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Abstract: Human interactions have led to the emergence of a higher complexity of urban metabolic
networks; hence, traditional natural- or agriculture-oriented biogeochemical models might not be
transferred well to urban environments. Increasingly serious environmental problems require the
development of new concepts and models. Here, we propose a basic paradigm for urban–rural
complex nitrogen (N) metabolic network reconstruction (NMNR) by introducing new concepts and
methodologies from systems biology at the molecular scale, analyzing both local and global structural
properties and exploring optimization and regulation methods. Using the Great Hangzhou Areas
System (GHA) as a case study, we revealed that pathway fluxes follow a power law distribution,
which indicates that human-dominated pathways constitute the principal part of the functions of the
whole network. However, only 1.16% of the effective cycling pathways and an average hamming
distance of only 5.23 between the main pathways indicate that the network lacks diverse pathways
and feedback loops, which could lead to low robustness. Furthermore, more than half of the N fluxes
did not pass through core metabolism, causing waste and pollution. We also provided strategies
to design network structures and regulate system function: improving robustness and reducing
pollution by referring to the characteristics of biochemical metabolic networks (e.g., the bow-tie
structure). This method can be used to replace the trial-and-error method in system regulation and
design. By decomposing the GHA N metabolic network into 4398 metabolic pathways and the
corresponding fluxes with a power law distribution, NMNR helps us quantify the vulnerability in the
current urban nitrogen cycle. The basic ideas and methodology in NMNR can be applied to coupled
human and natural systems to advance global sustainable development studies, and they can also
extend systems biology from the molecule to complex ecosystems and lead to the development of
multi-scale unified theory in systems biology.

Keywords: urban–rural system; nitrogen cycle; metabolic network; biogeochemistry; globle change;
sustainability; complexity

1. Introduction

Urban areas intensively affect surrounding areas and now emerge as a unit that in-
tegrates a city core and peripheral wild lands [1–3] (Keil, 2017; Krugman, 1992; Woods &
Heley, 2017), an urban–rural complex (URC) [4,5] (Chang et al., 2021; Chang & Ge, 2005),
through ecological footprints, technological exports, and economic relationships. With
accelerating urbanization, URCs have been widely recognized as the basic units of the glob-
ally coupled human and natural systems [5] (Chang & Ge, 2005). Intensive biogeochemical
metabolism improves the well-being of all human beings, but it also causes serious envi-
ronmental problems, such as nitrogen (N) pollution [6,7] (Kanter, 2018; Kanter et al., 2020).
More than 50% of total N inputs in terrestrial ecosystems are controlled by humans [8]
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(Tilman et al., 2002), and in urban areas, in a more extreme manner, the proportion of
nitrogen inputs controlled by humans is higher than in the natural or agricultural areas.
The anthropogenic influence on the N process is dramatic [9] (Grimm et al., 2008); for
example, fertilizer can provide food for humans and animals, while considerable N leaches
through soil to surface water and subsurface water, where it validates the atmosphere and
is then deposited back to almost all components in the system, forming a complex network.

The complex networks play a central role in studies of both URC biogeochemical and
molecular-scale biochemical metabolism: the motion and transformation of materials in
networks, the harmony between structures and functions, and regulation. The common
characteristics between the two levels of metabolic systems include (Figure 1a): (i) networks:
both systems demand a complex network to represent the global relationships of matter
flows; (ii) pathways: both networks can be decomposed into a series of pathways, which
represent a specially functional subset; (iii) conversions: a pathway in both systems consists
of a group of connected conversions, including transportation and chemical reactions, and
can be described by stoichiometric equations; and (iv) constraints: both systems are limited
by different constraints, where the two fundamental types are balance (the conservation of
mass) and bounds (constraining the values of individual variables, e.g., the flux range of a
conversion or pathway). In fact, ecological theory might benefit from the use of analogies
among multi-scale biosystems to accelerate the development of new concepts (e.g., ‘urban
metabolism’) and apply it to coupled human and natural systems [10,11] (Collins et al.,
2000; Lokatis et al., 2023). However, the current application of analogies is still limited at
the conceptual level; thus, we developed PMBR to advance the interdisciplinary research.
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Figure 1. Framework and reconstruction processes. (a) Structural analogies between a URC and a 
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and (a2) is a sample biogeochemical network. Solid lines represent reactions/conversions and 
different colors mean different reactions/conversions, and dashed lines mark two pathway types 
(linear and cycle) in both networks. (a3,a4) are reaction and conversion equations, respectively. (b) 
Reconstruction process from original data to networks and extreme pathway analysis. The 
reconstruction is a non-automated decision-making process for establishing metabolites and 
conversions ((b1–b3); see Section S1 in Supplementary Materials). The reconstructed network can 
be described by a stoichiometric matrix (b4), from which a steady-state space and its basis vectors 
and the extreme pathways can be calculated (b5,b6). Extreme pathways can be used to study 
ecological properties and refine the data collection. 
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NMNR imitates the methodology and skills used in the reconstruction of a 

