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Abstract: Habitat type and habitat change are very important factors in the body condition of small
mammals that inhabit them. The response can be positive, increasing, or the opposite, decreasing
body condition. We analyzed outliers of the body condition indices (BCIs) of 12 species trapped in
nine different habitats during 1980–2023 in Lithuania, a mid-latitude country. Mixed and fragmented
habitats, as well as commensal habitats, could be considered the least suitable for small mammals,
based on the highest proportions of underfit and low proportions of best-fit individuals. On the con-
trary, meadows and disturbed habitats (landfills and cormorant colonies) had the highest proportions
of best-fit individuals, while the proportion of under-fit individuals was much lower than expected.
We found outliers in the BCI in all species, except for the under-fit harvest mice (Micromys minutus),
and in all habitats, though not numerous. The presence of the highest BCI in yellow-necked mice
(Apodemus flavicollis) and bank voles (Clethrionomys glareolus) in the disturbed habitats studied and in
house mice (Mus musculus) in commensal habitats may be related to the resources provided by these
habitats. Our results demonstrate the feasibility of using retrospective small mammal morphometric
data to analyze their relationship with habitat.
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1. Introduction

Habitat is one of the most important factors determining the distribution and diversity
of small mammal species and communities. On a global scale and over the last decades, the
habitat factor operates in conjunction with climate change [1]. On a smaller scale, structural
components of habitat influence the abundance of small mammals and the diversity of
their communities [2]. The scale effect is important in defining habitat association with
small mammals. On islands, habitat complexity increases the influence of interspecific
competition on small mammals [3]. Coexistence in limited space requires a reduction
in competition, leading to niche partitioning [4]. Habitat preferences of different small
mammal species are not the same at patch and landscape scales [5], and, therefore, habitat
preferences are scale-dependent [6]. As a result, different small mammal assemblages are
associated with specific habitat types [7].

Two of the studies mentioned above really cover a wide range of material from
both habitat and species perspectives [5,7]. However, these two studies do not address the
fitness of small mammals, unlike our study of the relationship between body condition
index (BCI) and habitat [8].

Research on the diversity and abundance of small mammals in Europe has focused on
several habitat groups. Based on 35 years of data, M. Zárybnická et al. [9] found changes
in small mammal populations based on landscape heterogeneity and forest management
practices. The stability of small mammal communities was maintained by diverse habitats
and influenced by both local biotic and abiotic factors. Forest habitats in Central Europe are
the best studied as habitats supporting small mammals in terms of management practices,
such as clear-cutting [10–12].
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Farmland habitats have been the focus of small mammal studies due to conflicts over
crop damage and food security [13,14] and the global conflict between agriculture and
biodiversity conservation [15]. Some small mammal species, such as the greater white-
toothed shrew (Crocidura russula) and the wood mouse (Apodemus sylvaticus), have been
found to benefit from changes in agricultural land use, such as increases in grassland and
fallow land [16]. These agri-environmental management practices are recommended by the
EU. Fallow land and crops with long growing seasons provide cover for small mammals
and the predators that prey on them, thus maintaining the diversity and abundance of their
communities [17].

Knowledge of small mammal habitat associations can be translated into habitat man-
agement and restoration projects at local and landscape scales [18]. On a broader scale,
studies of small mammals still do not provide a sufficient basis for their conservation
strategies [19]. It should be noted, however, that none of the above studies assessed the
fitness or body condition of small mammals, only their diversity and abundance. One of
the most extensive studies, based on the analysis of owl prey, showed geographic variation
in average prey weight, but this was not related to the body mass of specific individuals
within a species or their body condition [20].

Similarly, most of the previous studies of small mammals and their habitats in Lithua-
nia and other Baltic countries focused on their diversity and abundance [21–24]. Coastal
wetlands, hemi-boreal forest-farmland landscapes, successional stages from grassland to
forest, and commercial orchards were analyzed, but again, the biomass and not the mass of
an individual was evaluated [25–28]. Thus, there are no publications that can be directly
compared with our data, i.e., the extremal BCI values of various small mammal species
and their distribution in habitats.

Undoubtedly, the link between habitat and body condition is through food resources
and diet. We did not follow the general dietary classification presented in [29], but we ana-
lyzed BCIs of insectivores, omnivores, granivores, and herbivores. The relationship between
small mammal diets and habitats has been analyzed in different habitats and at different
latitudes [30–32], while in Lithuania, the focus was on commensal habitats [33], providing
access to human-related foods. Our dietary studies, unfortunately, cover a much shorter
period than the BCI study and are, therefore, not comparable without further research.

