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Abstract: Urban green spaces (UGSs) play a critical role in regulating global carbon cycling and
mitigating the increase in atmospheric CO2 concentrations. Research increasingly demonstrates that
UGSs not only sequester carbon through photosynthesis but also effectively save carbon emissions
by mitigating the urban heat island (UHI) effect. However, understanding the carbon-saving capacity
(CSC) and the role of landscape patterns of UGSs in warming cities remains limited. Therefore,
we have evaluated the carbon-saving capacity of UGSs in the main urban area of Shangqiu City
by utilizing high-resolution remote sensing data and machine learning techniques. The study has
focused on green patches larger than 10,000 m2 and has analyzed the influence of landscape patterns
of UGSs on carbon saving intensity (CSI) and carbon saving efficiency (CSE). The results reveal that
the total CSI and the average CSE of UGSs are 7716 t CO2 and 2.9 t CO2 ha−1 in Shangqiu, respectively.
Landscape patterns of UGSs can explain 82% and 64% of the variability in CSI and CSE variance,
respectively. Specifically, green space area is the critical determinant of CSI and CSE, followed by the
perimeter–area ratio, shape index, and fractal dimension of UGSs. Therefore, this study advocates
for the strategic integration of UGSs into city planning, emphasizing their spatial distribution and
configuration to maximize their cooling and carbon-saving capacity.

Keywords: green space; carbon saving capacity; high-resolution remote sensing; machine learning;
Shangqiu

1. Introduction

Urbanization has led to the widely recognized phenomenon of the urban heat island
(UHI) effect [1,2]. The adverse impacts of UHI significantly harm the health of urban
residents [3–6]. Urban planners must consider the complex relationship between rapid
urbanization and UHI to ensure the sustainability of urban ecosystems [7]. Despite their
importance, urban green spaces (UGSs), which directly provide ecological value in urban
areas, are often overlooked and under-researched [8]. UGSs play a crucial role in offering
local services to residents and are seen as a natural solution for mitigating UHI [9]. UGSs
are considered effective strategies for alleviating global warming and UHI because they
provide shade and facilitate evapotranspiration, helping to save energy and reduce carbon
emissions [9–13]. Utilizing UGSs for cooling is cost-effective, environmentally friendly,
and politically acceptable [14,15]. Quantifying the energy or carbon saving capacity (CSC)
of UGSs in terms of heat mitigation can help develop more sustainable, economical, and
decentralized urban measures in the context of severe urban climate warming [16]. How-
ever, the influencing factors of urban CSC, such as area, shape, and configuration, remain
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unclear. Thoroughly identifying the CSC of UGSs can scientifically guide sustainable urban
planning to alleviate urban heat environments [17].

The CSC of UGSs due to heat mitigation has been confirmed by some previous studies.
For instance, urban parks in the Yangtze River Economic Belt could reduce CO2 emissions
by 31,722.5 t CO2, equivalent to 38 million kWh of cooling from artificial devices, offsetting
5.37% of daily fossil fuel carbon emissions [18]. Shangqiu City Park can reduce a total
of 300.57 t CO2 due to heat mitigation [19]. UGSs in 48 cities in China could reduce a
total of 353,000 t CO2 due to heat mitigation [20]. Identifying the driving factors behind
the CSC of UGSs remains a critical issue in urban ecology [21,22]. Increasing the area
of UGSs can directly enhance the cooling effect, thereby reducing carbon emissions [23].
Meanwhile, there are thresholds for the impact of the area on cooling effects and CSC, and
these thresholds vary. For example, Zhiyu Xu’s study on UGSs in Beijing has found that
medium-sized green spaces have the optimal cooling effect [24]. Zhou et al. suggest that
the optimal cooling threshold in some Chinese cities is 20 ha or more [25]. Additionally,
the shape of UGSs significantly impacts their CSC. Studies conducted on parks inside the
Yangtze River Economic Belt reveal that the UGS’s design significantly influences the parks’
CSC [18]. More complex park shapes can offer greater cooling effects [26]. Another study
found that more regular-shaped UGSs can provide better cooling effects [27]. Therefore,
identifying the driving factors of CSC at the urban scale is essential for effective heat
mitigation. Furthermore, the growing demand for land makes it challenging to increase
the area of UGSs directly [28]. As public awareness of climate change and the emphasis on
ecological security in urban planning has been attached, opportunities emerge to improve
existing UGSs or create new ones. Exploring the driving factors of CSC can maximize
the benefits of limited UGSs, enhancing the efficiency of cities in addressing extreme
heat-related risks [29].

The relationship between UGS characteristics and CSC is complex and multifaceted.
Numerous new algorithms have been applied to elucidate this relationship [17]. Machine
learning methods have gained significant attention in exploring the connection between
UGS metrics and CSC due to their flexibility and high adaptability in addressing nonlinear
regression problems [30–32]. With recent advancements in analytical methods, the non-
linear characteristics of UGS indicators, particularly the cooling effect and CSC of UGSs,
have been increasingly explored [18]. While linear regression and machine learning have
extensively studied both linear and nonlinear relationships, there remains a gap in under-
standing the interaction effects between UGS landscape metrics and CSC. The interaction
effects indicate that for an influencing factor that acts as a moderator, its effect on CSC
depends on other factors, i.e., the moderating effect of the moderated factor. A study has
shown that the effect of some landscape structure indicators on land surface temperature
receives enhancement or inhibition from other indicators, i.e., there is an interaction, and
at the same time, this interaction varies with the magnitude of the influencing factor [33].
McCarty et al. have found that green space, residential, and commercial space have the
greatest influence on the cooling effect of parks through the study of their interaction,
and the relationship between these two can be explored in more detail based on the in-
teraction [34]. The results of another study on Tianjin city have revealed that changes in
land surface temperature are the result of combinations of multiple factors with nonlinear
interactions and that both factors have enhanced their explanation of surface temperature
after interaction [35]. Recently, the SHapley Additive exPlanations (SHAP) method has
been used to effectively demonstrate the relationships between influencing factors and
their impacts on predictions [36]. SHAP can better interpret results and optimize models
by revealing the relative contributions of various factors compared to traditional regression
models [37]. Therefore, the SHAP method, combined with Random Forest Regression
(RFR), can continuously reveal the interactions between landscape patterns and effectively
explain the contribution of key influencing factors to the CSC of UGSs.

