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Abstract: In the face of accelerating land use changes, conflicts between land use patterns and
the eco-environment are increasingly pronounced. By calculating the eco-environment quality
index (EQI) adopting the ecological–production–living spaces (EPLS) framework, we evaluate the
eco-environment quality of land use changes within Chongqing’s central urban area from 2000
to 2020. The study employs a random forest model to elucidate the mechanisms influencing the
eco-environment quality. The findings reveal the following: (1) Living spaces have expanded by
361.53 km2, while production and the ecological spaces have been experiencing a significant reduction
of 331.42 km2 and 30.11 km2 over two decades. (2) The eco-environment quality has steadily declined
from 0.3665 in 2000 to 0.3501 in 2020, indicating a degradation in overall quality. There is notable
spatial variation in eco-environment quality, typically displaying a “low center–high periphery”
pattern. (3) Pesticide usage, grain production, and the added value of the primary industry are the
primary factors affecting ecological quality. The findings of this study provide valuable insights
for global urban planning and environmental management. Rapidly, land use change regions
worldwide face similar conflicts between economic growth and ecological sustainability. This research
underscores the need for integrated land use policies that balance development with environmental
preservation. The methodologies and findings can inform international efforts to optimize land use
patterns, improve ecological quality, and achieving sustainable development goals, offering adaptable
strategies for policymakers and urban planners globally.

Keywords: ecological–production–living spaces; land use transformation; eco-environmental effects;
random forest model

1. Introduction

Rapid urbanization is a focal point of global attention today, especially in developing
countries. While industrialization and urbanization drive socioeconomic development,
they also lead to significant land use changes [1–3]. Land serves as the primary carrier for
national spatial planning, and the land use structure is crucial for the macro-regulation
of regional ecosystems. By altering the original land cover types and the socioeconomic
activities they support, land use changes affect the quality of terrestrial ecosystems and
ecosystem cycles [4–6]. Land use change is one of the important driving factors for global
environmental changes [7,8], significantly impacting ecological elements such as hydrol-
ogy [9,10], climate [11], soil quality [12], and biodiversity [13]. China has undergone
significant land use functional transformations, especially in the functional transformation
of the ecological–production–living spaces (EPLS). This transformation not only affects
the regional land use efficiency but also has profound impacts on the eco-environment.
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Meanwhile, the Chinese government has emphasized creating “efficient and intensive
production space, livable and moderate living space, and beautiful ecological space” as
the EPLS [14,15]. Therefore, it is essential to connect the evolution of the EPLS with land
use transformation to the rational development and utilization of resources, achieving the
optimization goals of national spatial functions.

In recent years, research on the impact of land use transformation on the eco-environment
quality has received increasing attention. Most of the studies mainly focus on the effects
on eco-environment quality in many aspects, including urban climate [16], ecosystem ser-
vices [17–19], carbon metabolism [20,21], landscape patterns [22–24], etc. For example,
Li et al. (2011) explored how landscape composition affects the urban heat island effect
in Shanghai, China, showing the contributions of different land use types [16]. Martin
et al. (2017) studied the impact of land use and climate change on water resources in
the Yadkin–Pee Dee basin in North Carolina, finding significant effects from both factors,
especially under drastic land use changes [19]; Gries et al. (2019) highlighted the role
of land use changes in global climate change through surface albedo and carbon cycle
alterations [21]; Deng et al. (2009) analyzed the impact of rapid urbanization on land use
change and landscape patterns, noting a shift from agricultural land to urban land [22];
Khan et al. (2020) showed that in Islamabad, Pakistan, land use changes have a significant
impact on the urban heat island effect, which also affects agricultural production [24].
These studies collectively demonstrate that land use transformation has significant impacts
on various aspects of the eco-environment quality, and these impacts may vary under
different geographical and socio-economic contexts. However, most of these studies focus
on changes in a single land use type, lacking a systematic analysis of the comprehensive
transformation of the EPLS and its eco-environmental effects.

Research on the impact of land use change on eco-environment quality has predomi-
nantly concentrated on flat, coastal, and metropolitan cities at different scales [25,26]. For
metropolitan cities, studies included biodiversity loss and climate change due to urbaniza-
tion in New York and Los Angeles [27,28]. In terms of research scale, previous studies have
mostly focused on national [6,29,30], provincial [31–33], urban agglomerations [34–36],
or individual county-level cities [17,37,38]. For example, Zhou et al. (2020) and Chen
et al. (2023) have discussed global and regional impacts on climate and landscape patterns,
respectively [39,40]. Xiong et al. (2022) analyzed the land use changes in Qishan County
over the past 20 years, focusing on the transition from farmland and forestland to urban
land [37]; Olorunfemi et al. (2020) used GIS and remote sensing technology to analyze
the impact of land use changes on eco-environment quality at the county level in Ekiti
State, Nigeria [38]. The research covered many conditions, including flat, coastal, and
metropolitan environments. For instance, Chen et al. (2022) studied the water quality,
sea level rise, and vegetation productivity impacted by rapid urban expansion in coastal
cities [26]. Mountain cities face unique challenges due to their complex topography, which
influences land use patterns, hydrology, and biodiversity differently than flat or coastal
cities. The steep slopes and varied elevations in mountain cities lead to distinct ecological
processes and environmental impacts, requiring tailored approaches to land management
and ecological protection. However, there are still relatively few cases analyzing land
use transformation and its eco-environmental effects in mountain cities. Research on the
mechanisms affecting changes in eco-environmental effects is also limited.

The eco-environment quality index, which quantifies eco-environmental quality changes
due to land use transformation, is essential for coordinating land development and ecological
protection. Environmental assessment is essential for monitoring ecosystem health and
ensuring sustainable management practices. Ecological quality (EQ) evaluates the general
well-being of natural systems and the services they provide. The ecological quality index,
as a more specific and detailed indicator, assesses the ecological quality of the ecosystem by
considering various biotic and abiotic factors, including species diversity, water quality, soil
health, and air purity. Eco-environmental effects refer to the impacts of land use changes on
the eco-environment. By linking changes in land use types to local ecological environmental
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changes, the eco-environment quality index (EQI) provides a deeper and more focused
understanding of how land development and transformation impact the eco-environment.
Currently, research on the EQI mainly focuses on habitat quality [41–44], and ecosystem
structure and functional value [45–47]. In terms of research indicators, it primarily utilizes
single indicators such as NPP and NDVI [48–50], or adopts methods such as ecological
security pattern recognition [51–53], ecosystem service value models [54], and landscape
pattern evaluations [55,56]. Regarding the influencing mechanisms, most studies mainly
use methods such as multiple linear regression models [57,58], GWR models [59,60], and
GTWR models [61,62] to explore linear relationships. However, these traditional linear
regression models cannot effectively reflect the impact of these characteristics on eco-
environmental effects. The random forest model offers several advantages in this context:
it can handle high-dimensional data efficiently, capture complex nonlinear relationships,
identify and rank the importance of different variables, is robust to overfitting due to
its ensemble nature, and is flexible and scalable to various data types and scales. These
characteristics make the random forest model particularly suitable for analyzing land use
changes and their eco-environmental effects [63,64]. Despite these advantages, the random
forest model still needs to be further applied and validated within the framework of
the EQI.

Chongqing, a mountainous economic center and transportation hub in western China,
has experienced substantial transformations in ecological–production–living spaces (EPLS),
impacting both land use efficiency and the eco-environment. The central urban area of
Chongqing is located in the upstream region of the Yangtze River, at the tail end of the Three
Gorges Reservoir Area, and it serves as an important functional area for the construction
of ecological civilization in western China. In recent years, the rapid land use changes in
the central urban area have led to increasingly prominent conflicts between land use and
ecological protection. The space for ecological security assurance is being squeezed, and
the ecological risk level is relatively high [65]. In light of this, this study focuses on the
central urban area as the research area, aiming to explore the following three questions:
(1) What are the characteristics of the land use functional transformation of the EPLS in the
central urban area from 2000 to 2020? (2) What are the spatial and temporal changes in the
ecological environment effects caused by this transformation? (3) What mechanisms affect
the ecological environment effects?

Additionally, the importance of this study is manifested in several aspects: Firstly,
the research will provide empirical evidence for understanding the laws of land use
functional transformation in the EPLS of mountainous cities, which will contribute to
regional land use planning and eco-environmental protection. Secondly, by combining long
time-series data analysis and spatial statistical methods, this study will reveal the dynamic
evolution characteristics of the transformation of the EPLS. Finally, by using the random
forest model to explore the key factors influencing land use change effects, this study will
provide more accurate and detailed case analyses. This study has significant implications
beyond China, offering valuable global insights for urban planners and policymakers. The
methodological approach of integrating remote sensing data with socio-economic statistics
and employing advanced machine learning models can be applied to various urban contexts
worldwide. For example, rapidly urbanizing regions in India, Brazil, and Africa can adopt
similar frameworks to manage land use changes and mitigate eco-environmental impacts.
Furthermore, understanding the mechanisms behind eco-environmental degradation can
aid international efforts in achieving the United Nations Sustainable Development Goals
(SDGs), particularly those related to sustainable cities and communities (SDG 11), and
climate action (SDG 13 [66]). The findings from Chongqing can serve as a reference for cities
facing similar challenges, promoting a global dialogue on sustainable urban development
and ecological protection.
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2. Methods
2.1. Overview of the Study Area

The central urban area of Chongqing is located in the western part of Chongqing city. It
serves as the political, economic, cultural, transportation, and financial center of Chongqing.
This area includes Yuzhong District, Yubei District, Jiangbei District, Shapingba District,
Nan’an District, Beibei District, Jiulongpo District, Dadukou District, and Banan District
(Figure 1). The central urban area covers 5466 km2, which constitutes 6.63% of the city’s
total area. As of 2020, the central urban area had a permanent population of 10.34 million,
accounting for 32.27% of the city’s total population. The regional gross domestic product
(GDP) was CNY 982.2 billion, representing 39.28% of the city’s total GDP.
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The terrain of the central urban area is predominantly mountainous and hilly, with
relatively few terraces and flatlands. The terrain of Chongqing is predominantly mountainous
and hilly, covering 76% of the city’s total area. The topography of the urban districts is
highly variable, with elevations ranging from 200 to 1400 m. From 2000 to 2020, Chongqing
experienced significant land use changes. The built-up area increased by over 30%, primarily at
the expense of agricultural and forested lands. These rapid land use changes pose significant
challenges for sustainable development and ecological protection, as the rugged terrain
complicates infrastructure development and increases the risk of environmental degradation.