The Chitty effect, a common phenomenon in both the Americas and Europe, is related
to the body condition of small mammals, as one of the manifestations of the effect is
the presence of large-bodied individuals [34]. Changes in body mass are a common
phenomenon in cyclic rodent populations [35], but the drivers of the Chitty effect are still
incompletely understood. It is also not clear whether these large-bodied individuals have
higher BCIs. Cyclicity in herbivores is one of the ecosystem functions [36]. Collapses in this
function have been observed since the 1980s in different species and countries [37]. Regular
cycles of abundance are being replaced by irregular fluctuations, sometimes leading to
large-scale outbreaks [38].

Habitat has been reported as one of the factors modulating the abundance of large-
bodied common voles (Microtus arvalis asturianus) [35]. Larger individuals may have an
advantage in resource use [39], but there is evidence that small individuals may also use a
large proportion of resources [40,41].

Extra-large individuals of the field vole (Microtus agrestis) and sibling vole (M. rossi-
aemeridionalis) were observed in agricultural habitats of Sweden [42], those of the root
vole (Alexandromys oeconomus) in marshy habitats of Norway [43]. Large individuals in
non-cyclic populations of common hamsters (Cricetus cricetus) were found in agricultural
fields in the Czech Republic [44]. In North America, large individuals of Townsend’s vole
(Microtus townsendii) were recorded in grasslands [45], and those of meadow vole
(M. pennsylvanicus) in old fields and former agricultural areas [46]. Information on the
habitat distribution of extra small individuals is lacking.

The aim of this study was to analyze the habitat distribution of extreme (highest
and lowest) values of the body condition index in different species of small mammals in
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Lithuania, representing mid-latitude countries with continental climates. We tested whether
the distribution of these extreme values correlated with the proportions of individuals
of each species caught in each habitat, i.e., whether the proportions of poorly and well-
conditioned individuals were associated with specific habitats.

2. Materials and Methods
2.1. Study Site, Habitats, and Sample Size

Small mammals were trapped in Lithuania between 1980 and 2023, with 321 trapping
sites covering the whole country (Figure 1). The choice of study sites and habitats has
not been consistent, depending on research priorities at the time: in the 1970s, it was
irrigated grasslands and protected areas with various habitats. In the 1980s, protected
areas and their habitat complexes were further studied, and monitoring was conducted in
the nuclear power plant region, focusing on forest, wetland, grassland, and agricultural
habitats. In the 1990s, protected areas continued to be surveyed, and small mammals were
captured in various areas and habitats in order to identify the most valuable sites in terms
of biodiversity through complex surveys. National monitoring of small mammals was
also carried out during this decade. In the 2000s, monitoring continued and a number
of previously undesignated protected areas were surveyed. Specific studies were also
undertaken to assess changes in small mammal communities in overgrowing meadows,
to assess small mammal diversity on islands and small forest fragments in agroforestry,
and to resurvey sites surveyed in the 1970s to compare results. Systematic surveys of
small mammals in gardens, berry gardens, and commensal habitats began in the 2010s and
continued into the 2020s. This choice of habitats and sites results in a random distribution
across the country (Figure 1) and uneven trapping effort across habitats [47]. In the
1970s–1990s, surveys were mostly conducted during the growing season, but since the
2000s, they have also been conducted in winter.
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Figure 1. Small mammal trapping sites in Lithuania, 1980–2023. Dot size corresponds to the number
of analyzed individuals. Redrawn from [47].

For extreme body conditions, we analyzed 12 species with sample size N > 50. Based on the
sample size, Mediterranean water shrew (N. milleri), hazel dormouse (Muscardinus avellanarius),
northern birch mouse (Sicista betulina), wood mouse (A. sylvaticus), water vole (Arvicola amphibius),
sibling vole (M. rossiaemeridionalis), Norway rat (Rattus norvegicus), and black rat (R. rattus)
were excluded from analyses. The total sample size was 27,073 individuals. Two of the
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analyzed trophic groups, omnivores and granivores, comprised more than 30% each, and
two others were herbivores and insectivores, less than 20% each (Table 1).

Table 1. Sample composition of small mammals used for this study.

