0.99% | |
Total | 0.000881 | 94.98% | 0.009564 | 95.65% | ||
Leads to ecological degradation | APS-IPS | −0.002448 | 62.35% | APS-IPS | −0.005798 | 31.04% |
APS-RLS | −0.000034 | 0.87% | APS-RLS | −0.000256 | 1.37% | |
APS-ULS | −0.000180 | 4.57% | APS-ULS | −0.001131 | 6.06% | |
FES-APS | −0.000672 | 17.10% | FES-APS | −0.008171 | 43.74% | |
FES-IPS | −0.000393 | 10.02% | FES-IPS | −0.001218 | 6.52% | |
FES-RLS | −0.000046 | 1.17% | FES-RLS | −0.000206 | 1.10% | |
FES-ULS | −0.000040 | 1.01% | FES-ULS | −0.000605 | 3.24% | |
WES-APS | −0.000043 | 1.10% | WES-APS | −0.000508 | 2.72% | |
Total | −0.003927 | 98.18% | −0.018683 | 95.78% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, S.; Zhong, Q.; Zhu, K.; Fu, H. Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing. Land 2024, 13, 1196. https://doi.org/10.3390/land13081196
Zhang S, Liu S, Zhong Q, Zhu K, Fu H. Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing. Land. 2024; 13(8):1196. https://doi.org/10.3390/land13081196
Chicago/Turabian StyleZhang, Shuang, Shaobo Liu, Qikang Zhong, Kai Zhu, and Hongpeng Fu. 2024. "Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing" Land 13, no. 8: 1196. https://doi.org/10.3390/land13081196
APA StyleZhang, S., Liu, S., Zhong, Q., Zhu, K., & Fu, H. (2024). Assessing Eco-Environmental Effects and Its Impacts Mechanisms in the Mountainous City: Insights from Ecological–Production–Living Spaces Using Machine Learning Models in Chongqing. Land, 13(8), 1196. https://doi.org/10.3390/land13081196