molecular-scale biochemical metabolic network and includes the use of metabolites and 
stoichiometric reactions to define network models and the use of a stoichiometric matrix, 
steady-state equation, and convex cone to describe the network states. Based on NMNR, 
extreme pathway (EP) analysis was used to explore both the local and global 
characteristics of the URC N metabolism. The calculation of EPs was performed using 
CellNetAnalyzer (CNA) [12,13] (Klamt et al., 2007; Thiele et al., 2022), which is a toolbox 
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and (a2) is a sample biogeochemical network. Solid lines represent reactions/conversions and
different colors mean different reactions/conversions, and dashed lines mark two pathway types
(linear and cycle) in both networks. (a3,a4) are reaction and conversion equations, respectively.
(b) Reconstruction process from original data to networks and extreme pathway analysis. The recon-
struction is a non-automated decision-making process for establishing metabolites and conversions
((b1–b3); see Section S1 in Supplementary Materials). The reconstructed network can be described by
a stoichiometric matrix (b4), from which a steady-state space and its basis vectors and the extreme
pathways can be calculated (b5,b6). Extreme pathways can be used to study ecological properties
and refine the data collection.

2. Methods

NMNR imitates the methodology and skills used in the reconstruction of a molecular-
scale biochemical metabolic network and includes the use of metabolites and stoichiometric
reactions to define network models and the use of a stoichiometric matrix, steady-state
equation, and convex cone to describe the network states. Based on NMNR, extreme
pathway (EP) analysis was used to explore both the local and global characteristics of
the URC N metabolism. The calculation of EPs was performed using CellNetAnalyzer
(CNA) [12,13] (Klamt et al., 2007; Thiele et al., 2022), which is a toolbox of MATLAB version
2014a or higher. We consider a series of EP properties in this study, including the type,
number, length, flux participation, and hamming distance.

2.1. Part I. Metabolites of Great Hangzhou Areas System

Hangzhou has a history of more than 2000 years. Hangzhou is the capital of Zhejiang
Province and is located at latitude 29◦11′–30◦34′ N and longitude 118◦20′–120◦37′ E. It
is situated in the northern part of Zhejiang Province, adjacent to Hangzhou Bay, to the
east. The largest river in the province, Qiantang, flows through most parts of the city from
southwest to northeast, with a total coverage area of 16,596 km2. The terrain of Hangzhou
is complex and diverse. The western, central, and southern parts of Hangzhou belong
to the hilly region of western Zhejiang, whereas the eastern part belongs to the plain of
northern Zhejiang. The terrain is low and flat, with an altitude of only 3–6 m and dense
river networks and lakes.

Among the total land area of the city, mountains and hills account for 65.6%, plains
account for 26.4%, and various types of water bodies account for a total of 8%, hence
the saying ‘Seven mountains, two rivers, and two fields’. Hangzhou has a subtropical
monsoon climate, with an obvious alternation of winter and summer monsoons, four
distinct seasons, abundant precipitation and sunshine, an annual average temperature of
approximately 16 ◦C, and an annual precipitation of 1300 mm. Hangzhou has experienced
rapid urban development, with the built-up area of the district increasing from 69 km2

in 1990 to 801 km2 in 2023; thus, it is nearly 12 times larger; from 1.1 million in 1990 to
12.52 million in 2023, the GDP increased from RMB 20.8 billion to RMB 2006 billion.