Species N % Trophic Group N %

Common shrew (Sorex araneus) 2303 8.5
InsectivoresPygmy shrew (S. minutus) 724 2.7

Water shrew (Neomys fodiens) 99 0.4 3126 11.5

House mouse (Mus musculus) 424 1.6
OmnivoresBank vole (Clethrionomys glareolus) 9866 36.4 10,290 38.0

Striped field mouse (Apodemus agrarius) 3482 12.9

Granivores
Yellow-necked mouse (A. flavicollis) 5403 20.0

Pygmy field mouse (A. uralensis) 68 0.3
Harvest mouse (Micromys minutus) 337 1.2 9290 34.3

Root vole (Alexandromys oeconomus) 1286 4.8
HerbivoresCommon vole (Microtus arvalis) * 2429 9.0

Short-tailed vole (M. agrestis) 652 2.4 4367 16.1

*—Sensu lato. In most studies, the sibling vole, Microtus rossiaemeridionalis, was not specifically identified.

All habitats studied were categorized into nine groups (Table 2). Most small mammals
were captured in meadows and forests, followed by commensal habitats, then wetlands,
disturbed habitats (represented by landfills and breeding colonies of Great Cormorants
situated in riparian or continental woodlands), and agricultural habitats. The representation
of shrub and riparian habitats was about 2% or less, while 4.3% of all small mammals were
trapped in fragmented habitats, which included a mix of wetlands, forests, meadows, and
agricultural land. The trapping effort was also not even. However, mixed habitats included
other categories, such as forests, meadows, and wetlands (Table 2).

Table 2. Habitat distribution of small mammal sample: TE—trapping effort, days; N—number
of individuals; S—number of species; n, I—number of insectivores; %, I—proportion of insecti-
vores; n, O—number of omnivores; %, O—proportion of omnivores; n, G—number of granivores;
%, G—proportion of granivores; n, H—number of herbivores; %, H—proportion of herbivores.

Habitat TE N % S n, I %, I n, O %, O n, G %, G n, H %, H

Forest 110,075 7195 26.6 12 463 6.4 4576 63.6 1948 27.1 208 2.9
Shrub 4200 349 1.3 11 86 24.6 120 34.4 117 33.5 26 7.4

Wetland 40,968 2161 8.0 12 412 19.1 1285 59.5 315 14.6 149 6.9
Meadow 119,700 7246 26.8 12 1325 18.3 877 12.1 3077 42.5 1967 27.1
Riparian 9069 600 2.2 9 71 11.8 171 28.5 226 37.7 132 22.0
Mixed 137,040 1163 4.3 12 187 16.1 490 42.1 322 27.7 164 14.1

Disturbed 19,525 1921 7.1 11 66 3.4 765 39.8 1054 54.9 36 1.9
Agricultural 24,638 2066 7.6 11 83 4.0 404 19.6 892 43.2 687 33.3
Commensal 26,516 4372 16.1 12 433 9.9 1602 36.6 1339 30.6 998 22.8

Total 491,731 27,073 100 12 3126 11.5 10,290 38.0 9290 34.3 4367 16.1

As shown in [9–13,15–19,25–28,30–32,43], there is no standard habitat classification
used in small mammal trapping. The grouping used here is not based on CORINE, al-
though it does include some Level 3 habitats [7]. In the commensal habitat group, we
included industrial and commercial areas, farms, farmsteads, cattle barns, and individ-
ual houses. The agricultural habitat group included arable land, perennial and annual
crops, and complex cropping patterns. Disturbed habitats included mines, landfills, and
construction sites, according to CORINE [7], as well as sites with strong disturbance of
biological origin and territories of breeding cormorant colonies. Apart from these, small
mammals were only captured in closed landfills. The riparian habitat group included
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meadows, wetlands, forests, and other habitats within 50 m from the shore of a river, lake,
or island. This group has no equivalent in the CORINE classification. The meadows group
included natural or seeded grasslands and pastures, including flooded meadows. Wetland
habitats include all wetland habitats, from marshes to peat bogs; in the description of the
trapping sites, the habitat in 70% of the cases was characterized as “wetland” only, and
the presence of reed beds was indicated in ~7% of the trapping sites. Shrub habitats are
defined as a transitional woodland–shrub in the CORINE classification [7]; both “shrub”
and “shrub-covered meadow” account for 40% of the trap descriptions. Forest habitats
include deciduous, coniferous, and mixed forests regardless of their age; characterizations
of this habitat were the most variable, with over 100 different descriptions. Finally, mixed
habitats also have no CORINE equivalent, and this category was chosen when a 125 m trap
line covered several different habitats so that mixed habitats were also fragmented habitats.
We expect that such a broad classification will ensure better compatibility with the results
of other small mammal researchers.

