Combined Application of Chemical and Organic Fertilizers Promoted Soil Carbon Sequestration and Bacterial Community Diversity in Dryland Wheat Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sample Collection and Determination
2.3.1. Soil Sample Determination
2.3.2. Determination of Metabolic Activity for Soil Microbial Carbon Sources
2.3.3. Extraction of Soil Microbial DNA and High-Throughput Sequencing
2.4. Data Analysis
3. Results
3.1. Effects of Fertilization on SOC and Its Fractions
3.2. Metabolic Functions of Soil Microbial Carbon Sources
3.2.1. Metabolic Capacity of Soil Microbial Carbon Sources
3.2.2. Metabolic Diversity of Soil Microbial Carbon Sources
3.2.3. Principal Component Analysis (PCA) of Carbon Sources
3.3. Effects of Fertilization on Soil Microbial Communities
3.3.1. Diversity Analysis of Soil Microbial Community
3.3.2. Composition of Soil Microbial Community
3.4. Correlation between SOC Fractions and Soil Microbial Community
4. Discussion
4.1. Effect of Long-Term Fertilizer Application on SOC Components in Soil
4.2. Effects of Long-Term Fertilization on Functional Diversity of Soil Microorganisms
4.3. Effects of Fertilization on Soil Microbial Community and Its Interactive Relationship with C Pool
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kroschewski, B.; Richter, C.; Baumecker, M.; Kautz, T. Effect of crop rotation and straw application in combination with mineral nitrogen fertilization on soil carbon sequestration in the Thyrow long-term experiment Thy_D5. Plant Soil 2022, 488, 121–136. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, T.; Ding, H.; Li, C.; Yu, M.; Liu, J.; Cao, C. The effects of straw returning and nitrogen fertilizer application on soil labile organic carbon fractions and carbon pool management index in a rice–wheat rotation system. Pedobiologia 2023, 101, 150913. [Google Scholar] [CrossRef]
- Zhang, Y.; Shengzhe, E.; Wang, Y.; Su, S.; Bai, L.; Wu, C.; Zeng, X. Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics. Catena 2021, 203, 105342. [Google Scholar] [CrossRef]
- Nie, X.X.; Duan, X.L.; Zhang, M.; Zhang, M.M.; Zhang, Z.Y. Cadmium accumulation, availability, and rice uptake in soils receiving long-term applications of chemical fertilizers and crop straw return. Environ. Sci. Pollut. Res. 2019, 26, 31243–31253. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xu, D.; Rong, J.; Ai, X.; Ai, S.; Su, X.; Sheng, M.; Yang, S.; Zhang, J.; Ai, Y. Landslide and aspect effects on artificial soil organic carbon fractions and the carbon pool management index on road-cut slopes in an alpine region. Catena 2021, 199, 105094. [Google Scholar] [CrossRef]
- Hao, M.; Hu, H.; Liu, Z.; Dong, Q.; Sun, K.; Feng, Y.; Ning, T. Shifts in microbial community and carbon sequestration in farmland soil under long-term conservation tillage and straw returning. Appl. Soil Ecol. 2019, 136, 43–54. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Lichter, K.; Dendooven, L.; Deckers, J. Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil 2007, 291, 39–54. [Google Scholar] [CrossRef]
- Schneider, T.; Keiblinger, K.M.; Schmid, E.; Sterflinger-Gleixner, K.; Ellersdorfer, G.; Roschitzki, B.; Richter, A.; Eberl, L.; Zechmeister-Boltenstern, S.; Riedel, K. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J. 2012, 6, 1749–1762. [Google Scholar] [CrossRef]
- Grosso, F.; Bååth, E.; De Nicola, F. Bacterial and fungal growth on different plant litter in Mediterranean soils: Effects of C/N ratio and soil pH. Appl. Soil Ecol. 2016, 108, 1–7. [Google Scholar] [CrossRef]