The Great Hangzhou Areas System (GHA) system was divided into four functional
groups according to their roles in N biogeochemical cycling: each functional group con-
tained one or more subsystems. The consumer group represents the service target of the
urban nitrogen flow and includes two subsystems: humans (Hm) and pets (Pt).

The processor group can process the input of fixed N into food and other useful
N-containing products and then support the nutrients and materials needed by consumers.
The subsystems of the processor group include agriculture (Ag), aquiculture (Aq), livestock
(Ls), forest–grassland (FG), and urban lawn (Lw).

The remover group comprises artificial facilities to treat waste N with processes con-
verting active N (NR) into N2, including only the wastewater treatment (WTF) subsystem.

The life-supporter group is closely related to almost all the other subsystems, including
the surface water (SW), near-atmosphere (NA), subsurface water (SsW), and solid waste
(Swst) subsystems.
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Based on the subsystems, there are four types of metabolites: (A) those for processors
and consumers, except for the forest–grassland subsystem, and those metabolites that
were the inner components of subsystems. (B) All removers, life supporters, and forest–
grassland subsystems were treated as a single metabolite. (C) Additional metabolites
were considered to construct a complete network, including the outer atmosphere (the
source of wet deposition), N2 (we divided it into two metabolites: N2In for the source of
biological fixation and N2Ot for the target of denitrification), and accumulation (an abstract
metabolite for maintaining mass balance). (D) Five external metabolites were added to the
system to simplify the expression of conversions and the representation of inputs/outputs.
External metabolites do not change the structural properties of the network, and we did
not consider them when calculating the pathway length. The naming rule of a metabolite is
as follows: for types A and D, the name of a metabolite (four letters) is the combination of
its subsystem name (two letters in the abbreviation) and its component name (two letters
in the abbreviation); for types B and C, the name of a metabolite just is the name of the
abbreviation of the corresponding subsystem name (to 2–4 letters).

2.2. Part II. Definition

Network-based definitions of the biochemical pathways have emerged in recent years.
These pathway definitions insist on the balanced use of an entire network of biochemical
reactions [14,15] (Papin et al., 2003; Wang et al., 2017). Two related definitions, elementary
modes and extreme pathways, have generated novel hypotheses regarding the biochemical
network functions. Here, we imported extreme pathways to analyze the reconstructed
UBN. Extreme pathways are a minimal set of elementary modes, and when all the exchange
fluxes are constrained to be irreversible (e.g., in our model), the extreme pathways and
elementary modes effectively result in the same set of pathways [16] (Klamt & Gilles, 2004).

Extreme pathways are a mathematically defined unique and minimal set of generating
vectors that describe the conical steady-state solution space for the flux distribution through
an entire stoichiometric network [17] (Schilling et al., 2000). For any stoichiometric network,
we created an m-by-n stoichiometric matrix S, where m is the number of metabolites, n
is the number of conversions, and S (x, y) is the stoichiometric coefficient of metabolite
x in conversion y (Figure 1(b4)). At a steady state, the mass balance in a network can be
represented by the flux balance equation:

S·v = 0, v ≥ 0. (1)

The solution of Equation (1) forms a convex cone, and the extreme pathways are
the edges of the convex cone (Figure 1(b5)). Any steady-state flux distribution v can be
described as a non-negative linear combination of all the extreme pathways: ei, 0 ≥ i ≥ t:

v =
t

∑
i=1

ciei,ci ≥ 0, (2)

where ei = (e1
i , e2

i , . . . , en
i ) and ej

i represents the flux proportion through reaction j in ei, and
the weight of ei is ci, which represents the flux capacity of ei. For the demo network in
Figure 1(b3), e1 = (1, 0, 0, 1, 1, 0) means that only r1, r4 and, r5 participate in e1 and the
fluxes, though they are the same. In this system, other pathways can be described by the
linear combination of extreme pathways [14,15] (Papin et al., 2003; Wang et al., 2017), such
as pathway p = (1, 0, 1, 1, 0, 1), which can be described as p = e2 + e3. Thus, the extreme
pathways represent the global properties of the system and establish a bridge between the
structural and flux properties. The hamming distance between two strings or vectors of
equal length is the number of positions where the corresponding symbols are different. For
example, the hamming distance between e1 and p was 3. Therefore, the hamming distance
can illustrate the similarity among the pathways.
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2.3. Part III. Computation of Extreme Pathways