This region exemplifies the challenges and opportunities faced by rapidly urbanizing
areas globally, especially in the context of sustainable urban development and ecological
protection. The mountainous and hilly terrain of Chongqing’s central urban area offers
a unique case study for understanding how urban expansion interacts with complex
topographies, which is relevant to cities in other countries with similar geographical
features, such as Kathmandu in Nepal, Rio de Janeiro in Brazil, and Cape Town in South
Africa. Specifically, Kathmandu, like Chongqing, is experiencing rapid urban sprawl driven
by population growth. The insights gained from this study on managing the expansion
of residential areas at the cost of agricultural and forestlands can assist Kathmandu in
achieving a balance between urban development and the preservation of agricultural and
forested areas. By identifying crucial factors affecting ecological quality, such as the use
of pesticides and farming practices, this study can help Kathmandu formulate targeted
strategies to enhance environmental sustainability, especially in managing the agricultural
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zones around the city; similarly, Rio de Janeiro’s hilly and mountainous regions face
challenges akin to those in Chongqing regarding urban expansion. This study’s findings
on controlling the spread of industrial and mining areas while conserving ecological spaces
are directly applicable to Rio, helping mitigate the environmental impacts of urban growth.
Rio also struggles with deforestation and urban encroachment into natural zones. The
ecological benefits of converting farmland to forests, as demonstrated in this study, provide
practical strategies that Rio can adapt to enhance biodiversity and ecological resilience
through improved environmental policies; Cape Town’s land use patterns are significantly
influenced by its mountainous terrain. The methodologies used in this study for assessing
and managing land use changes to protect ecological quality while fostering urban growth
can serve as a model for sustainable development in Cape Town. The city’s efforts to
balance urban expansion with the preservation of its unique biodiversity can greatly benefit
from the detailed analysis provided in this study. The findings can inform policies that
emphasize the protection of ecological spaces within urban planning frameworks, ensuring
both environmental sustainability and urban development.

Moreover, the significant economic and demographic characteristics of Chongqing’s
central urban area provide valuable insights into the land use changes in mega-cities. As urban
planners and policymakers worldwide strive to balance urban growth with environmental
sustainability, the findings from this study can inform strategies in other rapidly urbanizing
regions, particularly in the Global South. For example, cities in India, Southeast Asia, and
Africa can benefit from the lessons learned in Chongqing regarding land use management,
the integration of EPLS, and the mitigation of eco-environmental impacts.

2.2. Indicator Selection and Data Sources

For measuring the eco-environment quality considering land use changes, this study
adopted the EQI as the dependent variable, a comprehensive quantitative measurement
method based on land use changes [67,68]. This study referenced the EQI values assigned to
the secondary land use categories by other researchers [69–71]. The land use classification
system for the EPLS is based on the second-level classification standard of the National
Remote Sensing Monitoring Land Use Classification System, drawing on classification
methods from other scholars [72,73].

Based on a review of the relevant research literature and a comprehensive range of
natural and socio-economic factors [74–80], 16 were selected as independent variables
from the 7 dimensions of Population, Economic Development Level, Industrial Structure,
Technological Level, Social Consumption Level, Educational and Cultural Level, and Urban
Environmental Conditions (Supplementary Table S1). The selection process for these indi-
cators includes the following steps: First, this study included the review of a large body of
literature on land use change and ecological environment quality studies to identify widely
used and representative indicators [74–80]. Second, this study involved consultation with
experts in the relevant fields to discuss and select indicators that are representative and
operational in the central urban area of Chongqing. Finally, it was ensured that the data
for the selected indicators were available within the study area and time frame. Data were
obtained for these independent indicators from the “Chongqing Statistical Yearbook” and
statistical reports from relevant government departments. Specifically, the elements of
Population include Permanent Population (X1) and Urbanization Rate (X2), which reflect
the number of permanent residents in the region and the degree of population concentra-
tion in urban areas. X1 is the total number of residents in the region and directly affects
the scale and pattern of land use. X2 indicates the proportion of the rural population
migrating to urban areas; the urbanization process is usually accompanied by significant
changes in land use patterns, having a profound impact on the ecological environment; the
elements of Economic Development Level include Total Fixed Asset Investment (X3) and
GDP per Capita (X4), which measure the scale of economic construction and infrastructure
investment in the region, as well as the average level of economic activity of the residents.
X3 directly reflects the intensity of economic development in the region and has an impor-
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tant impact on land use and the ecological environment. X4, as an important indicator of
economic development level, and can reflect the quality of life and the intensity of economic
activity of the residents; the elements of Industrial Structure include Added Value of the
Primary Industry (X5), Added Value of the Secondary Industry (X6), and Added Value of
the Tertiary Industry (X7), which reflect the development levels of agriculture, industry,
and services, respectively. X5 mainly involves agriculture and forestry, directly affecting the
use of agricultural land. X6 reflects the development of industry and manufacturing, where
the expansion of industrial land has a significant impact on the ecological environment. X7
reflects the development of the service industry, which plays an important role in urban
land use and expansion; the elements of Technological Level include Grain Production
(X8), Labor Productivity (X9), and Road Mileage (X10), which measure the efficiency of
agricultural production, worker productivity, and the development level of transportation
infrastructure, respectively. X8 directly affects the mode and efficiency of agricultural land
use. X9 is an important indicator of worker productivity in the region. X10 reflects the
development of transportation infrastructure, having an important impact on land use
patterns and urban expansion; the elements of Social Consumption Level include Total
Retail Sales of Consumer Goods (X11) and General Public Budget Expenditure (X12), which
reflect the consumption level of residents in the region and the level of government invest-
ment in public services and infrastructure. X11 can indicate market vitality and the demand
for commercial land. X12 reflects the government’s emphasis on public services and in-
frastructure, having an important impact on land use and the ecological environment; the
elements of Educational and Cultural Level include the Number of Primary and Secondary
Schools (X13) and Public Library Collections (X14), which reflect the development levels of
educational resources and cultural facilities in the region. X13 directly affects the quality
of life of residents and the demand for residential land. X14 reflect the development of
cultural facilities, having a certain impact on land use and the quality of life of residents; the
elements of Urban Environmental Conditions include CO2 Emissions (X15) and Pesticide
Usage (X16), which measure the environmental pressure from urban industrial activities
and agricultural activities, respectively. X15 is an important indicator of the environmental
impact of urban industrial activities and transportation, directly indicating the environ-
mental pressure of the city. X16 affects the impact of agricultural activities on the ecological
environment, especially on water bodies, soil, and biodiversity, serving as an important
indicator of agricultural environmental pressure. In summary, the selected indicators in
this study can comprehensively reflect the impact of various elements on the quality of the
ecological environment, ensuring the scientific validity and reliability of the data. These
indicators not only reflect the specific situation of the central urban area of Chongqing but
also have general applicability, providing a reference for other cities with similar terrain
and development stages.

The land use raster data for the central urban area for five periods (2000, 2005, 2010, 2015,
and 2020) at a resolution of 30 m × 30 m were obtained from the Resource and Environmental
Science Data Center of the Chinese Academy of Sciences (http://www.resde.cn (accessed on
1 October 2023)). These data include six primary land use categories, such as arable land and
forestland, and 24 secondary land use categories, including paddy fields and dry land. The
data for the independent indicators are sourced from the “Chongqing Statistical Yearbook”
and relevant statistical reports from government departments.

2.3. Research Methods

Taking Chongqing as an example, this study first conducts the descriptive analysis of
the land use change using a transfer matrix model, evaluating the transfer of land use types
in the EPLS. After that, this study applies the EQI to evaluate the ecological quality changes
resulting from land use transformation. It further assesses the contributions of specific land
use changes on ecological quality using the Ecological Contribution Rate (ECR), which
quantifies the contribution of each land use change to the overall ecological status. Finally,

http://www.resde.cn
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using the random forest model, the study analyzes how various natural, socio-economic,
and environmental factors impact the EQI to provide target solutions for land use policy.

2.3.1. Land Use Type Transfer in the EPLS

The transfer of land use types in the EPLS was quantitatively analyzed using the
transfer matrix model [35].

2.3.2. Eco-Environment Quality Index (EQI)

The EQI is an important method for measuring the quality of the regional eco-
environment [81]. The EQI values for the EPLS land categories were assigned using
the “area-weighted method” [69–71], as shown in Supplementary Table S2.

2.3.3. Ecological Contribution Rate (ECR)

The ECR refers to the impact of changes in a specific land use type on the regional EQ
over a certain period [82].

2.3.4. Random Forest Model

This study employs the random forest model to analyze the impact of land use
transformation on EQ in the nine districts of Chongqing’s central urban area from 2000 to
2020. It is also utilized to analyze the threshold range of external influencing factors on
the dependent variables, thus providing substantial urban development recommendations
for city decision makers. The random forest model is an ensemble learning method
that improves model stability and accuracy by constructing multiple decision trees and
combining their prediction results [63,64].

3. Results
3.1. Evolution Characteristics of EPLS Land Use Transitions
3.1.1. Spatio-Temporal Pattern of EPLS Land Use

Over the past 20 years, as shown in Table 1 and Figures 2 and 3, the living space has
increased by 361.53 km2, especially for urban living spaces. The living space is mainly dis-
tributed along the banks of the Jialing River and the Yangtze River, showing a clear trend of
concentrated and contiguous distribution, which closely aligns with the scope of urban eco-
nomic development. Over the past 20 years, the area has continuously expanded outward,
increasing to 361.53 km2. Specifically, the urban living space has significantly increased,
with an increase of 182%, while rural living space has slightly increased. The expansion has
been towards the western hilly areas between Jinyun Mountain and Zhongliang Mountain,
the northern hilly areas towards Tongluo Mountain, the coastal areas along the Yangtze
River in the south, and a trend of expansion towards the east.

Table 1. Area statistics of EPLS in the central urban area.

Land Type Area/km2

2000 2005 2010 2015 2020

Agricultural production space 3923.10 3848.24 3653.90 3527.21 3179.73
Industrial and mining

production space 32.09 44.22 145.58 260.36 444.05

Rural living space 53.24 72.64 77.03 79.02 89.32
Urban living space 179.27 222.26 310.30 324.22 504.72

Forest ecological space 1074.64 1074.10 1071.86 1067.79 1031.78
Grassland ecological space 52.29 50.40 51.81 51.31 53.35

Water ecological space 147.53 150.56 153.01 153.58 160.31
Other ecological spaces 4.14 3.88 2.83 2.82 3.06
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The production space has decreased by 331.42 km2, with the industrial and mining
production land having the most significant increase. The production space is the most
extensive, primarily distributed in the hilly areas between Jinyun Mountain, Zhongliang
Mountain, Tongluo Mountain, and Mingyue Mountain. Specifically, the agricultural pro-
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duction space has gradually decreased by 743.37 km2 over 20 years. In contrast, industrial
and mining production land has increased by 411.96 km2. This trend can be attributed
to the significant impact of urban expansion on agricultural production land under rapid
urbanization and industrialization, leading to a sharp reduction in agricultural production
space. Especially during 2010–2020, industrial and mining production land expanded
rapidly, reflecting the increasing demand for industrial development due to the rapid
economic growth.