2.2. Small Mammal Collection and Processing Methods

The capture of small mammals was conducted using the established snap-trapping
methodology, employing trap lines comprising 25 traps spaced 5 m apart. Until they were
transported to the laboratory and processed, the captured individuals were stored frozen.
The identification of species was based on external features. Microtus voles were identified
by their teeth. Trapped individuals were weighed to the nearest 0.1 g and their body length
was measured to the nearest 0.1 mm using calipers. Further details on the trapping and
processing of small mammals can be found in previous publications [8,47].

2.3. Data Analysis

The body condition index (BCI) was calculated according to the formula proposed
by P.J. Moors: BCI = (Q/L3) × 105 [48]. In this equation, Q represents the body weight
in grams (exclusive of the uterine weight with embryos for pregnant females), while L
denotes the body length in millimeters.

The mean BCI for all small mammal species except rats in Lithuania is 3.03
(1.04–6.89) [47]. BCI statistics for all species analyzed are presented in Table S1 in the
Supplement. To facilitate analysis, extreme values were set as BCI < 2.0 and BCI > 5.0, while
individuals with BCI > 4.0 were considered to be in good condition. All analyzed small
mammal species except M. minutus have BCI values < 2.0, and all except N. fodiens and
A. uralensis have BCI values > 5.0.

The proportions of individuals exhibiting extreme BCI values were assessed across
all habitats, and these were then compared with the expected proportions. The expected
proportions were calculated on the assumption that they must correspond to the number
of samples of individuals. The chi-square was calculated in PAST, version 4.13 (Museum
of Paleontology, Oslo College, Oslo, Norway) [49], using the “sample vs. expected” rou-
tine with Monte Carlo permutation (N = 9999). The minimum confidence level was set
at p < 0.05.

3. Results
3.1. Are All Habitats Equally Good?

The proportions of small mammals with extreme BCI values were not in accordance
with the expected values (Table 3). These differences were found to be significant for
BCI < 2 (χ2 = 217.6), BCI > 4 (χ2 = 343.8), and BCI > 5 (χ2 = 62.1) at p < 0.0001 with df = 8.
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Table 3. The numbers and proportions of individuals with extreme BCI in habitats irrespective of
small mammal species. Obs: observed; Exp: expected.
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Obs n 38 9 32 89 2 36 6 8 141
Obs % 10.5 2.5 8.9 24.7 0.6 10.0 1.7 2.2 39.1
Exp n 95.9 4.7 28.8 96.6 8.0 15.5 25.6 27.5 58.3
Exp % 26.6 1.3 8.0 26.8 2.2 4.3 7.1 7.6 16.1

>4

Obs n 273 23 56 513 22 7 225 181 191
Obs % 18.3 1.5 3.8 34.4 1.5 0.5 15.1 12.1 12.8
Exp n 396.3 19.2 119.0 399.1 33.0 64.1 105.8 113.8 240.8
Exp % 26.6 1.3 8.0 26.8 2.2 4.3 7.1 7.6 16.2

>5

Obs n 22 1 2 66 5 0 22 5 17
Obs % 15.7 0.7 1.4 47.1 3.6 0.0 15.7 3.6 12.1
Exp n 37.2 1.8 11.2 37.5 3.1 6.0 9.9 10.7 22.6
Exp % 26.6 1.3 8.0 26.8 2.2 4.3 7.1 7.6 16.1

Mixed and fragmented habitats can be regarded as the most problematic, as the
proportion of under-fit small mammals was twice as high as expected. In addition, there
were no over-fit individuals with BCI > 5, and the proportion of small mammals with BCI > 4
was nine times less than expected (Table 3). Similarly, a higher-than-expected proportion of
small mammals with BCI < 2 and a lower-than-expected proportion of over-fit individuals
were present in commensal habitats. These trends were less pronounced in wetlands.

Based on the analysis of BCI extremes, the investigated disturbed habitats and mead-
ows can be characterized as the “best” ones. In disturbed habitats, the proportion of small
mammals with BCI < 2 is four times less than what would be expected, while the proportion
of individuals exhibiting the best fit is at least twice as large as what would be expected. A
similar pattern, albeit less pronounced, is observed in meadows (Table 3).