In this study, the computation of extreme pathways was performed using the CellNe-
tAnalyzer 2023.1 (CNA) [12,13] (Klamt et al., 2007; Thiele et al., 2022), a program for the
analysis of metabolic networks based on MATLAB (Mathworks, Inc., Natick, MA, USA).
The core algorithm of the CNA is described by Gagneur & Klamt [18] (2004), Klamt &
Gilles [16] (2004), Schuster et al. [19] (1999), and Thiele et al. [13] (2022) and is also suitable
for our application.

2.4. Part IV. Characters of Extreme Pathways

There are three common characteristics for extreme pathways [14] (Papin et al., 2003):
(1) non-decomposable: if an active flux in a non-decomposable pathway is restricted to
zero, then the steady-state flux through the entire pathway must be zero; (2) unique: an
extreme pathway set is unique for a given network; and (3) systemic independence: there
are no extreme pathways that can be represented by non-negative linear combinations of
other extreme pathways.

As we used the simplest form of conversions (one substrate and one product) and
only considered the net quantity of nitrogen, in accordance with the principle of the law
of conservation of mass, the stoichiometric coefficients of both the substrate and product
in a conversion equation are equal to 1. As a result, all the extreme pathways present the
simple non-branch form, including two types: linear and cyclical.

2.5. Part V. Types of Extreme Pathways

Based on the topological and ecological properties of extreme pathways, they can
be divided into three types [17] (Schilling et al., 2000). In Type I, these pathways are
linear pathways and are related to exchange fluxes (Figure S1a). Type I pathways are the
major contributors to the decomposition of almost any steady-state flux distribution in
URCs. Type II pathways are one type of cycle pathway, in which all the exchange fluxes
are inactive, corresponding to internal cycles within the network that represent effective
material recycling (Figure S1b). In the GHA system, all type II pathways are related
to excretion recycling. Type III pathways are also cycle pathways, but they are related
to life supporters (Figure S1c), causing pollution problems and representing inefficient
and unmanaged material cycles. Type III cycles correspond to futile cycles in cellular
metabolic networks.

2.6. Part VI. Parameters

A series of parameters were developed for the description and analysis of the proper-
ties of our network model.

Conversions participation. Conversions participation Pj, 0 ≥ j ≥ n is the percentage
of extreme pathways that utilize a given conversion and suggests the regulatory importance
of conversion from a structural perspective [14] (Papin et al., 2003). In the demo network
(Figure 1), the participation of conversions r1 and r3 is P1 = 2

3 and P3 = 1
3 . A subsystem

can be viewed as a set of conversions; thus, we can also calculate the subsystem participa-
tion, which is the percentage of extreme pathways that utilize at least one conversion in
the subsystem.

Conversions relationship. If two conversions are connected by at least one EP, they
can be treated as related to each other. The conversion relationship Rj, 0 ≥ j ≥ n represents
the percentage of related conversions over all the conversions of a given conversion j, such
that r1 is related to four other conversions; so, R1 = 2

3 . Conversion relationships represent
the degree of interconnection between the conversions.

EP length. The pathway length Li, 0 ≥ i ≥ m represents the number of conversions
involved in an EP [14] (Papin et al., 2003). For example, the lengths of all three extreme
pathways in the example network are three. In our model, we did not consider exchange
conversions when calculating the pathway length. In this situation, the length of a pathway
represents the number of inner processes involved in the pathway; for example, the length
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of the extreme pathway in Figure S1a is six. In ecology, the length of extreme pathways has
useful properties (Figure S2).