There has been a decreasing trend in ecological spaces, with a reduction of 30.11 km2.
The ecological spaces are mainly distributed along water systems such as the Yangtze River
and Jialing River, as well as in mountainous areas such as Jinyun Mountain, Zhongliang
Mountain, and Tongluo Mountain. Due to natural conditions such as terrain and climate,
grassland, water bodies, and other ecological spaces are relatively less distributed, while
forested ecological spaces are more extensive. Over the past 20 years, forested ecological
spaces have gradually decreased, particularly during 2010–2020, while the trends for water
bodies, grasslands, and other ecological spaces are less pronounced.

3.1.2. Land Use Transition of EPLS

From 2000 to 2020, the EPLS witnessed transformative land use shifts driven by
socio-economic strategies, significantly altering the regional landscape (Figure 4). A total
reduction of 743.38 km2 in agricultural spaces highlights the overarching shift towards
industrial and urban development. This transition is quantitatively significant, with agri-
cultural land repurposed predominantly for industrial and mining production spaces
(475.53 km2) and urban living spaces (222.53 km2).
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The increase in industrial and mining spaces was particularly notable. From 2000 to
2005, 10.05 km2 of agricultural land transitioned to these uses. This growth accelerated
significantly from 2005 to 2010, with an additional 88.05 km2 being transformed. From
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2010 to 2015, the period saw the largest shift, with 112.06 km2 of agricultural land being
repurposed for industrial activities. The trend continued robustly from 2015 to 2020, with
an overwhelming 265.37 km2 of farmland transformed into industrial zones.

Urban living spaces expanded a lot at the expense of agricultural land. Urban living
spaces expanded by 41.99 km2 from 2000 to 2005, primarily at the expense of agricultural
land. This trend continued, with 80.24 km2 added from 2005 to 2010 and a further 89.30 km2

from 2015 to 2020, mirroring the region’s economic growth and urbanization push. This
expansion often occurred in regions proximal to water bodies and less densely populated
hilly areas, facilitating the spread of residential and commercial infrastructures.

Despite attempts to reverse this trend, ecological spaces faced a net decrease of
30.11 km2 over the twenty years. From 2010 to 2020, 75.18 km2 of agricultural land
was designated for ecological purposes. However, the encroachment into these areas was
considerable, with agricultural practices diminishing the newly established ecological lands.
This resulted in a complex scenario of ecological restoration efforts undermined by ongoing
agricultural expansion.

3.2. Ecological Effects of Land Use Transition in EPLS
3.2.1. Temporal Characteristics of Regional EQI

Over the past two decades, the index has exhibited a parabolic decline, decreasing from
0.3665 in 2000 to 0.3501 in 2020 (Figure 5). While there has been an overall deterioration
in quality, the magnitude is relatively small. This is because the changes in the eco-
environment in the central urban area have simultaneously involved both environmental
optimization and degradation, resulting in a certain degree of offsetting.
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The ECR results indicate that converting agricultural production space to forest eco-
logical space has been the dominant factor in eco-environment optimization from 2000 to
2020 (Table 2). The contribution rates for all four study periods exceeded 50%, with values
of 65.30%, 69.21%, 75.44%, and 67.55%, respectively. This demonstrates the ecological
benefits of converting farmland to forestland, highlighting the importance of conserving
forest and aquatic ecosystems to improve the EQI. The conversion of agricultural pro-
duction space to industrial and mining production space, as well as the conversion of
forest ecological space to agricultural production space, were the main factors contributing
to environmental degradation during the study period. This is due to the rapid expan-
sion of industrial and mining production space under conditions of industrialization, as
well as ongoing deforestation and land reclamation activities. Therefore, under the “Two
Mountains” theory and the new round of national spatial planning, the central urban
area should continue to strengthen land use control and orderly development, further
implement policies for returning farmland to forests and grasslands, maintain ecological
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security, and achieve coordinated development between eco-environmental protection and
socio-economic development.

Table 2. The main land use transformation and ECR that affect the EQI.

2000~2005 2005~2010
Spatial

Transformation ECR Percentage of
Contribution

Spatial
Transformation ECR Percentage of

Contribution

Leads to
ecological

optimization

APS-FES 0.000788 65.30% APS-FES 0.001746 69.21%
APS-GES 0.000024 2.03% APS-GES 0.000147 5.81%
APS-WES 0.000174 14.43% APS-WES 0.000168 6.65%
RLS-FES 0.000011 0.92% IPS-APS 0.000033 1.33%
ULS-FES 0.000014 1.16% ULS-FES 0.000046 1.81%
GES-FES 0.000121 9.99% ULS-WES 0.000039 1.56%

GES-FES 0.000121 4.79%
OES-FES 0.000136 5.37%

Total 0.001207 93.82% 0.002522 96.54%

Leads to
ecological

degradation

APS-IPS −0.000219 9.95% APS-IPS −0.001917 32.67%
APS-RLS −0.000259 11.77% APS-RLS −0.000215 3.67%
APS-ULS −0.000530 24.09% APS-ULS −0.001013 17.26%
FES-APS −0.000717 32.59% ULS-IPS −0.000051 0.87%
FES-IPS −0.000236 10.75% FES-APS −0.001164 19.84%
FES-RLS −0.000052 2.34% FES-IPS −0.000911 15.53%
FES-ULS −0.000061 2.77% FES-RLS −0.000102 1.74%
WES-APS −0.000041 1.88% FES-ULS −0.000330 5.62%

Total −0.0022 96.13% −0.005867 97.20%

2010~2015 2015~2020
Spatial

Transformation ECR Percentage of
Contribution

Spatial
Transformation ECR Percentage of

Contribution

Leads to
ecological im-
provements

APS-FES 0.000665 75.44% APS-FES 0.006460 67.55%
APS-GES 0.000020 2.23% APS-GES 0.000187 1.95%
APS-WES 0.000064 7.23% APS-WES 0.001100 11.50%
IPS-APS 0.000020 2.23% IPS-APS 0.000248 2.59%
IPS-FES 0.000026 2.90% IPS-ULS 0.000764 7.99%

RLS-APS 0.000012 1.41% IPS-FES 0.000195 2.04%
RLS-FES 0.000016 1.76% RLS-FES 0.000100 1.04%
ULS-FES 0.000016 1.78% ULS-FES 0.000094 0.99%

Total 0.000881 94.98% 0.009564 95.65%

Leads to
ecological

degradation

APS-IPS −0.002448 62.35% APS-IPS −0.005798 31.04%
APS-RLS −0.000034 0.87% APS-RLS −0.000256 1.37%
APS-ULS −0.000180 4.57% APS-ULS −0.001131 6.06%
FES-APS −0.000672 17.10% FES-APS −0.008171 43.74%
FES-IPS −0.000393 10.02% FES-IPS −0.001218 6.52%
FES-RLS −0.000046 1.17% FES-RLS −0.000206 1.10%
FES-ULS −0.000040 1.01% FES-ULS −0.000605 3.24%
WES-APS −0.000043 1.10% WES-APS −0.000508 2.72%

Total −0.003927 98.18% −0.018683 95.78%

3.2.2. Spatial Characteristics of Regional EQI

Over the period of this study, the EQI has shown a consistent decline each year,
with the exception of Beibei District, which has remained unchanged (Figure 6). The
decline is particularly notable in other districts. For instance, Shapingba District has
seen its EQI drop from a very-high-quality category to a low-quality category over the
past 20 years. Initially, Shapingba’s slower pace of development did not significantly
impact the eco-environment. However, as development accelerated, the negative impacts,
including pollution, intensified. Despite some investments in eco-environmental regulation
and management, these efforts were insufficient, leading to a lag in the EQI. Conversely,
Beibei District has maintained a consistently very high EQI. This can be attributed to its
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advantageous geographical features: it is surrounded by mountains and water bodies,
including Huaying Mountain and the central area bisected by the Jialing River. The district’s
industrial and mining development is constrained by its topography, which has helped
preserve its high EQI.
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3.3. Analysis of Factors Influencing Regional EQI Changes

This study, considering various factors including natural and socioeconomic aspects,
employed a random forest model to reveal the mechanisms influencing the evolution of
the EQI. Before conducting the random forest model analysis, this study first validated the
model to ensure its accuracy and stability in predicting the target variable (Y). The data
was split into training and testing sets, with 70% of the data used for training and 30% for
testing. The random forest model was trained on the training set and then used to predict
on the test set. Evaluation metrics such as the Root Mean Squared Error (RMSE), Coefficient
of Determination (R-squared), and Mean Absolute Error (MAE), among others, were used
to assess the predictive performance of the model. The results indicated an RMSE of ap-
proximately 0.0173, MAE of approximately 0.0153, and R-squared of approximately 0.7036.
These metrics demonstrate that the random forest model performed well in predicting the
target variable Y, with relatively low prediction errors and reasonable explanatory power.
The model’s performance can explain about 70.36% of the variance in the target variable Y.
These results confirm the effectiveness and stability of the model on the test set.