- Qiu, S.; Gao, H.; Zhu, P.; Hou, Y.; Zhao, S.; Rong, X.; Zhou, W. Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil Tillage Res. 2016, 163, 255–265. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.; Han, B.; Ouyang, Z.; Duan, X.; Zheng, H.; Miao, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob. Chang. Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Sapkota, T.B.; Bàrberi, P.; Antichi, D.; Risaliti, R. Long-termeffect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, B.; Badole, S.; Majumder, S.P.; Padhan, D.; Basak, N.; Narkhede, W.N. Interrelationship of biomass yield, carbon input, aggregation, carbon pools and its sequestration in Vertisols under long-term sorghum-wheat cropping system in semi-arid tropics. Soil Til. Res. 2018, 184, 164–175. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Li, P.P.; Han, Y.L.; He, J.Z.; Zhang, S.Q.; Zhang, L.M. Soil aggregate size and long-term fertilization effects on the function and community of ammonia oxidizers. Geoderma 2019, 338, 107–117. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, R.; Cheng, B.H.; Ye, L.F.; Li, W.J.; Shi, X.M. Effects of nitrogen and phosphorus additions on decomposition and accumulation of soil organic carbon in alpine meadows on the Tibetan Plateau. Land Degrad. Dev. 2021, 32, 1467–1477. [Google Scholar] [CrossRef]
- Zhao, S.; He, P.; Qiu, S.; Jia, L.; Liu, M.; Jin, J.; Johnston, A.M. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China. Field Crops Res. 2014, 169, 116–122. [Google Scholar] [CrossRef]
- Kumari, M.; Sheoran, S.; Prakash, D.; Yadav, D.B.; Yadav, P.K.; Jat, M.K. Long-term application of organic manures and chemical fertilizers improve the organic carbon and microbiological properties of soil under pearl millet-wheat cropping system in North-Western India. Heliyon 2024, 10, e25333. [Google Scholar] [CrossRef] [PubMed]
- Rudrappa, L.; Purakayastha, T.J.; Singh, D.; Bhadraray, S. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India. Soil Tillage Res. 2006, 88, 180–192. [Google Scholar] [CrossRef]
- Wei, F.; Wu, J. Short-term effects of returning granulated straw on soil microbial community and organic carbon fractions in dryland farming. J. Microbiol. 2020, 58, 657–667. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Sharma, S. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere 2015, 25, 534–545. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Liu, Z.D.; Song, Y.Y.; Wang, X.W.; Yuan, J.B.; Li, M.T.; Song, C.C. Soil microbial functional diversity is primarily affected by soil nitrogen, salinity and alkalinity in wetland ecosystem. Appl. Soil Ecol. 2024, 199, 105407. [Google Scholar] [CrossRef]
- Wang, Y.F.; Meng, H.S.; Li, T.L.; Xie, J.Y.; Li, L.; Li, L.N.; Huang, X.L. Effects of fertilization regime on the functional diversity of microbial carbon and nitrogen metabolism in reclaimed soil. Chin. Soc. Agric. Eng. 2020, 36, 81–90. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Tang, Z.H.; Wang, J.D.; Zhang, Y.C. Long-term organic fertilization reshapes the communities of bacteria and fungi and enhances the activities of C-and P-cycling enzymes in calcareous alluvial soil. Appl. Soil Ecol. 2024, 194, 105204. [Google Scholar] [CrossRef]
- Zhong, W.H.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.G.; Huang, Q.R.; Shen, W.S. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 2010, 326, 511–522. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2017, 75, 54–63. [Google Scholar] [CrossRef]
- Williams, A.; Börjesson, G.; Hedlund, K. The effects of 55 years of different inorganic the effects of straw returning and nitrogen regimes on soil properties and microbial community composition. Soil Biol. Biochem. 2013, 67, 41–46. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, D.W.; Zhou, B.K.; Zhao, B.S.; Ma, M.C.; Qin, J.; Jiang, X.; Chen, S.F.; Cao, F.F.; Shen, D.L.; et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42–51. [Google Scholar] [CrossRef]
- Breulmann, M.; Masyutenko, N.P.; Kogut, B.M.; Schroll, R.; Dörfler, U.; Buscot, F.; Schulz, E. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems. Sci. Total Environ. 2014, 497, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Ge, T.; Zhu, Z.; Luo, Y.; Yang, Y.; Xiao, M.; Yan, Z.; Li, Y.; Wu, J.; Kuzyakov, Y. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 2021, 398, 115121. [Google Scholar] [CrossRef]