EP number. The pathway number N is defined as the number of extreme pathways
related to a systemic function, such as those connecting the same exchange conversions
or with a certain length. In the example network, there were two pathways related to
r1. Pathway number represents the complexity of the given functions in the metabolic
networks (Stelling et al., 2002).

EP Flux. Based on Equation (2), we can use the simplex method to determine the value
of cj for a specific flux distribution. For the demo network, we assume a flux distribution,
v = (8, 2, 3, 10, 5, 5). By solving Equation (2), we obtained c1 = c2 = 5 and c3 = 3. In fact, ci
represents the flux through ei, and the distribution of ci represents a significant systemic
property (Figure S3). For high-dimensional systems (with a large number of extreme
pathways), ci is not unique. The range of ci can be obtained by solving the following
equation [20] (Wiback et al., 2003):

maxci or minci : v =
t

∑
i=1

ciei,ci ≥ 0, (3)

Hamming distance of EPs. The hamming distance [21] (Hamming, 1950) between
two EPs is the number of conversions for which the corresponding coefficients differ. For
example, the hamming distance between e1 = [1 0 0 1 1 0] and e2 = [0 1 0 1 0 1] was 2. The
hamming distance is a mark of independence between EPs.

NUE and pollution rate. Extreme pathways can be classified into different categories
based on ecological reasons. Here, we consider two important classifications. First, ac-
cording to whether an extreme pathway passes through human consumption (food and
N-chemicals), we obtained a classification of ‘utilization’ and ‘waste’ (Figure S4a). Second,
depending on the final targets of an EP, we obtained another classification: ‘pollution’ and
‘completeness’ (Figure S4b). Considering the flux capacity of the extreme pathways, we can
calculate the theoretical nitrogen use efficiency (NUE) or pollution rate (PR):

U =

x
∑

j=1
cj

t
∑

j=1
cj

and K =

y
∑

j=1
cj

t
∑

j=1
cj

. (4)

The advantage of this approach is that we can obtain theoretical utilization or pollution
ratios of pathways with selected properties, such as those involved in given inputs/outputs
or those with the same length.

The basic steps of the NMNR are shown in Figure 1b. Based on the collected data
(b1), network nodes, which are metabolites with converter tags in URC biogeochemical
cycles, can be defined. A URC system is a highly complex system with multiple hierarchies,
from the molecule to the ecosystem; hence, the composition and fineness of metabolites
should be carefully controlled to maintain the complexity of our network located at a
moderate level (b1–b2). In the next step, a number of decisions must be made to establish
the conversions and their stoichiometric equations (b2–b3). Systemic inputs and outputs
are described by exchange conversions that cross the system boundaries. The technological
details of decisions involved in the paradigm are discussed in Section S1 in Supplementary
Materials, and the complete list of metabolites and reactions can be found in Tables S3
and S4. By linking nodes, we obtained a demo URC biogeochemical network model (b3),
which holds the basic properties of biochemical metabolic network reconstruction [14]
(Papin et al., 2003). This can be described by using a stoichiometric matrix and a linear
equation (b4), whose solution space encompasses all valid steady-state flux distributions
(a particular set of fluxes in a network to keep all metabolite quantities constant) of the
network. The space, usually a convex cone (b5), is spanned by a set of basis vectors (b6),
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called extreme pathways (EPs) [17] (Schilling et al., 2000). All possible states in the cone
can be described by a non-negative linear combination of EPs [14] (Papin et al., 2003).