3.2. Distribution of Species Extremes across Habitats

The observed and expected frequencies of individuals in various small mammal
species with BCI < 2 were recorded in forests (χ2 = 52.9), wetlands (χ2 = 78.2), and meadows
(χ2 = 137.5). Significant differences were observed between mixed (χ2 = 157.4), agricultural
(χ2 = 248.0), and commensal (χ2 = 519.0) habitats (all p < 0.0001, df = 11). In shrub, riparian,
and disturbed habitats, the observed proportions of underfit individuals in various small
mammal species did not differ from those expected (Table A1).

Among individuals of different species with BCI < 2, the majority of S. minutus,
M. musculus, C. glareolus, and M. arvalis were captured in commensal habitats, while the
majority of S. araneus, N. fodiens, A. agrarius, A. uralensis, and A. oeconomus were captured in
meadows (Figure 2a).

The influence of habitat was also discernible in the distribution of over-fit individuals
with BCI > 4, with the exception of those captured in mixed habitats (Table A2).

Among individuals of different species with BCI > 4, the majority of S. araneus,
S. minutus, N. fodiens, A. agrarius, M. minutus, A. oeconomus, and M. agrestis were cap-
tured in meadows, while the majority of C. glareolus and A. flavicollis were caught in forests.
M. musculus was found in commensal habitats, and the majority of M. arvalis were captured
in agricultural settings (Figure 2b).

The observed proportions of extremely overfit individuals with BCI > 5 significantly
differed from expected proportions in forests (χ2 = 62.6, p < 0.0001, df = 11), meadows
(χ2 = 140.7, p < 0.0001, df = 11), disturbed habitats (χ2 = 37.1, p < 0.001, df = 11), and
commensal habitats (χ2 = 47.6, p < 0.0001, df = 11). In the shrub, wetland, riparian, mixed,
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and agricultural habitats, the proportions of individuals with extremely high BCI were in
accordance with the sample size of species (Table A3).
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Figure 2. The frequency of occurrence of small mammal individuals with extreme BCI values in
relation to habitat.

The habitat distribution of these individuals was nearly identical to that described
above. The majority of S. araneus, S. minutus, A. agrarius, M. minutus, and A. oeconomus were
captured in meadows, A. flavicollis in disturbed habitats, C. glareolus in forests, M. musculus
in commensal habitats, and the majority of M. arvalis in agricultural habitats (Figure 2c).

3.3. Distribution of Body Condition Index Extremes in Small Mammal Species

The analysis revealed that when considering only individuals with BCI < 2, meadows,
mixed, disturbed, agricultural, and commensal habitats are characterized by an over-
representation of S. minutus. Conversely, forests were overrepresented by an under-fit
C. glareolus, while shrub and wetland areas were overrepresented by S. araneus (Figure 3a).

The majority of forests and disturbed habitats were represented by two species:
A. flavicollis and C. glareolus, with BCI > 4. In commensal habitats, BCI > 4 was best
represented by N. fodiens and A. flavicollis, while in agricultural habitats, by M. arvalis and
A. agrarius. In wetlands, C. glareolus with BCI > 4 was represented most frequently (Figure 3b).

The same two species, A. flavicollis and C. glareolus, were most prevalent among individ-
uals with BCI > 5 in disturbed habitats, M. musculus in commensal habitats,
M. minutus in meadows, and A. flavicolis in forests (Figure 3c).
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4. Discussion

A review of the literature reveals that no study has previously compared the variability
of individual fitness across different habitats and species. Our study, which examines the
distribution of BCI thresholds across species and habitats, therefore, makes an original
contribution to our understanding of the relationship between fitness and habitat.

Outlying values in body condition indices (BCI < 2 and BSI > 4) were observed in
all investigated habitats and in all species, with the exception of M. minutus, which was
never under-fit. At BCI values greater than 5, however, no small mammals were captured
in mixed habitats, with only a few individuals observed in shrub, wetland, riparian,
and agricultural habitats. These highest BCI values were not observed in N. fodiens and
A. uralensis, and were observed in only a few individuals in M. arvalis and M. agrestis.