- Song, H.M.; Gao, Y.; Yun, M.X.; Li, L.; Shi, X.Y.; Li, T.L. Effects of Long-term Fertilizations on the Organic Carbon Components of Soil Macroaggregates and the Yield of Wheat in Wheat Fields on the Loess Plateau. Huan Jing Ke Xue 2024, 45, 4187–4195. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 79–106. [Google Scholar]
- Liu, C.S.; Zhao, D.F.; Ma, W.J.; Guo, Y.D.; Wang, A.J.; Wang, Q.L.; Lee, D.J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 100, 1421–1426. [Google Scholar] [CrossRef]
- Hu, Q.Y.; Liu, T.Q.; Ding, H.N.; Guo, L.J.; Li, C.F.; Yang, J.; Cao, C.G. Application rates of nitrogen fertilizers change the pattern of soil organic carbon fractions in a rice-wheat rotation system in China. Agric. Ecosyst. Environ. 2022, 338, 108081. [Google Scholar] [CrossRef]
- Liu, B.; Xia, H.; Jiang, C.; Riaz, M.; Yang, L.; Chen, Y.; Fan, X.; Xia, X. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Sci. Total Environ. 2022, 841, 156608. [Google Scholar] [CrossRef]
- Sabir, M.S.; Shahzadi, F.; Ali, F.; Shakeela, Q.; Niaz, Z.; Ahmed, S. Comparative effect of fertilization practices on soil microbial diversity and activity: An overview. Curr. Microbiol. 2021, 78, 3644–3655. [Google Scholar] [CrossRef]
- Maltas, A.; Kebli, H.; Oberholzer, H.R.; Weisskopf, P.; Sinaj, S. The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degrad. Dev. 2018, 29, 926–938. [Google Scholar] [CrossRef]
- Ghimire, R.; Machado, S.; Bista, P. Decline in soil organic carbon and nitrogen limits yield in wheat-fallow systems. Plant Soil 2018, 422, 423–435. [Google Scholar] [CrossRef]
- Zhang, X.B.; Sun, N.; Wu, L.H.; Xu, M.G.; Bingham, I.J.; Li, Z.F. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China. Sci. Total Environ. 2016, 562, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Song, H.M.; Wu, X.Y.; Shi, X.Y.; Wang, H.Y.; Yun, M.X.; Xu, Z.J.; Li, T.L.; Ma, H.M. Effect of long-term fertilization on the soil aggregates and organic carbon components in wheat fields of Loess Platear. Chin. J. Appl. Environ. Biol. 2024. [Google Scholar] [CrossRef]
- Yu, Q.G.; Hu, X.; Ma, J.W.; Ye, J.; Sun, W.C.; Wang, Q.; Lin, H. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil Tillage Res. 2020, 196, 104483. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, L.; Zhang, J.; Li, D.; Han, X.; Zhu, B.; Li, Y.; Zhao, B.; Huang, P. Long-term fertilisation reveals close associations between soil organic carbon composition and microbial traits at aggregate scales. Agric. Ecosyst. Environ. 2021, 306, 107169. [Google Scholar] [CrossRef]
- Perveen, N.; Barot, S.; Maire, V.; Cotrufo, M.F.; Shahzad, T.; Blagodatskaya, E.; Stewart, C.E.; Ding, W.; Siddiq, M.R.; Dimassi, B. Universality of priming effect: An analysis using thirty five soils with contrasted properties sampled from five continents. Soil Biol. Biochem. 2019, 134, 162–171. [Google Scholar] [CrossRef]
- Antisari, L.V.; Falsone, G.; Carbone, S.; Vianello, G. Short-term effects of forest recovery on soil carbon and nutrient availability in an experimental chestnut stand. Biol. Fertil. Soils 2013, 49, 165–173. [Google Scholar] [CrossRef]
- Lin, Y.X.; Ye, G.P.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187–196. [Google Scholar] [CrossRef]
- Eo, J.; Park, K.C. Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agric. Ecosyst. Environ. 2016, 231, 176–182. [Google Scholar] [CrossRef]
- Wei, M.; Hu, G.; Wang, H.; Bai, E.; Lou, Y.H.; Zhang, A.; Zhuge, Y. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. Eur. J. Soil Biol. 2017, 82, 27–34. [Google Scholar] [CrossRef]
- Li, X.; Zhao, B.; Li, X.; Li, Y.; Sun, R.; Zhu, L.; Xu, J.; Wang, L.; Li, X.; Zhang, F. Effects of Different Fertilization Systems on Soil Microbe and Its Relation to Soil Fertility. Sci. Agric. Sin. 2005, 38, 1591–1599. Available online: https://europepmc.org/article/cba/589793 (accessed on 6 May 2024).