3. Results and Discussions

Based on NMNR, we reconstructed a metabolic network model for N cycles in the
GHA and used this real system as a case study to test the ability of NMNR. GHA integrates
the Hangzhou city core and peripheral rural, within which the N cycles are calculated and
analyzed by the mass balance approach (Figure S2). High-quality data provide a solid
foundation for reconstructing the GHAN metabolic network model. The model consisted
of 35 metabolites and 95 conversions, including 16 exchange conversions (10 inputs and
6 outputs) (Figure 2 and Figure S2). The computation resulted in 4398 EPs. Considering
both structural and ecological properties, all the pathways were divided into 3 types, where
4347 were linear EPs (type I) and 51 were cycling EPs (Type II and Type III) (Section S1
in Supplementary Materials). Type I was the primary form (accounting for 98.84% of
all pathways) and covered all subsystems and functional groups. Type II represented
high-efficiency and controllable material recycling; however, only 11.76% of the cycling EPs
accounted for only 1.16% of all pathways. This means that the probability and diversity
of effective N recycling are located at low levels in the GHA. In contrast, type III repre-
sented futile cycles, which passed through life supporters and caused pollution or waste
but comprised 88.24% of the cycling EPs. For example, irrigation-driven N runoff from
croplands is an important source of N pollution in GHA [22] (Gu et al., 2009). However, in
biochemical metabolic networks, extreme pathway analysis found that futile cycles were
rare and included, for example, only 15% of cycling pathways [20] (Wiback et al., 2003);
this was attributed to the bypass mechanism formed in long-term evolution. In ecology, iso-
lating and deducing non-point pollution from cropland by adding some components (e.g.,
wetlands, as suggested by Tilman et al. [8] (2002)) coincided with the bypass mechanism.
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LsPr (Livestock product), AqFd (aquiculture feed and fertilizer), AqPw (aquiculture pool water), AqPr
(aquiculture product), HmFd (human food), HmEx (human excretion), WTF (wastewater treatment),
N2, SW (surface water), and 17 conversions (3 inputs and 2 outputs) between them. We also show
5 examples of extreme pathways with different properties. A conceptual bow tie is presented: green
circle marks the core metabolism of N cycles in GHA: human food consumption; red and yellow
areas are the two wings of the bow tie, which represent production and decomposition, respectively.
A short extreme pathway with L = 2 means that the bow tie is faulty.

Normally, the number of EPs determines the redundancy of a system [23] (Price et al.,
2002), but we found that the EPs in the stem were similar: the average hamming distance
of the stem was only 5.23, which was less than half that of the random states (Section S1
in Supplementary Materials). In particular, EPs related to human-controlled inputs were
outstanding; for example, the hamming distances of food import and agricultural fertilizer
were 3.68 and 3.95, respectively. This means that the N metabolism network of GHA lacks
independent pathways and that its robustness is low. The theoretical average flux (Cj)
passing through the EPs was calculated using linear optimization. We found that the
distribution of Cj followed a power law distribution (Figure 3a), which means that only
a small subset of high-flux EPs played key roles in the network for the functions of the
system, and a large number of low-flux EPs made the system more complex. We set a
subset of EPs, whose Cj was not less than 1 GgN yr−1, to be the “stem” to represent system
functions. The stem contained 617 EPs and accounted for 14% of the total pathways in the
entire network, with more than 80% conversion.
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participation of subsystems, shown in descending order in two groups: (i) processors and 
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Figure 3. Properties of N cycle in GHA. (a) Distribution of average fluxes of extreme pathways is
drawn in log-log coordinate. The curve shows a power law distribution whose exponent is about −1.5.
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(b) The participation of conversions. Four outstanding conversions are marked by red color: human
food consumption, agricultural production and irrigation, and denitrification output. (c) The par-
ticipation of subsystems, shown in descending order in two groups: (i) processors and consumers
and (ii) removers and life supporters. The subsystems include human (Hm), pets (Pt), agriculture
(Ag), aquiculture (Aq), livestock (Ls), forest–grassland (FG), urban lawn (Lw), wastewater treatment
(WTF), surface water (SW), near–atmosphere (NA), subsurface water (SsW), and solid waste (Swst).
(d) Relationships among lengths, number, and average fluxes of extreme pathways. Solid curve
describes the average fluxes of extreme pathways with given lengths; arrow indicates the critical
point L = 4. Dash curve indicates how many extreme pathways have given lengths. (e) Nitrogen use
efficiency and pollution rate (PR). We display NUE and PR calculated from extreme pathways, whose
lengths are smaller than given value.