Thus far, other investigators have documented the presence of extra-large individu-
als in a range of habitats, including agricultural settings [42,44,46], grasslands [45], and
wetlands [43]. However, there is a paucity of information regarding underfit individuals.
The high number of M. musculus with BCI > 5 observed in commensal habitats can be
attributed to the availability of rich food sources and species adaptations [50], as is the case
for M. minutus in meadows (and also in riparian and agricultural habitats, as illustrated in
Figure 3b,c) due to their scansorial lifestyle and preference for rich and protective habitats,
such as reedbeds [51].

The presence of over-fit A. flavicollis and C. glareolus in disturbed habitats, such as
landfills and colonies of great cormorants (Phalacrocorax carbo), is associated with elevated
concentrations of nitrogen, phosphorus, carbon, and other biogens [52]. As a consequence of
elevated nitrogen concentrations in the basal resources of small mammals, already evident
in the first year of the cormorant colony’s presence, there is a distortion of the trophic
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level of these small mammals. For instance, the isotopic δ15N signatures of granivorous
A. flavicollis and omnivorous C. glareolus in the cormorant colony are higher than those of
insectivores in other habitats [53]. Additionally, the concentration of biogenic elements
originating from food waste and industrial discharges is elevated in landfills, resulting in
environmental consequences [54].

Theoretically, several mechanisms can contribute to species-specific overfitness, in-
cluding genetic, ecological, behavioral, and physiological factors, but again, so far, we have
only analyzed individual fitness. What could be tested at the site level by other authors is
ecological release (reduced competition in environments where the number of competing
species is reduced, allowing them to increase in number and increase individual fitness.
Such a situation might occur in newly colonized areas after a strong disturbance.

What is the role of BCI in the context of broader issues in species biology? Individuals
of the same species exhibit variation in size and other characteristics, which is a prerequisite
for natural selection to occur [55]. The impact of individual heterogeneity operates at
multiple scales, from the individual to the species and ecosystem level [56]. However, there
is still a dearth of knowledge regarding the large-scale investigation of co-occurring species
in the same habitats within BCI. Improved body condition can serve as a buffer against
adverse environmental conditions and changes, enhancing the likelihood of survival [57].

The impact of habitat on the body condition of small mammals has been documented,
with habitat quality identified as the most crucial factor [58]. The body condition of these
animals is found to be associated with habitat type [59], as well as with various forms
of habitat alteration, including agricultural practices [60] and habitat loss [61]. Human
activity can exert a detrimental (reducing activity and occurrence) or beneficial influence on
small mammals, with more than half of the species demonstrating a positive response [62].
Therefore, the mechanism is not straightforward, and further insight into BCI and habitats
is necessary. Commensal and non-commensal small mammal species may adapt to urban
environments by modifying their behavior [63]. In our study, small mammal BCIs did not
demonstrate adaptation to commensal habitats, with the exception of M. musculus, a typical
synanthropic species.

The intra- and inter-species dietary differences may be attributed to both body size [64]
and trophic group [65], with herbivores exhibiting the highest risk. In low-latitude regions,
the decline of small mammals is likely to be most pronounced as a consequence of defor-
estation [66], which can be defined as the destruction of and the subsequent fragmentation
of remaining patches. In Lithuania, the decline in meadows over the past three decades [8]
may have been a significant factor, as this habitat supports a higher-than-expected popula-
tion of small mammals with the best body condition.

Nevertheless, the capacity of small mammal species to adapt is not confined to urban
environments [63]. It was demonstrated that Tullberg’s soft-furred mouse (Praomys tullbergi)
is capable of responding to fluctuations in resource availability by adjusting its individual
body condition [67]. Consequently, an understanding of the adaptive strategies employed
by different species in diverse habitats is crucial for the development of effective conser-
vation strategies. As stated by J.W. Moore and D.E. Schindler, “Adaptation ultimately
underpins the resilience of Earth’s complex systems; species, communities, and ecosystems
shift and evolve over time.” [68]. This underscores the importance of long-term trends
and baselines, as well as the utilization of body condition indicators that can be obtained
retrospectively in other countries.

5. Conclusions

Based on long-term BCI variability, outliers in the body condition were present in all
investigated species and habitats, with the exception of M. minutus, which exhibited no
under-fit individuals.

The presence of the highest BCI levels can be attributed exclusively to habitat charac-
teristics, particularly the resources provided in some cases: A. flavicollis and C. glareolus in
disturbed habitats and M. musculus in commensal habitats.
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The relative proportions of under- and over-fit small mammals of different species
indicate that mixed/fragmented and commensal habitats may be considered the least
favorable, while meadows and disturbed habitats may be considered the most favorable.