- Song, X.C.; Wang, H.L.; Qin, W.D.; Deng, X.J.; Tian, H.D.; Tan, Y.B.; Wang, S.N.; Cao, J.Z. Effects of stand type of artificial forests on soil microbial functional diversity. Chin. J. Appl. Ecol. 2019, 30, 841–848. [Google Scholar] [CrossRef]
- Stavridou, E.; Giannakis, I.; Karamichali, I.; Kamou, N.N.; Lagiotis, G.; Madesis, P.; Emmanouil, C.; Kungolos, A.; Nianiou, I.; Lagopodi, A.L. Biosolid-amended soil enhances defense responses in tomato based on metagenomic profile and expression of pathogenesis-related genes. Plants 2021, 10, 2789. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, X.; Guan, D.; Wei, D.; Zhao, B.; Ma, M.; Chen, S.; Li, J. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Appl. Soil Ecol. 2018, 125, 88–96. [Google Scholar] [CrossRef]
- Sokol, N.W.; Kuebbing, S.E.; Karlsen Ayala, E.; Bradford, M.A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol. 2019, 221, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Panchal, P.; Preece, C.; Peñuelas, J.; Giri, J. Soil carbon sequestration by root exudates. Trends Plant Sci. 2022, 27, 749–757. [Google Scholar] [CrossRef]
- Sokol, N.W.; Bradford, M.A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 2018, 12, 46–53. [Google Scholar] [CrossRef]
- Li, R.; Gao, Y.; Chen, Q.; Li, Z.; Gao, F.; Meng, Q.; Li, T.; Liu, A.; Wang, Q.; Wu, L.; et al. Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability, soil microbial community, and root morphology of wheat. Soil Tillage Res. 2021, 212, 105045. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Yang, N.; Hao, H.; Bilyera, N.; Zhang, X.; Li, T.; Razavi, B.S. Long-term straw and plastic film mulching have divergent effects on maize rhizosphere enzyme activity and bacterial community structure. Agric. Ecosyst. Environ. 2024, 364, 108894. [Google Scholar] [CrossRef]
- Zhang, X.; Myrold, D.D.; Shi, L.; Kuzyakov, Y.; Dai, H.; Thu Hoang, D.T.; Dippold, M.A.; Meng, X.; Song, X.; Li, Z.; et al. Resistance of microbial community and its functional sensitivity in the rhizosphere hotspots to drought. Soil Biol. Biochem. 2021, 161, 108360. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.J.; Wei, D.; Zhu, P.; Cui, X.; Zhou, B.; Chen, X.; Jin, J.; Liu, X.B.; Wang, G.H. Soil bacterial communities under different long-term fertilization regimes in three locations across the black soil region of Northeast China. Pedosphere 2018, 28, 751–763. [Google Scholar] [CrossRef]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef]
- De Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Bardgett, R.D. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef]
- Osono, T. Colonization and succession of fungi during decomposition of Swida controversa leaf litter. Mycologia 2005, 97, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Ellegaard-Jensen, L.; Aamand, J.; Kragelund, B.B.; Johnsen, A.H.; Rosendahl, S. Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation 2013, 24, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.J.; Ye, C.; Weintraub, S.R.; Hockaday, W.C. Molecular trade-offs in soil organic carbon composition at continental scale. Nat. Geosci. 2020, 13, 687–692. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Qian, X.; Zhang, H.; Dai, H.; Liu, K.; Gao, Y.; Fang, Z.; Liu, S.; Li, Z. The single season wheat straw returning to promote the synergistic improvement of carbon efficiency and economic benefit in wheat-maize double cropping system. Sci. Agric. Sin. 2022, 55, 350–364. [Google Scholar] [CrossRef]
- Li, Y.B.; Li, J.; Li, S.; Tian, X.H. Effects of reducing nitrogen application on crops yields, nutrients uptake and utilization with straw incorporation. Agric. Res. Arid. Areas 2015, 33, 79–84. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, G.; Li, T.; Jiang, L.; Wang, J.; Song, H.; Wang, H. Effects of straw returning on the organic carbon components of soil aggregates in wheat fields on the loess plateau. Trans. Chin. Soc. Agric. Eng. 2022, 38, 123–132. [Google Scholar] [CrossRef]