3.3.1. Significance and Relative Importance of Feature Variables

Eight influencing variables significantly affect regional EQI changes. Among them,
Pesticide usage (X16), grain production (X8), and added value of the primary industry
(X5) collectively contribute 17.08%, 11.45%, and 11.32%, respectively. Specifically, among
all variables with significant effects, X16 ranks first, and is significantly higher than other
variables (Figures 7 and 8). Furthermore, its higher value has a notably positive effect on
regional EQI changes. Secondly, X8 and X5, representing technological level and industrial
structure, respectively, have the second- and third-highest relative importance. Both are
generally positively correlated with the EQI. Thirdly, permanent population (X1: 7.84%),
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public library collections (X14: 7.10%), and road mileage (X10: 7%) have relatively moderate
explanatory power with similar magnitudes. However, X1 mostly exhibits a negative
correlation with EQI changes, while X14 and X10 generally show positive correlations.
Finally, urbanization rate (X2) and CO2 emissions (X15) have weaker explanatory power
at 5.99% and 5.67%, respectively. Interestingly, although X15 has a low impact on EQI
changes, it also exhibits a positive correlation.
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3.3.2. Nonlinear Relationships of Influence Forces of Regional EQI Changes

Partial dependence plots (PDP) can provide a fine-grained analysis of the relationship
between independent variables and the dependent variable. Single dependence analysis
illustrates the impact of individual factors on the prediction of the regional EQI [83,84].
Figure 9 shows the individual dependence of the eight most important factors in the model.
The X-axis represents the attribute values of the factors, while the Y-axis represents the
Shaple values associated with these attribute values. The results indicate a clear nonlinear
relationship between the selected influence factors and the threshold values for changes in
the regional EQI.
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As is shown in Figure 9, the relationship between X16 and the regional EQI shows a
negative to positive correlation trend. As the feature value increases, the positive correlation
strengthens until it reaches a threshold of 300, after which the positive correlation weakens.
The X8, X5, X10, and X15 variables exhibit a common pattern. Initially, there is a negative
correlation with regional EQI. As the feature values increase, the correlation shifts to a
pronounced positive trend. Beyond a certain threshold, the positive correlation diminishes
and approaches zero, indicating that the impact of these factors becomes very limited once
they reach an ideal state. The relationship between X1 and the regional EQI shows a clear
monotonic decrease, indicating a significant negative correlation. X14 shows substantial
variability in its relationship with the regional EQI, characterized by noticeable peaks and
troughs. The quality initially increases sharply within the range of 0 to 100. However,
between 100 and 250, there is a significant decrease, followed by another increase as the
feature value rises. The relationship between X2 and the regional EQI is relatively clear.
When X2 is between 52 and 75, the positive correlation strengthens with increasing feature
values. However, once X2 exceeds 75, the correlation turns negative with further increases
in the feature value.
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4. Discussion
4.1. Main Characteristics of EPLS Land Use Transition in the Central Urban Area

This study analyzed the transition of EPLS land use in Chongqing’s central urban area
from 2000 to 2020, revealing the characteristics of its spatiotemporal patterns and transitions.
The results indicate significant expansion of living spaces, particularly urban living spaces.
This phenomenon is closely related to the rapid urbanization process in Chongqing and
aligns with existing studies describing land use changes in rapidly urbanizing areas of
China [85]. Corresponding to the expansion of living spaces, agricultural production
space significantly decreased, with a cumulative reduction of 743.37 km2 from 2000 to
2020. In contrast, urban living space and industrial and mining production space showed
an increasing trend. The rapid expansion of industrial and mining production land, in
particular, indicates that the demand for industrial development driven by economic
growth has dominated the land use structure [86].

The changes in production space are characterized by a reduction in agricultural pro-
duction space and an increase in industrial and mining production land. As Chongqing’s in-
dustrialization progressed, industrial and mining production land increased by 411.96 km2,
reflecting the growing demand for industrial land driven by economic development. This
result is consistent with the land use change trends observed in other rapidly industrializ-
ing regions in China. For example, Huang et al. (2020) systematically analyzed the increase
in land development intensity in western China, driven by economic factors, comparable to
the increase in industrial land use in Chongqing [87]. However, the reduction in ecological
space, especially the sharp decline in forestland, highlights the conflict between ecological
protection and economic development. This result suggests that despite implementing policies
such as returning farmland to forest by the national and local governments, the encroach-
ment of urban expansion and industrialization on ecological space persists, putting greater
pressure on the eco-environment. Similar conflicts have been observed internationally, where
urbanization and land use changes have led to significant environmental impacts, including
the degradation of ecosystem services and increased carbon emissions [18,88]. Delphin et al.
(2016) employed a scenario spanning 2003 to 2060 that simulated urbanization and land
use changes based on land cover data and a population distribution model. They utilized
the Integrated Valuation and Ecosystem Services Tradeoffs model to quantify alterations in
ecosystem services, revealing how urbanization influences the spatial and temporal dynamics
of ecosystem services and their associated trade-offs [88]. This underscores the need for more
robust measures to balance urban and industrial development with ecological conservation
efforts to mitigate environmental degradation.

4.2. Ecological Environmental Effects of Land Use Transition

By calculating and analyzing the EQI in the central urban area from 2000 to 2020, this
study reveals the significant impact of land use transition on EQ. Although the overall EQI
shows a downward trend, the magnitude of change is relatively small, indicating a partial
offset between ecological optimization and degradation processes. This result is consistent
with the conclusions of some international studies, demonstrating the dual impact of land
use change on the environment [13,89].

Specifically, the conversion of agricultural production space to forest ecological space
contributes the most to the optimization of the EQI, especially under the implementation
of the returning farmland to forest project. This transformation significantly enhances
the regional EQI, which is consistent with the results of other researchers. Balthazar et al.
(2015) found in their study of the Andes that converting farmland into forests not only
improves the quality of ecosystem services but also enhances biodiversity and carbon
storage at the local scale. Their study highlights the positive impact of reforestation on the
eco-environment [90]. Li et al. (2021) examined agricultural land conversion in Chongqing
from a multiscale perspective, discussing the policy rationale behind these changes and
their implications for sustainable rural–urban transformation [91]. Benalcazar et al. (2022)
researched the impact of converting coniferous forests into agricultural land on soil health,
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finding that this conversion significantly reduces soil organic matter and the soil health
index, while also negatively affecting ecosystem services [92]. These studies collectively
support the conclusion that converting agricultural production spaces into forest ecolog-
ical spaces significantly enhances the quality of the eco-environment, emphasizing the
importance of this process on a global scale. However, the conversion of agricultural
production space to industrial and mining production space, as well as the conversion of
forest ecological space to agricultural production space, has negative impacts on EQ. The
increase in industrial and mining production land is closely related to the industrialization
process, while the existence of deforestation and land reclamation reveals deficiencies in
the implementation of ecological protection policies.

Furthermore, this study found significant spatial differentiation in the EQI of the
central urban area, particularly strong trend differences in Shapingba District and Beibei
District. Shapingba District experienced a decrease in ecological quality due to excessive
urbanization, while Beibei District maintained the EQI due to its geographical and pol-
icy protection. This difference indicates that regional ecological protection policies need
to consider geographical and socio-economic differences, and implement differentiated
management strategies. For example, Bhatti et al. (2017) studied the spatial dynamic
relationship between quality of life (QOL), land use/land cover (LULC), and population
density in Lahore, Pakistan. The study found that urbanization and land use changes
significantly impact the quality of the eco-environment, emphasizing the importance of
considering spatial heterogeneity in regional planning [93]; Korpilo et al. (2018) examined
the relationship between landscape value, visitor use, and biodiversity in urban forests of
Helsinki, Finland, finding low spatial consistency between social and ecological variables,
which highlights the importance of integrating multiple stakeholder perspectives and data
sources in urban planning [94]; Samoli et al. (2019) investigated the spatial association
between nitrogen dioxide (NO2) and socioeconomic indicators in nine metropolitan areas
of Europe, discovering that traffic pollution is significantly associated with socioeconomic
factors such as population density and the unemployment rate. This indicates that socioe-
conomic factors play a crucial role in influencing urban environmental quality [95]; Yu
et al. (2021) examined urban expansion patterns across the Yangtze River Delta, noting
significant expansion along the river and coastal areas driven by the region’s economic
development [96]. These studies show that the impact of urbanization and geographical
factors on ecological quality is universal and significant globally, necessitating the formula-
tion and implementation of differentiated ecological protection strategies tailored to the
specific geographical and socioeconomic conditions of each region to achieve sustainable
development goals. In contrast, this study shows that the expansion of urban living space
in Chongqing’s central urban area has a more extensive spatial distribution, involving
multiple regions in the west, north, south, and east. This expansion pattern reflects the
uniqueness of Chongqing as a key area for the Western Development strategy.

In summary, since the reform and opening up, China has vigorously developed its
economy, leading to significant changes in land use driven by rapid industrialization and
urbanization. With extensive economic growth and inadequate protection of the land
ecosystem, a large number of land types with higher ecological quality have undergone
transformation, which is the main reason for the decline in ecological quality in the central
urban area during the study period. Subsequently, the implementation of strategies such as
the “Western Development” strategy, the “Belt and Road Initiative”, and the “Ecological
Protection and High-Quality Development of the Yangtze River Basin” has provided
new opportunities for the central urban area, gradually emphasizing eco-environmental
protection. Measures such as natural forest protection, returning farmland to forests, and
the restoration of key ecological function areas have alleviated the trend of ecological
quality deterioration. In the future, the central urban area should continue to promote
the concept of ecological civilization and coordinate the construction of an organic land
use pattern integrating “mountains, rivers, forests, fields, lakes, and grasses”, to achieve
harmony among production, living, and ecology.
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4.3. Analysis of Influencing Factors and Mechanism Exploration

This study utilized a random forest model to analyze the factors influencing changes in
the regional EQI. The results indicate that pesticide usage, grain production, and the added
value of the primary industry have the most significant impacts on EQ. Among these, the
increase in pesticide usage is strongly correlated with the decline in the EQI, as also reported
in the existing literature [97,98]. Larsen, AE and Noack, F. (2021) observed an increase
in pesticide usage, highlighting its potentially detrimental effects on the environment
and human health [97]. Tudi et al. (2021) noted that one third of agricultural products
depend on pesticide application, which leads to chemical residues affecting human health
through environmental and food contamination [98]. This suggests that excessive pesticide
usage in agricultural production is a key factor leading to the deterioration of EQ. The
impacts of grain production and the added value of the primary industry are more complex,
exhibiting both positive and negative effects on EQ. This complexity may be related to the
sustainability of production methods and resource management. Adjusting the industrial
structure and optimizing production methods could be potential strategies for improving
EQ in the future.

Specifically, the negative impact of pesticide usage on the eco-environment is closely
related to soil and water pollution. This not only disrupts soil biodiversity but also pollutes
water sources through surface runoff and infiltration, affecting the broader ecosystem
health [99]. Raffa and Chiampo (2021) observed that pesticides are employed to safeguard
and enhance the yield and quality of crops. However, the excessive application of these
chemicals, coupled with their environmental persistence, has led to significant issues,
including soil and water pollution, and to a lesser degree, air pollution. These pollutants
have detrimental effects on the ecosystem and the food chain [99]. In addition, improving
pesticide usage efficiency and adopting more environmentally friendly alternatives should
be the direction for future agricultural development. The impact of pesticide usage on
ecological quality is a universal concern. Studies from various regions, such as those by
Lechenet et al. (2017) in France, demonstrate the feasibility of reducing pesticide use while
maintaining productivity, which is crucial for sustainable agriculture worldwide [100].
The dual effects of grain production and the added value of the primary industry reflect
the varying impacts of different agricultural practices on the environment. On one hand,
increased agricultural production intensifies land use, potentially leading to soil degra-
dation and the overuse of water resources [97]. On the other hand, the application of
modern agricultural techniques and improved agricultural management can enhance EQ.
For example, Lechenet et al. (2017) indicated that adopting new production strategies not
only reduces pesticide use, but also does not reduce the productivity and profitability of
arable farms [100]. That shows that adopting organic and ecological farming techniques
can reduce environmental pollution and protect ecosystem functions [100–102].