In the stem, only a few reactions frequently participated in the formation of most Eps,
and the participations (Pi) of four flows were remarkable (Figure 3b): R1, human food
consumption (44.1%); R2, agriculture (43.6%); R3, agricultural irrigation (38.3%); and R4,
denitrification output (33.2%). This means that some basic processes closely related to
human metabolism were most important in the stem. The participation of the subsystems
also showed the same result: agriculture, humans, livestock, and wastewater treatment
facilities all participated in more than 40% of the stem (Figure 3c). If we remove R1, there is
a large drop in the number of EPs between all pairs of inputs and outputs, but the deletion
of other conversions (e.g., R2 with high participation) only disturbs a part of the whole
network. Thus, we defined human food consumption as the core metabolisms of N cycles
from the structural perspective.

However, we found that the average fluxes of the EPs (2.11 Gg y−1 in average) passing
through the core metabolism were lower than those of the EPs (2.49 Gg y−1 in average)
that did not pass through the core metabolism, indicating that more than half of the N is
waste and leads to pollution. In contrast, biochemical metabolic networks have evolved
striking bow-tie structures [24] (Csete & Doyle, 2004), all of which are catabolized to the
core metabolism to produce a handful of precursors, which then leave the core metabolism
for the biosynthesis of all other metabolites. Bow-tie structures are robust, flexible, and
highly efficient, and provide an excellent template to optimize global network structures.

We then set three disturbance scenarios in GHA to test the global structural optimiza-
tion. The first removed the “side roads pathway”, which leads to a skip of N from the core
metabolism and destroys bow-tie structures; R5, for instance, represents the conversion of
fertilizer N runoff from cropland to surface water directly. This disturbance translates to an
increase in the proportion of EPs passing through the core metabolism (+5%), which may
quantify the fact that bow-tie structures can improve the NUE. The second scenario was to
remove a node, such as the urban lawn, which is artificial and only for human well-being
but does not participate in production. We found the disturbance had no obvious effect
on the stem, which suggests that the lawn is an isolated component. However, the third
removal of forest led to great loss of EPs (−25%). This is because the forest is an absorber
of active N from the atmosphere and links fertilizer, agriculture and water bodies, and as
well as fusel fuel through validation and combustion.

Decomposing the steady-state flux distribution into extreme pathways plays an in-
creasingly important role in pathway analysis. Here, we present a method that uses
ecological properties to refine the calculation of the flux capacity. In ecology, two successive
conversions always maintain a proportional relationship; for example, vpre (AgFr → AgSl)
and vnext (AgSl → AgPr) have: vnext ≤ 0.2vpre. This means that the utilization of fertilizer
is no greater than 20% in agriculture; so, the flux capacity of the extreme pathway in Figure
S1a appeared in c ≤ vnext ≤ 0.2vpre. Illustratively, we imported a series of such proportion
restrictions (Table S5) and obtained a narrower range of ci (Figure 4).



Land 2024, 13, 1199 10 of 12

Land 2024, 13, 1199 10 of 13 
 

In the stem, only a few reactions frequently participated in the formation of most Eps, 
and the participations (Pi) of four flows were remarkable (Figure 3b): R1, human food 
consumption (44.1%); R2, agriculture (43.6%); R3, agricultural irrigation (38.3%); and R4, 
denitrification output (33.2%). This means that some basic processes closely related to 
human metabolism were most important in the stem. The participation of the subsystems 
also showed the same result: agriculture, humans, livestock, and wastewater treatment 
facilities all participated in more than 40% of the stem (Figure 3c). If we remove R1, there 
is a large drop in the number of EPs between all pairs of inputs and outputs, but the 
deletion of other conversions (e.g., R2 with high participation) only disturbs a part of the 
whole network. Thus, we defined human food consumption as the core metabolisms of N 
cycles from the structural perspective. 