Treatment | Cumulative Fertilizer Application (kg/ha) | Cumulative Organic Fertilizer Application (kg/ha) | Cumulative Input of Exogenous C (Mg/ha) | ||
---|---|---|---|---|---|
N | P | K | |||
CK | 0 | 0 | 0 | 0 | 21.63 |
FP | 1500.0 | 261.0 | 0.0 | 0.0 | 31.10 |
OF | 899.3 | 284.6 | 236.1 | 0.0 | 34.10 |
OFM | 567.8 | 158.6 | 32.0 | 19,991 | 42.39 |
OFB | 567.8 | 158.6 | 32.0 | 19,991 | 41.06 |
Treatment | Shannon Diversity Index (H) | Richness Index (R) | Pielou Evenness Index (J) |
---|---|---|---|
CK | 3.69 ± 0.09 d | 12.33 ± 0.58 c | 1.47 ± 0.01 a |
FP | 3.93 ± 0.09 c | 14.67 ± 2.31 c | 1.47 ± 0.06 a |
OF | 4.16 ± 0.10 b | 18.33 ± 1.53 b | 1.43 ± 0.04 ab |
OFM | 4.37 ± 1.12 a | 22 ± 2.65 a | 1.42 ± 0.03 ab |
OFB | 4.51 ± 0.08 a | 24.67 ± 1.15 a | 1.41 ± 0.07 b |
Type of Carbon Source | Substrates | PC1 | PC2 | PC3 |
---|---|---|---|---|
Polymers | Tween 40 | 0.670 | −0.087 | 0.274 |
Tween 80 | 0.793 | 0.275 | −0.204 | |
α-Cyclodextrin | 0.098 | 0.390 | 0.392 | |
Glycogen | −0.631 | −0.365 | 0.295 | |
Carbohydrates | D-cellobiose | 0.833 | −0.342 | −0.157 |
α-D-lactose | 0.004 | 0.684 | −0.313 | |
β-Methyl-D-glucoside | 0.786 | −0.369 | −0.050 | |
D-xylose | 0.671 | 0.229 | −0.126 | |
I-erythritol | 0.580 | −0.215 | −0.323 | |
D-mannitol | 0.910 | −0.278 | 0.142 | |
N-acetyl-D-glu-cosamine | 0.878 | −0.120 | −0.046 | |
Glucose-1-phosphate | 0.716 | −0.275 | 0.338 | |
L-α-glycerol phosphate | 0.895 | 0.131 | −0.109 | |
D-galactonic acid-γ-lactone | 0.780 | −0.155 | 0.191 | |
Phenolic acids | 2-Hydroxybenzoic acid | −0.217 | −0.552 | 0.042 |
4-Hydroxybenzoic acid | −0.039 | −0.568 | 0.610 | |
Carboxylic acid | Pyruvic acid methyl ester | 0.215 | 0.236 | 0.717 |
D-glucosaminic acid | 0.607 | −0.366 | 0.577 | |
D-galacturonic acid | 0.878 | −0.098 | −0.211 | |
γ-Hydroxybutyric acid | 0.868 | 0.024 | 0.150 | |
Itaconic acid | 0.057 | 0.470 | 0.730 | |
α-Ketobutyric acid | −0.418 | 0.337 | −0.066 | |
D-malic acid | 0.310 | 0.528 | 0.355 | |
Amino acids | L-arginine | 0.558 | 0.590 | 0.147 |
L-asparagine | 0.714 | 0.011 | −0.140 | |
L-phenylalanine | 0.300 | 0.647 | 0.151 | |
L-serine | 0.955 | −0.135 | −0.010 | |
L-threonine | 0.602 | −0.066 | −0.522 | |
Glycyl-L-glutamic acid | 0.608 | 0.114 | −0.491 | |
Amines | Phenylethylamine | 0.148 | 0.341 | −0.167 |
Putrescine | 0.780 | 0.302 | 0.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Chang, Z.; Hu, X.; Li, Y.; Duan, C.; Yang, L.; Wang, H.; Li, T. Combined Application of Chemical and Organic Fertilizers Promoted Soil Carbon Sequestration and Bacterial Community Diversity in Dryland Wheat Fields. Land 2024, 13, 1296. https://doi.org/10.3390/land13081296
Song H, Chang Z, Hu X, Li Y, Duan C, Yang L, Wang H, Li T. Combined Application of Chemical and Organic Fertilizers Promoted Soil Carbon Sequestration and Bacterial Community Diversity in Dryland Wheat Fields. Land. 2024; 13(8):1296. https://doi.org/10.3390/land13081296
Chicago/Turabian StyleSong, Hongmei, Zixuan Chang, Xuan Hu, Yan Li, Chengjiao Duan, Lifan Yang, Haoying Wang, and Tingliang Li. 2024. "Combined Application of Chemical and Organic Fertilizers Promoted Soil Carbon Sequestration and Bacterial Community Diversity in Dryland Wheat Fields" Land 13, no. 8: 1296. https://doi.org/10.3390/land13081296
APA StyleSong, H., Chang, Z., Hu, X., Li, Y., Duan, C., Yang, L., Wang, H., & Li, T. (2024). Combined Application of Chemical and Organic Fertilizers Promoted Soil Carbon Sequestration and Bacterial Community Diversity in Dryland Wheat Fields. Land, 13(8), 1296. https://doi.org/10.3390/land13081296