The results also indicate that socio-economic factors such as a permanent population,
public library collections, and road mileage significantly influence changes in EQ. Notably,
the permanent population shows a negative correlation with EQ, consistent with studies
that highlight the increased environmental pressure in densely populated urban areas.
Population growth typically accompanies increased resource consumption and waste pro-
duction, escalating environmental pressure. This finding suggests the need for enhanced
population and resource management during urbanization to promote the construction of
green cities [103,104]. The fluctuating impact of public library collections reflects the com-
plex relationship between cultural and educational resource distribution and EQ. Koziuk
et al. (2019) aimed to evaluate the influence of a country’s population’s educational level
and the development of science and technology on the overall environmental condition.
They discovered that, for underdeveloped countries, investments in education and science
have a more substantial impact on the ecological situation compared to highly developed
countries [105]. Improving cultural and educational levels can potentially enhance public
environmental awareness, indirectly improving EQ [105,106].
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Additionally, CO2 emissions show a positive correlation with EQ up to 400 tons, indi-
cating that initial CO2 emissions associated with economic growth may lead to increased
environmental investments and regional greening. Local ecosystems can effectively absorb
this amount of CO2 [107,108]. However, beyond 400 tons, EQ declines as CO2 emissions
increase. This is because the absorption capacity of regional ecosystems reaches saturation,
and additional pollutants may also increase [109]. Sustained high CO2 emissions can lead
to broader climate change impacts, such as increased temperatures and altered precipitation
patterns, further stressing existing ecosystems [110–112]. Solomon et al. (2010) showed
carbon dioxide displays exceptional persistence that renders its warming nearly irreversible
for more than 1000 years [111]. This phenomenon suggests that environmental policies
need to consider CO2 emission thresholds and adjust measures to address the ecological
pressures associated with increased emissions, ensuring a balance between environmental
protection and economic development.

Overall, the insights from this study align with global efforts to achieve the United
Nations Sustainable Development Goals, particularly SDG 2 (Zero Hunger), SDG 11 (Sus-
tainable Cities and Communities), and SDG 13 (Climate Action). By addressing the en-
vironmental impacts of agricultural practices and urbanization, this research supports
global sustainability initiatives. The findings of this study provide valuable lessons for
international scholars and policymakers. The methodologies and insights can be applied
to other contexts, facilitating the development of targeted strategies to enhance ecological
quality and promote sustainable development globally.

4.4. Limitations and Future Outlook

While this study has made progress in revealing the land use transformation of the
EPLS in the central urban area of Chongqing and its eco-environmental effects, there are
still some limitations. Firstly, the time span of the land use data is five years, which may
not reflect more detailed annual changes. Future research could utilize higher-temporal-
resolution data to reveal the finer processes of land use transformation. Secondly, although
the random forest model has high explanatory power in revealing influencing factors, its
nonlinear nature may overlook some complex interactive effects. Future research could
combine and compare various modeling methods, such as the GeoDector, to further explore
the complex relationships between influencing factors. Additionally, this study primarily
relies on remote sensing data and statistical yearbook data, and the accuracy and timeliness
of the data may affect the reliability of the research results. Future studies could combine
field surveys and finer spatial data to improve the accuracy and applicability of the results.

In summary, this study has revealed the profound impact of land use changes on the
eco-environment through analyzing the land use transformation of the EPLS in the central
urban area of Chongqing and its eco-environmental effects. The research results not only
provide a scientific basis for regional land and space development and eco-environmental
protection but also offer references for sustainable development and ecological civilization
construction in similar regions. Future research should continue to deepen the exploration
of land use transformation and its eco-environmental effects to support the realization of
higher-quality eco-environment governance.

5. Conclusions

This study, focusing on the central urban area of Chongqing, explores the eco-
environmental effects and influencing factors of the land use transformation of the EPLS
from 2000 to 2020. Based on remote sensing data and the random forest model, the follow-
ing main conclusions are drawn:
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1. Over the past 20 years, the living space in the central urban area has significantly ex-
panded, with the increase in urban living space being the most pronounced. Agricultural
production space has decreased substantially, with a cumulative reduction of 743.37 km2.
The expansion of industrial and mining production land reflects the strong demand
for industrial development driven by economic growth. Overall, there is a trend of
reduction in ecological space, particularly a sharp decrease in forestland, highlighting
the contradiction between ecological protection and economic development.

2. Land use transformation significantly affects EQ, with a downward trend in the
overall EQI. The conversion of agricultural production space to forest ecological
space contributes the most to the optimization of the eco-environment, validating
the ecological benefits of the policy of returning farmland to forests. However, the
conversion of agricultural production space to industrial and mining production
space, as well as the conversion of forest ecological space to agricultural production
space, has negative impacts on EQ, revealing shortcomings in the implementation of
ecological protection policies.

3. The random forest model analysis shows that pesticide usage, grain production, and
the added value of the primary industry are the main factors affecting EQ. Among
them, pesticide usage has a significant negative impact on EQ, indicating the need
for the judicious use of chemicals in agricultural production. The impact of grain
production and the added value of the primary industry on EQ is complex, reflecting
the importance of agricultural production methods and resource management.

4. There are significant spatial differences in EQ. Shapingba District experienced a decline
in EQ due to excessive urbanization, while Beibei District maintained a relatively
high level of EQ due to its topography and policy protection. This indicates that
regional ecological protection policies need to be tailored, implementing differentiated
management strategies.

The findings of this study have broader implications beyond China. Rapid urban-
ization and industrialization are global phenomena, and the environmental challenges
identified in Chongqing are mirrored in many other rapidly developing regions around the
world. The study’s insights into the effects of land use transformation on ecological quality
provide valuable lessons for international policymakers and urban planners. Specifically,
this research highlights the critical need for balanced strategies that reconcile economic
growth with ecological sustainability. The policy recommendations for converting agricul-
tural land to forests and managing industrial expansion can be adapted to other countries
facing similar issues. Moreover, the methodology combining remote sensing data with
the random forest model offers a robust approach for assessing land use impacts on the
environment, which can be applied in diverse geographical contexts to enhance global
environmental governance. In addition, deepening the understanding of the theory of EPLS
in practical applications, this study emphasizes the core role of ecological space protection
in maintaining regional EQ, providing theoretical support for future land use planning.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Author Contributions: Conceptualization: Q.Z.; methodology: Q.Z. and S.Z.; formal analysis: Q.Z.
and S.Z.; resources: Q.Z.; writing—original draft preparation: Q.Z., S.L., H.F., S.Z. and K.Z.; writing—
review and editing: Q.Z., S.L., H.F., S.Z. and K.Z.; visualization: Q.Z. and S.Z.; supervision: Q.Z., S.L.,
S.Z. and K.Z.; funding acquisition: Q.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
of Central South University [No. 2024ZZTS340].

https://www.mdpi.com/article/10.3390/land13081196/s1
https://www.mdpi.com/article/10.3390/land13081196/s1


Land 2024, 13, 1196 20 of 24

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kuang, W.H.; Liu, J.Y.; Dong, J.W.; Chi, W.F.; Zhang, C. The rapid and massive urban and industrial land expansions in China

between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33.
[CrossRef]

2. Deng, X.Z.; Huang, J.K.; Rozelle, S.; Zhang, J.P.; Li, Z.H. Impact of urbanization on cultivated land changes in China. Land Use
Policy 2015, 45, 1–7. [CrossRef]

3. Liu, Y.; Huang, X.J.; Yang, H.; Zhong, T.Y. Environmental effects of land-use/cover change caused by urbanization and policies in
Southwest China Karst area A case study of Guiyang. Habitat Int. 2014, 44, 339–348. [CrossRef]

4. Erb, K.H. How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity.
Ecol. Econ. 2012, 76, 8–14. [CrossRef] [PubMed]

5. Zhong, Q.; Fu, H.; Yan, J.; Li, Z. How does energy utilization affect rural sustainability development in traditional villages? Re-
examination from the coupling coordination degree of atmosphere-ecology-socioeconomics system. Build. Environ. 2024, 257, 111541.
[CrossRef]

6. Zhong, Q.; Li, Z. Long-term trends of vegetation greenness under different urban development intensities in 889 global cities.
Sustain. Cities Soc. 2024, 106, 105406. [CrossRef]

7. Yang, Y.Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang
Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [CrossRef]

8. Long, H.L. Land use policy in China: Introduction. Land Use Policy 2014, 40, 1–5. [CrossRef]
9. Ni, X.J.; Parajuli, P.B.; Ouyang, Y.; Dash, P.; Siegert, C. Assessing land use change impact on stream discharge and stream water

quality in an agricultural watershed. Catena 2021, 198, 105055. [CrossRef]
10. Zou, L.; Xia, J.; She, D.X. Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: A Case Study

in the Wei River Basin, China. Water Resour. Manag. 2018, 32, 1421–1438. [CrossRef]
11. Talukder, B.; Ganguli, N.; Matthew, R.; VanLoon, G.W.; Hipel, K.W.; Orbinski, J. Climate change-triggered land degradation and

planetary health: A review. Land Degrad. Dev. 2021, 32, 4509–4522. [CrossRef]
12. Yin, R.; Kardol, P.; Thakur, M.P.; Gruss, I.; Wu, G.L.; Eisenhauer, N.; Schädler, M. Soil functional biodiversity and biological

quality under threat: Intensive land use outweighs climate change. Soil Biol. Biochem. 2020, 147, 107847. [CrossRef] [PubMed]
13. Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and

Returns to Landowners: A Case Study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [CrossRef]
14. Li, J.S.; Sun, W.; Li, M.Y.; Meng, L.L. Coupling coordination degree of production, living and ecological spaces and its influencing

factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [CrossRef]
15. Liu, N.; Zhong, Q.; Zhu, K. Unveiling the Dynamics of Rural Revitalization: From Disorder to Harmony in China’s Production-

Life-Ecology Space. Land 2024, 13, 604. [CrossRef]
16. Li, J.X.; Song, C.H.; Cao, L.; Zhu, F.G.; Meng, X.L.; Wu, J.G. Impacts of landscape structure on surface urban heat islands: A case

study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [CrossRef]
17. Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications

for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [CrossRef]
18. Du, X.J.; Huang, Z.H. Ecological and environmental effects of land use change in rapid urbanization: The case of hangzhou,