Given the possibility of retrospective assessment of the BCI in question, the index may
prove useful for investigating adaptations to human influence and climate change.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/land13081271/s1, Table S1: Body condition index statistics
of small mammal species with N > 50, based on [47].
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both authors; writing—review and editing, both authors. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding. The work of the authors was funded by the
Nature Research Centre budget.

Institutional Review Board Statement: The study uses historical material on small mammal trapping
and material collected for other projects. It was conducted in accordance with the Lithuanian
legislation (the Republic of Lithuania Law on the Welfare and Protection of Animals No. XI-2271,
“Requirements for the Housing, Care and Use of Animals for Scientific and Educational Purposes”,
approved by Order No B1-866, 31 October 2012 of the Director of the State Food and Veterinary
Service (Paragraph 4 of Article 16) and the European legislation (Directive 2010/63/EU) on the
protection of animals, and was approved by the Animal Welfare Committee of the Nature Research
Centre, protocols No GGT-7 and GGT-8).

Informed Consent Statement: Not applicable.

Data Availability Statement: This is an ongoing research. Therefore, data are available from the
corresponding author upon request.

Acknowledgments: We acknowledge the help of P. Alejūnas, M. Jasiulionis, and V. Stirkė in small
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Appendix A

Table A1. Observed and expected frequencies of individuals with BCI < 2 in different small mam-
mal species depending on habitat. Green cells: observed frequencies ≥ 3 times more than ex-
pected ones; brown cells: observed frequencies ≥ 3 times less than expected ones; ***—p < 0.0001,
NS—not significant.

Species with Forest Shrub Wetland Meadow Riparian Mixed Disturbed Agricultural Commensal

BCI < 2 Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp
S. araneus 6 1.8 4 1.5 11 4.5 17 12.4 1 0.2 6 4.1 0 0.2 1 0.2 16 9.4
S. minutus 5 0.6 1 0.6 10 1.3 21 3.5 0 0.1 16 1.5 4 0.0 5 0.1 47 4.0
N. fodiens 0 0.1 0 0.0 0 0.3 2 0.3 0 0.0 0 0.3 0 0.0 0 0.0 0 0.5

M.musculus 0 0.0 0 0.0 0 0.1 0 0.2 0 0.0 0 0.1 0 0.0 0 0.1 1 11.7
C. glareolus 24 24.1 2 3.1 8 19.0 4 10.6 0 0.6 6 15.1 2 2.4 0 1.5 45 39.9
A. agrarius 0 0.7 0 0.9 1 1.5 7 26.0 0 0.2 0 3.1 0 0.3 0 1.4 0 14.7
A. flavicollis 2 9.4 0 2.0 1 2.7 1 8.7 0 0.5 1 6.5 0 2.9 1 2.0 1 27.7
A. uralensis 0 0.1 0 0.0 0 0.1 1 0.3 0 0.0 0 0.2 0 0.0 0 0.0 0 0.0
M. minutus 0 0.1 0 0.1 0 0.3 0 2.8 0 0.0 0 0.2 0 0.0 0 0.1 0 0.7

A. oeconomus 1 0.2 0 0.2 1 0.5 19 11.8 0 0.3 1 0.8 0 0.0 0 0.3 1 1.2
M. arvalis 0 0.3 1 0.2 0 0.7 16 9.8 1 0.1 3 1.3 0 0.0 1 2.1 28 28.8
M. agrestis 0 0.5 1 0.2 0 1.0 1 2.6 0 0.1 3 3.0 0 0.1 0 0.2 2 2.2

Total 38 38 9 9 32 32 89 89 2 2 36 36 6 6 8 8 141 141
χ2 52.9 *** 14.4 NS 78.2 *** 137.5 *** 13.1 NS 157.4 *** 3.6 NS 248 *** 519 ***

https://www.mdpi.com/article/10.3390/land13081271/s1
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Table A2. Observed and expected frequencies of individuals with BCI > 4 in different small mammal
species depending on habitat. Green cells: observed frequencies ≥ 3 times more than expected ones;
brown cells: observed frequencies ≥ 3 times less than expected ones; ***—p < 0.0001, *—p < 0.05,
NS—not significant.