However, we found that the average fluxes of the EPs (2.11 Gg y−1 in average) passing 
through the core metabolism were lower than those of the EPs (2.49 Gg y−1 in average) that 
did not pass through the core metabolism, indicating that more than half of the N is waste 
and leads to pollution. In contrast, biochemical metabolic networks have evolved striking 
bow-tie structures [24] (Csete & Doyle, 2004), all of which are catabolized to the core 
metabolism to produce a handful of precursors, which then leave the core metabolism for 
the biosynthesis of all other metabolites. Bow-tie structures are robust, flexible, and highly 
efficient, and provide an excellent template to optimize global network structures. 

We then set three disturbance scenarios in GHA to test the global structural 
optimization. The first removed the “side roads pathway”, which leads to a skip of N from 
the core metabolism and destroys bow-tie structures; R5, for instance, represents the 
conversion of fertilizer N runoff from cropland to surface water directly. This disturbance 
translates to an increase in the proportion of EPs passing through the core metabolism 
(+5%), which may quantify the fact that bow-tie structures can improve the NUE. The 
second scenario was to remove a node, such as the urban lawn, which is artificial and only 
for human well-being but does not participate in production. We found the disturbance 
had no obvious effect on the stem, which suggests that the lawn is an isolated component. 
However, the third removal of forest led to great loss of EPs (−25%). This is because the 
forest is an absorber of active N from the atmosphere and links fertilizer, agriculture and 
water bodies, and as well as fusel fuel through validation and combustion. 

Decomposing the steady-state flux distribution into extreme pathways plays an 
increasingly important role in pathway analysis. Here, we present a method that uses 
ecological properties to refine the calculation of the flux capacity. In ecology, two 
successive conversions always maintain a proportional relationship; for example, vpre 
(AgFr → AgSl) and vnext (AgSl → AgPr) have: prenext vv 2.0≤  . This means that the 
utilization of fertilizer is no greater than 20% in agriculture; so, the flux capacity of the 
extreme pathway in Figure S1a appeared in prenext vvc 2.0≤≤  . Illustratively, we 
imported a series of such proportion restrictions (Table S5) and obtained a narrower range 
of ci (Figure 4). 

 
Figure 4. The optimization of calculation of extreme pathway fluxes. Blue lines represent the
distribution of the range of flux without additional restrictions, and red lines are the result with
restrictions in Table S5. Solid lines indicate max fluxes and dash lines indicate min fluxes. The red
range is obviously narrower than the blue range; hence, additional restrictions are effective.

Locally, the relationship between the length (Lj) and Cj of EPs provides an approach
for quantifying pathway optimization. In GHA, we found that Lj = 4 was a critical length
(Figure 3d,e); when Lj < 4, these EPs were “short and big”: huge fluxes of N left the
processors without being utilized by core metabolisms and concentrated into life supporters
(Figure 2 and Section S1 in Supplementary Materials); for example, fertilizer N runoff that
went directly from cropland to surface water or to the atmosphere was represented by
EPs with Lj = 2. Once Lj >= 4, N flow can complete the pathways from production to
consumption (passing through the core metabolism) and decomposition. For example, to
optimize the pathway from cropland to surface water, at least two additional nodes are
needed to make L >= 4. The theoretical results suggest that in addition to the wetlands
suggested by Tilman et al. [8] (2002) and Liu et al. [25] (2009), one more component, such
as marginal cropland, which has low N availability tolerance [26] (Schmer et al., 2008), is
necessary to isolate the N between cropland and surface water, and the products from the
marginal cropland could return to the core metabolism.

In the case of NMNR, we found that the huge flux pathways mediated or created
by humans appeared rigid and should be modified. Theoretically, the results proved
that NMNR is a powerful tool for studying biogeochemical metabolism in URCs. In the
future, NMNR will have great potential as a computational platform for introducing more
mathematical tools, such as minimal cut sets [27] (MCS, Klamt et al., 2020), which can be
used to find optimal ways to interrupt pollution, control-effective flux [28] (CEF, Stelling
et al., 2002), which can be used to quantify the mutual influences among conversions, and
flux balance analysis [29] (FBA, Antoniewicz 2015), which can even be used to quantitatively
predict system changes. In principle, NMNR provides an opportunity to unify multi-
scale metabolic systems by taking advantage of both biochemical and biogeochemical
network research.
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