China. Ecol. Indic. 2017, 81, 243–251. [CrossRef]
19. Martin, K.L.; Hwang, T.; Vose, J.M.; Coulston, J.W.; Wear, D.N.; Miles, B.; Band, L.E. Watershed impacts of climate and land use

changes depend on magnitude and land use context. Ecohydrology 2017, 10, 1870. [CrossRef]
20. Zhang, W.J.; Xu, H.Z. Effects of land urbanization and land finance on carbon emissions: A panel data analysis for Chinese

provinces. Land Use Policy 2017, 63, 493–500. [CrossRef]
21. Gries, T.; Redlin, M.; Ugarte, J.E. Human-induced climate change: The impact of land-use change. Theor. Appl. Climatol. 2019, 135,

1031–1044. [CrossRef]
22. Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in

response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [CrossRef]
23. Li, H.L.; Peng, J.; Liu, Y.X.; Hu, Y.N. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity

perspective. Ecol. Indic. 2017, 82, 50–60. [CrossRef]
24. Khan, M.S.; Ullah, S.; Sun, T.; Rehman, A.U.R.; Chen, L.D. Land-Use/Land-Cover Changes and Its Contribution to Urban Heat

Island: A Case Study of Islamabad, Pakistan. Sustainability 2020, 12, 3861. [CrossRef]
25. Xu, L.Y.; Xie, X.D.; Li, S. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of

atmospheric particulates using TM images in Beijing. Environ. Pollut. 2013, 178, 102–114. [CrossRef]
26. Chen, Y.X.; Huang, B.Y.; Zeng, H. How does urbanization affect vegetation productivity in the coastal cities of eastern China?

Sci. Total Environ. 2022, 811, 152356. [CrossRef]

https://doi.org/10.1016/j.landurbplan.2015.10.001
https://doi.org/10.1016/j.landusepol.2015.01.007
https://doi.org/10.1016/j.habitatint.2014.07.009
https://doi.org/10.1016/j.ecolecon.2012.02.005
https://www.ncbi.nlm.nih.gov/pubmed/23565032
https://doi.org/10.1016/j.buildenv.2024.111541
https://doi.org/10.1016/j.scs.2024.105406
https://doi.org/10.1016/j.ecolind.2021.107967
https://doi.org/10.1016/j.landusepol.2014.03.006
https://doi.org/10.1016/j.catena.2020.105055
https://doi.org/10.1007/s11269-017-1877-1
https://doi.org/10.1002/ldr.4056
https://doi.org/10.1016/j.soilbio.2020.107847
https://www.ncbi.nlm.nih.gov/pubmed/32884602
https://doi.org/10.1007/s10640-010-9407-0
https://doi.org/10.1016/j.jclepro.2021.126803
https://doi.org/10.3390/land13050604
https://doi.org/10.1016/j.rse.2011.07.008
https://doi.org/10.1016/j.habitatint.2014.10.011
https://doi.org/10.1016/j.ecolind.2017.05.040
https://doi.org/10.1002/eco.1870
https://doi.org/10.1016/j.landusepol.2017.02.006
https://doi.org/10.1007/s00704-018-2422-8
https://doi.org/10.1016/j.landurbplan.2009.05.001
https://doi.org/10.1016/j.ecolind.2017.06.032
https://doi.org/10.3390/su12093861
https://doi.org/10.1016/j.envpol.2013.03.006
https://doi.org/10.1016/j.scitotenv.2021.152356


Land 2024, 13, 1196 21 of 24

27. Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon
pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [CrossRef] [PubMed]

28. Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental
USA. Remote Sens. Environ. 2010, 114, 504–513. [CrossRef]

29. Li, T.A.; Shilling, F.; Thorne, J.; Li, F.M.; Schott, H.; Boynton, R.; Berry, A.M. Fragmentation of China’s landscape by roads and
urban areas. Landsc. Ecol. 2010, 25, 839–853. [CrossRef]

30. Fedele, G.; Locatelli, B.; Djoudi, H.; Colloff, M.J. Reducing risks by transforming landscapes: Cross-scale effects of land-use
changes on ecosystem services. PLoS ONE 2018, 13, e0195895. [CrossRef]

31. Guo, L.Y.; Di, L.P.; Li, G.; Luo, Q.Y.; Gao, M.J. GIS-based detection of land use transformation in the Loess Plateau: A case study
in Baota District, Shaanxi Province, China. J. Geogr. Sci. 2015, 25, 1467–1478. [CrossRef]

32. Lu, X.; Shi, Y.Y.; Chen, C.L.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed
regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [CrossRef]

33. Ruan, X.F.; Qiu, F.; Dyck, M. The effects of environmental and socioeconomic factors on land-use changes: A study of Alberta,
Canada. Environ. Monit. Assess. 2016, 188, 446. [CrossRef] [PubMed]

34. Bao, W.K.; Yang, Y.Y.; Zou, L.L. How to reconcile land use conflicts in mega urban agglomeration? A scenario-based study in the
Beijing-Tianjin-Hebei region, China. J. Environ. Manag. 2021, 296, 113168. [CrossRef] [PubMed]

35. Yang, Y.Y.; Bao, W.K.; Li, Y.H.; Wang, Y.S.; Chen, Z.F. Land Use Transition and Its Eco-Environmental Effects in the Beijing-Tianjin-
Hebei Urban Agglomeration: A Production-Living-Ecological Perspective. Land 2020, 9, 285. [CrossRef]

36. Liu, C.; Liu, Z.L.; Xie, B.G.; Liang, Y.; Li, X.Q.; Zhou, K.C. Decoupling the Effect of Climate and Land-Use Changes on Carbon
Sequestration of Vegetation in Mideast Hunan Province, China. Forests 2021, 12, 1573. [CrossRef]

37. Xiong, N.N.; Yu, R.X.; Yan, F.; Wang, J.; Feng, Z.K. Land Use and Land Cover Changes and Prediction Based on Multi-Scenario
Simulation: A Case Study of Qishan County, China. Remote Sens. 2022, 14, 4041. [CrossRef]

38. Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. GIS and remote sensing-based analysis of the impacts of land
use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environ. Dev. Sustain.
2020, 22, 661–692. [CrossRef]

39. Zhou, X.L.; Okaze, T.; Ren, C.; Cai, M.; Ishida, Y.; Watanabe, H.; Mochida, A. Evaluation of urban heat islands using local climate
zones and the influence of sea-land breeze. Sustain. Cities Soc. 2020, 55, 102060. [CrossRef]

40. Chen, J.; Zhao, D.; Kang, M.L. Urban Land Expansion, Interior Spatial Population Distribution, and Urban Economic Growth:
Evidence from China. Emerg. Mark. Financ. Trade 2023, 59, 27–38. [CrossRef]

41. Chen, M.J.; Bai, Z.K.; Wang, Q.R.; Shi, Z.Y. Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study
of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project. Land 2021, 10, 796. [CrossRef]

42. Gu, L.; Yan, J.B.; Li, Y.R.; Gong, Z.W. Spatial-temporal evolution and correlation analysis between habitat quality and landscape
patterns based on land use change in Shaanxi Province, China. Ecol. Evol. 2023, 13, e10657. [CrossRef] [PubMed]

43. Buddendorf, W.B.; Malcolm, I.A.; Geris, J.; Fabris, L.; Millidine, K.J.; Wilkinson, M.E.; Soulsby, C. Spatio-temporal effects of river
regulation on habitat quality for Atlantic salmon fry. Ecol. Indic. 2017, 83, 292–302. [CrossRef]

44. Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST habitat quality module in spatially vulnerability
assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environ. Monit. Assess. 2020, 192, 487.
[CrossRef] [PubMed]

45. Clapcott, J.E.; Collier, K.J.; Death, R.G.; Goodwin, E.O.; Harding, J.S.; Kelly, D.; Leathwick, J.R.; Young, R.G. Quantifying
relationships between land-use gradients and structural and functional indicators of stream ecological integrity. Freshw. Biol.
2012, 57, 74–90. [CrossRef]

46. Pan, Z.Z.; He, J.H.; Liu, D.F.; Wang, J.W. Predicting the joint effects of future climate and land use change on ecosystem health in
the Middle Reaches of the Yangtze River Economic Belt, China. Appl. Geogr. 2020, 124, 102293. [CrossRef]

47. Monti, M.A.; Brigolin, D.; Franzoi, P.; Libralato, S.; Pastres, R.; Solidoro, C.; Zucchetta, M.; Pranovi, F. Ecosystem functioning and
ecological status in the Venice lagoon, which relationships? Ecol. Indic. 2021, 133, 108461. [CrossRef]

48. Martínez, Y.M.; Coll, D.G.; Aguayo, M.; Casas-Ledón, Y. Effects of landcover changes on net primary production (NPP)-based
exergy in south-central of Chile. Appl. Geogr. 2019, 113, 102101. [CrossRef]

49. Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess
ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [CrossRef]

50. Chen, X.X.; Wang, Y.D.; Chen, Y.S.; Fu, S.L.; Zhou, N. NDVI-Based Assessment of Land Degradation Trends in Balochistan,
Pakistan, and Analysis of the Drivers. Remote Sens. 2023, 15, 2388. [CrossRef]

51. Wang, C.X.; Yu, C.Y.; Chen, T.Q.; Feng, Z.; Hu, Y.C.; Wu, K.N. Can the establishment of ecological security patterns improve
ecological protection? An example of Nanchang, China. Sci. Total Environ. 2020, 740, 140051. [CrossRef] [PubMed]

52. Yang, L.; Suo, M.M.; Gao, S.Q.; Jiao, H.Z. Construction of an Ecological Network Based on an Integrated Approach and Circuit
Theory: A Case Study of Panzhou in Guizhou Province. Sustainability 2022, 14, 9136. [CrossRef]

53. Keshtkar, M.; Mobarghaee, N.; Sayahnia, R.; Asadolahi, Z. Landscape ecological security response to urban growth in Southern
Zagros biome, Iran. Ecol. Indic. 2023, 154, 110577. [CrossRef]