Species with Forest Shrub Wetland Meadow Riparian Mixed Disturbed Agricultural Commensal

BCI > 4 Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp
S. araneus 18 12.7 2 4.0 15 7.9 75 71.6 1 1.9 0 0.8 7 6.3 4 5.5 4 12.8
S. minutus 10 4.0 0 1.6 4 2.3 27 20.2 2 0.7 0 0.3 0 1.2 4 1.7 7 5.5
N. fodiens 0 0.8 0 0.1 0 0.5 2 2.0 0 0.0 0 0.1 0 0.2 0 0.1 0 0.7

M.musculus 0 0.2 0 0.1 1 0.1 6 1.3 0 0.0 0 0.0 1 0.4 7 2.3 64 15.9
C. glareolus 114 173.4 1 7.8 28 33.2 40 60.8 2 6.3 3 2.9 74 89.3 18 33.1 23 54.1
A. agrarius 16 4.9 2 2.3 5 2.7 147 149.9 4 2.7 2 0.6 19 12.5 56 31.7 19 19.9
A. flavicollis 100 67.5 14 5.1 0 4.7 49 50.0 7 5.2 0 1.3 118 109.4 42 44.9 57 37.6
A. uralensis 1 0.9 0 0.0 0 0.3 0 1.8 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
M. minutus 5 0.6 4 0.3 1 0.5 65 16.2 5 0.4 1 0.0 5 1.5 4 1.5 5 1.0

A. oeconomus 2 1.6 0 0.6 0 1.0 49 68.0 1 3.4 0 0.2 0 1.5 0 6.3 1 1.6
M. arvalis 1 2.4 0 0.6 2 1.2 42 56.4 0 0.8 0 0.3 0 0.4 45 48.6 11 39.0
M. agrestis 6 3.9 0 0.5 0 1.7 11 14.9 0 0.6 1 0.6 1 2.3 1 5.3 0 3.0

Total 273 273 23 23 56 56 513 513 22 22 7 7 225 225 181 181 191 191
χ2 107.7 *** 71.6 *** 27.7 *** 185.4 *** 63 *** 6.5 NS 19.8 * 53.2 *** 219.9 ***

Table A3. Observed and expected frequencies of individuals with BCI > 5 in different small mammal
species depending on habitat. Green cells: observed frequencies ≥ 3 times more than expected ones;
brown cells: observed frequencies ≥ 3 times less than expected ones; ***—p < 0.0001, **—p < 0.001,
NS—not significant.

Species with Forest Shrub Wetland Meadow Riparian Mixed Disturbed Agricultural Commensal

BCI > 5 Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs Exp

S. araneus 1 1.0 1 0.2 0 0.3 8 9.2 1 0.4 0 0.0 1 0.6 0 0.2 0 1.1
S. minutus 4 0.3 0 0.1 1 0.1 5 2.6 0 0.2 0 0.0 0 0.1 1 0.0 0 0.5
N. fodiens 0 0.1 0 0.0 0 0.0 0 0.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.1

M.musculus 0 0.0 0 0.0 1 0.0 1 0.2 0 0.0 0 0.0 1 0.0 0 0.1 9 1.4
C. glareolus 4 14.0 0 0.3 0 1.2 1 7.8 1 1.4 0 0.0 8 8.7 0 0.9 1 4.8
A. agrarius 2 0.4 0 0.1 0 0.1 12 19.3 0 0.6 0 0.0 1 1.2 3 0.9 1 1.8
A. flavicollis 8 5.4 0 0.2 0 0.2 6 6.4 2 1.2 0 0.0 9 10.7 0 1.2 4 3.3
A. uralensis 0 0.1 0 0.0 0 0.0 0 0.2 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
M. minutus 2 0.0 0 0.0 0 0.0 18 2.1 1 0.1 0 0.0 2 0.1 1 0.0 0 0.1

A. oeconomus 0 0.1 0 0.0 0 0.0 12 8.7 0 0.8 0 0.0 0 0.1 0 0.2 0 0.1
M. arvalis 0 0.2 0 0.0 0 0.0 2 7.3 0 0.2 0 0.0 0 0.0 0 1.3 2 3.5
M. agrestis 1 0.3 0 0.0 0 0.1 1 1.9 0 0.1 0 0.0 0 0.2 0 0.1 0 0.3

Total 22 22 1 1 2 2 66 66 5 5 0 0 22 22 5 5 17 17
χ2 62.6 *** 3.9 NS 10.0 NS 140.7 *** 11.5 NS 37.1 ** 8.9 NS 47.6 ***
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