54. Xiong, X.X.; Zhou, T.T.; Cai, T.; Huang, W.; Li, J.; Cui, X.F.; Li, F. Land Use Transition and Effects on Ecosystem Services in
Water-Rich Cities under Rapid Urbanization: A Case Study of Wuhan City, China. Land 2022, 11, 1153. [CrossRef]

https://doi.org/10.1073/pnas.1211658109
https://www.ncbi.nlm.nih.gov/pubmed/22988086
https://doi.org/10.1016/j.rse.2009.10.008
https://doi.org/10.1007/s10980-010-9461-6
https://doi.org/10.1371/journal.pone.0195895
https://doi.org/10.1007/s11442-015-1246-z
https://doi.org/10.1016/j.landusepol.2017.08.035
https://doi.org/10.1007/s10661-016-5450-9
https://www.ncbi.nlm.nih.gov/pubmed/27376846
https://doi.org/10.1016/j.jenvman.2021.113168
https://www.ncbi.nlm.nih.gov/pubmed/34252854
https://doi.org/10.3390/land9090285
https://doi.org/10.3390/f12111573
https://doi.org/10.3390/rs14164041
https://doi.org/10.1007/s10668-018-0214-z
https://doi.org/10.1016/j.scs.2020.102060
https://doi.org/10.1080/1540496X.2022.2089558
https://doi.org/10.3390/land10080796
https://doi.org/10.1002/ece3.10657
https://www.ncbi.nlm.nih.gov/pubmed/37920770
https://doi.org/10.1016/j.ecolind.2017.08.006
https://doi.org/10.1007/s10661-020-08460-6
https://www.ncbi.nlm.nih.gov/pubmed/32621254
https://doi.org/10.1111/j.1365-2427.2011.02696.x
https://doi.org/10.1016/j.apgeog.2020.102293
https://doi.org/10.1016/j.ecolind.2021.108461
https://doi.org/10.1016/j.apgeog.2019.102101
https://doi.org/10.1016/j.tree.2005.05.011
https://doi.org/10.3390/rs15092388
https://doi.org/10.1016/j.scitotenv.2020.140051
https://www.ncbi.nlm.nih.gov/pubmed/32559540
https://doi.org/10.3390/su14159136
https://doi.org/10.1016/j.ecolind.2023.110577
https://doi.org/10.3390/land11081153


Land 2024, 13, 1196 22 of 24

55. Ma, M.M.; Zou, Y.F.; Zhang, W.Z.; Chen, C.H. Landscape Pattern Consistency Assessment of 10 m Land Cover Products in
Different Ecological Zoning Contexts of Sichuan Province, China. Sustainability 2022, 14, 16673. [CrossRef]

56. Ma, J.; Khromykh, V.; Wang, J.L.; Zhang, J.P.; Li, W.J.; Zhong, X.Z. A landscape-based ecological hazard evaluation and
characterization of influencing factors in Laos. Front. Ecol. Evol. 2023, 11, 1276239. [CrossRef]

57. Shi, C.C.; Zhu, X.P.; Wu, H.W.; Li, Z.H. Assessment of Urban Ecological Resilience and Its Influencing Factors: A Case Study of
the Beijing-Tianjin-Hebei Urban Agglomeration of China. Land 2022, 11, 921. [CrossRef]

58. Carl, G.; Kühn, I. Analyzing spatial ecological data using linear regression and wavelet analysis. Stoch. Environ. Res. Risk Assess.
2008, 22, 315–324. [CrossRef]

59. Tu, J.; Xia, Z.G. Examining spatially varying relationships between land use and water quality using geographically weighted
regression I: Model design and evaluation. Sci. Total Environ. 2008, 407, 358–378. [CrossRef]

60. Mann, D.; Anees, M.M.; Rankavat, S.; Joshi, P.K. Spatio-temporal variations in landscape ecological risk related to road network
in the Central Himalaya. Hum. Ecol. Risk Assess. 2021, 27, 289–306. [CrossRef]

61. Hu, J.Y.; Zhang, J.X.; Li, Y.Q. Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in
a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China. Ecol. Indic. 2022, 143, 109333.
[CrossRef]

62. Ariken, M.; Zhang, F.; Chan, N.W.; Kung, H.T. Coupling coordination analysis and spatio-temporal heterogeneity between
urbanization and eco-environment along the Silk Road Economic Belt in China. Ecol. Indic. 2021, 121, 107014. [CrossRef]

63. Biau, G. Analysis of a Random Forests Model. J. Mach. Learn. Res. 2012, 13, 1063–1095.
64. Peters, J.; De Baets, B.; Verhoest, N.E.C.; Samson, R.; Degroeve, S.; De Becker, P.; Huybrechts, W. Random forests as a tool for

ecohydrological distribution modelling. Ecol. Model. 2007, 207, 304–318. [CrossRef]
65. Chen, D.; Zhou, Q.G.; Yu, L.A. Response of resources and environment carrying capacity under the evolution of land use structure

in Chongqing Section of the Three Gorges Reservoir Area. J. Environ. Manag. 2020, 274, 111169. [CrossRef] [PubMed]
66. Fu, H.; Fu, L.; Dávid, L.D.; Zhong, Q.; Zhu, K. Bridging Gaps towards the 2030 Agenda: A Data-Driven Comparative Analysis of

Government and Public Engagement in China towards Achieving Sustainable Development Goals. Land 2024, 13, 818. [CrossRef]
67. Song, Y.Y.; Xia, S.Y.; Xue, D.Q.; Luo, S.; Zhang, L.W.; Wang, D.H. Land Space Change Process and Its Eco-Environmental Effects in

the Guanzhong Plain Urban Agglomeration of China. Land 2022, 11, 1547. [CrossRef]
68. Xia, B.Y.; Zheng, L.C. Ecological Environmental Effects and Their Driving Factors of Land Use/Cover Change: The Case Study of

Baiyangdian Basin, China. Processes 2022, 10, 2648. [CrossRef]
69. Li, X.W.; Fang, C.L.; Huang, J.C.; Mao, H.Y. The Urban Land Use Transformations and Associated Effects on Eco-Environment in

Northwest China Arid Region: A Case Study in Hexi Region, Gansu Province. Quat. Sci. 2003, 23, 280–290.
70. Jin, J.F.; Yin, S.Y.; Yin, H.M.; Bai, X. Eco-Environmental Effects of “Production-Living-Ecological” Space Land Use Changes and

Recommendations for Ecological Restoration: A Case Study of the Weibei Dryland in Shaanxi Province. Land 2023, 12, 1060.
[CrossRef]

71. Wu, X.Y.; Ding, J.M.; Lu, B.J.; Wan, Y.Y.; Shi, L.N.; Wen, Q. Eco-Environmental Effects of Changes in Territorial Spatial Pattern and
Their Driving Forces in Qinghai, China (1980–2020). Land 2022, 11, 1772. [CrossRef]

72. Wang, Y.; Wang, Y.; Xia, T.T.; Li, Y.; Li, Z. Land-use function evolution and eco-environmental effects in the tarim river basin from
the perspective of production-living-ecological space. Front. Environ. Sci. 2022, 10, 1004274. [CrossRef]

73. Liao, G.T.; He, P.; Gao, X.S.; Deng, L.J.; Zhang, H.; Feng, N.N.; Zhou, W.; Deng, O.P. The Production-Living-Ecological Land
Classification System and Its Characteristics in the Hilly Area of Sichuan Province, Southwest China Based on Identification of
the Main Functions. Sustainability 2019, 11, 1600. [CrossRef]

74. Yates, M.C.; Fraser, D.J. Does source population size affect performance in new environments? Evol. Appl. 2014, 7, 871–882.
[CrossRef] [PubMed]

75. Cui, E.Q.; Ren, L.J.; Sun, H.Y. Evaluation of variations and affecting factors of eco-environmental quality during urbanization.
Environ. Sci. Pollut. Res. 2015, 22, 3958–3968. [CrossRef] [PubMed]

76. Liao, W.H.; Jiang, W.G. Evaluation of the Spatiotemporal Variations in the Eco-environmental Quality in China Based on the
Remote Sensing Ecological Index. Remote Sens. 2020, 12, 2462. [CrossRef]

77. Zhou, J.B.; Liu, W.Q. Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index
(RSEI) in Taihu Lake Basin, China. Sustainability 2022, 14, 5642. [CrossRef]

78. Wu, A.B.; Zhao, Y.X.; Qin, Y.J.; Liu, X.; Shen, H.T. Analysis of Ecological Environment Quality and Its Driving Factors in the
Beijing-Tianjin-Hebei Region of China. Sustainability 2023, 15, 7898. [CrossRef]

79. Zhang, S.Q.; Yang, P.; Xia, J.; Qi, K.L.; Wang, W.Y.; Cai, W.; Chen, N.C. Research and Analysis of Ecological Environment Quality
in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sens. 2021, 13, 4475. [CrossRef]

80. Maity, S.; Das, S.; Pattanayak, J.M.; Bera, B.; Shit, P.K. Assessment of ecological environment quality in Kolkata urban agglomera-
tion, India. Urban Ecosyst. 2022, 25, 1137–1154. [CrossRef]

81. Song, W.; Deng, X.Z. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719.
[CrossRef]

82. Hou, Y.F.; Chen, Y.N.; Ding, J.L.; Li, Z.; Li, Y.P.; Sun, F. Ecological Impacts of Land Use Change in the Arid Tarim River Basin of
China. Remote Sens. 2022, 14, 1894. [CrossRef]

https://doi.org/10.3390/su142416673
https://doi.org/10.3389/fevo.2023.1276239
https://doi.org/10.3390/land11060921
https://doi.org/10.1007/s00477-007-0117-2
https://doi.org/10.1016/j.scitotenv.2008.09.031
https://doi.org/10.1080/10807039.2019.1710693
https://doi.org/10.1016/j.ecolind.2022.109333
https://doi.org/10.1016/j.ecolind.2020.107014
https://doi.org/10.1016/j.ecolmodel.2007.05.011
https://doi.org/10.1016/j.jenvman.2020.111169
https://www.ncbi.nlm.nih.gov/pubmed/32791327
https://doi.org/10.3390/land13060818
https://doi.org/10.3390/land11091547
https://doi.org/10.3390/pr10122648
https://doi.org/10.3390/land12051060
https://doi.org/10.3390/land11101772
https://doi.org/10.3389/fenvs.2022.1004274
https://doi.org/10.3390/su11061600
https://doi.org/10.1111/eva.12181
https://www.ncbi.nlm.nih.gov/pubmed/25469166
https://doi.org/10.1007/s11356-014-3779-6
https://www.ncbi.nlm.nih.gov/pubmed/25369921
https://doi.org/10.3390/rs12152462
https://doi.org/10.3390/su14095642
https://doi.org/10.3390/su15107898
https://doi.org/10.3390/rs13214475
https://doi.org/10.1007/s11252-022-01220-z
https://doi.org/10.1016/j.scitotenv.2016.07.078
https://doi.org/10.3390/rs14081894


Land 2024, 13, 1196 23 of 24

83. Gu, J.J.; Yang, B.; Brauer, M.; Zhang, K.M. Enhancing the Evaluation and Interpretability of Data-Driven Air Quality Models.
Atmos. Environ. 2021, 246, 118125. [CrossRef]

84. Liang, B.Y.; Liu, H.Y.; Cressey, E.L.; Xu, C.Y.; Shi, L.; Wang, L.; Dai, J.Y.; Wang, Z.; Wang, J. Uncertainty of Partial Dependence
Relationship between Climate and Vegetation Growth Calculated by Machine Learning Models. Remote Sens. 2023, 15, 2920.
[CrossRef]

85. Wang, Z.L.; Ye, H.; Zhang, L.Y. Understanding the characteristics and mechanism of land use transition in mountainous economic
zone: A case study of the Chengdu-Chongqing region in southwestern China. Front. Environ. Sci. 2022, 10, 963197. [CrossRef]

86. Li, L.Y.; Wang, L.; Qi, Z.X. The spatiotemporal variation of farmland use transition and its critical influential factors in coordinated
urban-rural regions: A case of Chongqing in western China. Sustain. Cities Soc. 2021, 70, 102921. [CrossRef]

87. Huang, X.; Huang, X.J.; Liu, M.M.; Wang, B.; Zhao, Y.H. Spatial-temporal Dynamics and Driving Forces of Land Development
Intensity in the Western China from 2000 to 2015. Chin. Geogr. Sci. 2020, 30, 16–29. [CrossRef]

88. Delphin, S.; Escobedo, F.J.; Abd-Elrahman, A.; Cropper, W.P. Urbanization as a land use change driver of forest ecosystem services.
Land Use Policy 2016, 54, 188–199. [CrossRef]

89. Li, K.; Zhang, B.Y.; Xiao, W.D.; Lu, Y. Land Use Transformation Based on Production-Living-Ecological Space and Associated
Eco-Environment Effects: A Case Study in the Yangtze River Delta Urban Agglomeration. Land 2022, 11, 1076. [CrossRef]

90. Balthazar, V.; Vanacker, V.; Molina, A.; Lambin, E.F. Impacts of forest cover change on ecosystem services in high Andean
mountains. Ecol. Indic. 2015, 48, 63–75. [CrossRef]

91. Li, L.Y.; Qi, Z.X.; Xian, S.; Yao, D. Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale
Perspective. Land 2021, 10, 275. [CrossRef]

92. Benalcazar, P.; Diochon, A.C.; Kolka, R.; Schindelbeck, R.R.; Sahota, T.; McLaren, B.E. The impact of land conversion from boreal
forest to agriculture on soil health indicators. Can. J. Soil Sci. 2022, 102, 651–658. [CrossRef]

93. Bhatti, S.S.; Tripathi, N.K.; Nagai, M.; Nitivattananon, V. Spatial Interrelationships of Quality of Life with Land Use/Land Cover,
Demography and Urbanization. Soc. Indic. Res. 2017, 132, 1193–1216. [CrossRef]

94. Korpilo, S.; Jalkanen, J.; Virtanen, T.; Lehvävirta, S. Where are the hotspots and coldspots of landscape values, visitor use and
biodiversity in an urban forest? PLoS ONE 2018, 13, e0203611. [CrossRef] [PubMed]

95. Samoli, E.; Stergiopoulou, A.; Santana, P.; Rodopoulou, S.; Mitsakou, C.; Dimitroulopoulou, C.; Bauwelinck, M.; de Hoogh, K.;
Costa, C.; Marí-Dell’Olmo, M.; et al. Spatial variability in air pollution exposure in relation to socioeconomic indicators in nine
European metropolitan areas: A study on environmental inequality. Environ. Pollut. 2019, 249, 345–353. [CrossRef] [PubMed]

96. Yu, Z.Q.; Chen, L.Q.; Li, L.; Zhang, T.; Yuan, L.A.; Liu, R.Y.; Wang, Z.Q.; Zang, J.Y.; Shi, S. Spatiotemporal Characterization of the
Urban Expansion Patterns in the Yangtze River Delta Region. Remote Sens. 2021, 13, 4484. [CrossRef]

97. Larsen, A.E.; Noack, F. Impact of local and landscape complexity on the stability of field-level pest control. Nat. Sustain. 2021, 4, 120–128.
[CrossRef]

98. Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide
Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [CrossRef] [PubMed]

99. Raffa, C.M.; Chiampo, F. Bioremediation of Agricultural Soils Polluted with Pesticides: A Review. Bioengineering 2021, 8, 92.
[CrossRef]

100. Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity
and profitability on arable farms. Nat. Plants 2017, 3, 17008. [CrossRef]

101. Li, J.D.; Lin, Q.N. Threshold effects of green technology application on sustainable grain production: Evidence from China. Front.
Plant Sci. 2023, 14, 1107970. [CrossRef] [PubMed]

102. Zhang, L.; Zhang, W.S.; Cui, Z.L.; Schmidhalter, U.; Chen, X.P. Environmental, human health, and ecosystem economic
performance of long-term optimizing nitrogen management for wheat production. J. Clean. Prod. 2021, 311, 127620. [CrossRef]

103. Chen, N.; Cheng, G.; Yang, J.; Ding, H.; He, S. Evaluation of Urban Ecological Environment Quality Based on Improved RSEI and
Driving Factors Analysis. Sustainability 2023, 15, 8464. [CrossRef]

104. Khan, A.; Sicen, L.; Khan, B.; Salman, N. On the influence of demographic structure and industrial growth on environmental
quality. J. Environ. Manag. 2021, 288, 112453. [CrossRef] [PubMed]

105. Koziuk, V.; Dluhopolskyi, O.; Hayda, Y.; Klapkiv, Y. Does educational quality drive ecological performance? Case of high and low
developed countries. Glob. J. Environ. Sci. Manag. 2019, 5, 22–32. [CrossRef]

106. Sun, L.X.; Yang, S.; Li, S.M.; Zhang, Y.D. Does education level affect individuals’ environmentally conscious behavior? Evidence
from Mainland China. Soc. Behav. Personal. 2020, 48, 1–12. [CrossRef]

107. Pao, H.T.; Tsai, C.M. Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment)
and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries.
Energy 2011, 36, 685–693. [CrossRef]

108. Shahbaz, M.; Nasreen, S.; Abbas, F.; Anis, O. Does foreign direct investment impede environmental quality in high-, middle-, and
low-income countries? Energy Econ. 2015, 51, 275–287. [CrossRef]

109. Partanen, A.I.; Leduc, M.; Matthews, H.D. Seasonal climate change patterns due to cumulative CO2 emissions. Environ. Res. Lett.
2017, 12, 075002. [CrossRef]

https://doi.org/10.1016/j.atmosenv.2020.118125
https://doi.org/10.3390/rs15112920
https://doi.org/10.3389/fenvs.2022.963197
https://doi.org/10.1016/j.scs.2021.102921
https://doi.org/10.1007/s11769-020-1095-2
https://doi.org/10.1016/j.landusepol.2016.02.006
https://doi.org/10.3390/land11071076
https://doi.org/10.1016/j.ecolind.2014.07.043
https://doi.org/10.3390/land10030275
https://doi.org/10.1139/cjss-2021-0170
https://doi.org/10.1007/s11205-016-1336-z
https://doi.org/10.1371/journal.pone.0203611
https://www.ncbi.nlm.nih.gov/pubmed/30256807
https://doi.org/10.1016/j.envpol.2019.03.050
https://www.ncbi.nlm.nih.gov/pubmed/30909127
https://doi.org/10.3390/rs13214484
https://doi.org/10.1038/s41893-020-00637-8
https://doi.org/10.3390/ijerph18031112
https://www.ncbi.nlm.nih.gov/pubmed/33513796
https://doi.org/10.3390/bioengineering8070092
https://doi.org/10.1038/nplants.2017.8
https://doi.org/10.3389/fpls.2023.1107970
https://www.ncbi.nlm.nih.gov/pubmed/36798700
https://doi.org/10.1016/j.jclepro.2021.127620
https://doi.org/10.3390/su15118464
https://doi.org/10.1016/j.jenvman.2021.112453
https://www.ncbi.nlm.nih.gov/pubmed/33827026
https://doi.org/10.22034/GJESM.2019.05.SI.03
https://doi.org/10.2224/sbp.8488
https://doi.org/10.1016/j.energy.2010.09.041
https://doi.org/10.1016/j.eneco.2015.06.014
https://doi.org/10.1088/1748-9326/aa6eb0


Land 2024, 13, 1196 24 of 24

110. Jiang, Q.J.; Qi, Z.M.; Xue, L.L.; Bukovsky, M.; Madramootoo, C.A.; Smith, W. Assessing climate change impacts on greenhouse gas
emissions, N losses in drainage and crop production in a subsurface drained field. Sci. Total Environ. 2020, 705, 135969. [CrossRef]

111. Solomon, S.; Daniel, J.S.; Sanford, T.J.; Murphy, D.M.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Persistence of climate changes
due to a range of greenhouse gases. Proc. Natl. Acad. Sci. USA 2010, 107, 18354–18359. [CrossRef] [PubMed]

112. Yost, M.A.; Kitchen, N.R.; Sudduth, K.A.; Sadler, E.J.; Drummond, S.T.; Volkmann, M.R. Long-term impact of a precision
agriculture system on grain crop production. Precis. Agric. 2017, 18, 823–842. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scitotenv.2019.135969
https://doi.org/10.1073/pnas.1006282107
https://www.ncbi.nlm.nih.gov/pubmed/20937898
https://doi.org/10.1007/s11119-016-9490-5

	Introduction 
	Methods 
	Overview of the Study Area 
	Indicator Selection and Data Sources 
	Research Methods 
	Land Use Type Transfer in the EPLS 
	Eco-Environment Quality Index (EQI) 
	Ecological Contribution Rate (ECR) 
	Random Forest Model 


	Results 
	Evolution Characteristics of EPLS Land Use Transitions 
	Spatio-Temporal Pattern of EPLS Land Use 
	Land Use Transition of EPLS 

	Ecological Effects of Land Use Transition in EPLS 
	Temporal Characteristics of Regional EQI 
	Spatial Characteristics of Regional EQI 

	Analysis of Factors Influencing Regional EQI Changes 
	Significance and Relative Importance of Feature Variables 
	Nonlinear Relationships of Influence Forces of Regional EQI Changes 


	Discussion 
	Main Characteristics of EPLS Land Use Transition in the Central Urban Area 
	Ecological Environmental Effects of Land Use Transition 
	Analysis of Influencing Factors and Mechanism Exploration 
	Limitations and Future Outlook 

	Conclusions 
	References