In Shangqiu, a prominent city in central China, the growing demand for natural spaces
has led to the development and planning of more UGSs. However, understanding how
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these green spaces can contribute to carbon saving through heat mitigation and maximizing
their potential remains a significant challenge for sustainable urban development. This
study analyzes the data from 769 UGS patches in Shangqiu to quantify their CSC during
the summer of 2020–2021. Our study aims to: (1) spatially quantify the CSC of UGSs;
(2) identify potential landscape drivers affecting the CSC of UGSs; and (3) explore the role
of interaction effects between landscape pattern metrics in moderating changes in CSC.

2. Materials and Methods
2.1. Study Area

Shangqiu is located at latitude 33◦43′~34◦52′ N and longitude 114◦49′~116◦39′ E in the
eastern part of Henan Province, China (Figure 1). The city is one of the major birthplaces of
Chinese civilization, spanning 10,704 ha. Shangqiu features distinct seasons, in addition
to a mild continental monsoon climate that is semi-humid [38]. Its population grew from
7.35 million to 7.66 million between 2010 and 2023, while its GDP reached 310.9 billion
yuan in that same year [39].
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Figure 1. Location of the study area: (a) China, (b) Henan Province (light green) and Shangqiu City
(dark green), and (c) the central area of Shangqiu with 769 urban green spaces.

To mitigate the negative impacts of urbanization, Shangqiu has been striving to become
a forest and garden city. Numerous UGSs and city parks have been established, along with
rural greening projects, mandatory tree planting, and forest and wetland restoration policies.
Several national wetland parks have been constructed and are now in operation. The Minquan
Yellow River Ancient Road Wetland has been included on the List of Wetlands of International
Importance, making it one of China’s 64 internationally significant wetlands [38]. For this study,
we selected 769 UGSs within the main urban area of Shangqiu. Considering the additional
cooling effect provided by nearby water bodies, we excluded any UGSs adjacent to water. To
minimize interactions between UGSs, we have used a binning method. The selected UGSs are
divided into 20 bins based on their area: Bin1: 1–1.04 ha, Bin2: 1.04–1.07 ha, Bin3: 1.07–1.12 ha,
Bin4: 1.12–1.18 ha, Bin5: 1.18–1.23 ha, Bin6: 1.23–1.29 ha, Bin7: 1.29–1.36 ha, Bin8: 1.36–1.47 ha,
Bin9: 1.47–1.56 ha, Bin10: 1.56–1.65 ha, Bin11: 1.65–1.8 ha, Bin12: 1.8–2.0 ha, Bin13: 2.0–2.2 ha,
Bin14: 2.2–2.5 ha, Bin15: 2.5–2.8 ha, Bin16: 2.8–3.3 ha, Bin17: 3.3–4.0 ha, Bin18: 4.0–5.1 ha, Bin19:
5.1–9 ha, and Bin20: >9 ha.
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2.2. Research Procedure and Data Source

As illustrated, this study follows four main steps: (1) Data Source: Landsat 8 OLI_TIRS
satellite images are from Google Earth Engine (GEE) for the summers of 2020–2021 (June to
September), selecting images with less than 10% cloud cover. Five Landsat remote sensing
images are selected on 28 August 2020, 4 September 2020, 28 June 2021, 30 July 2021, and
16 September 2021, respectively. The classical Radiative Transfer Equation (RTE) is used to
quantify the land surface temperature (LST) of Shangqiu City, and the average summer
LST for each grid cell has been obtained. Furthermore, UGS in Shangqiu are extracted
using GF-2 high-resolution imagery (0.8 m) through land use classification. (2) Data Pro-
cessing: Green spaces smaller than 1 ha are excluded from this study due to the 30-m
resolution of the LST data, and 769 green spaces are finally selected. Object-based image
analysis and manual visual correction are applied to extract UGSs from the GF-2 imagery.
(3) Variable Quantification: The average LST, carbon saving intensity, and carbon saving
efficiency of each UGS are calculated based on their cooling boundaries. Additionally,
7 landscape pattern indices are computed using Fragstats 4.2 to assess potential influencing
factors. These indices include Area (AREA), Perimeter (PERIM), Mean Radius of Gyration
(GYRATE_MN), Mean Patch Area (PARA_MN), Mean Patch Shape Index (SHAPE_MN),
Mean Fragment Shape Index (FRAC_MN), and Mean Related Circumscribing Circle (CIR-
CLE_MN), as shown in Table 1. (4) Relationship Identification: The RFR model combined
with the Shapley additive explanations (SHAP) method was used to identify key factors
influencing the CSC of UGSs (Figure 2).

Table 1. The explanation of the study’s use of landscape indexes.

Metrics Abbreviation Description

Area Area Area of each UGS

PERIM PERIM Perimeter of each UGS

Mean radius of gyration GYRATE_MN GYRATEMN = mean
(

GYRATE
[

patchij

])
Perimeter–Area Ratio Distribution PARA_MN PARAMN = mean

(
PARA

[
patchij

])
Shape Index Distribution SHAPE_MN SHAPEMN = mean

(
SHAPE

[
patchij

])
Mean Fractal Dimension Index FRAC_MN FRACMN = mean

(
FRAC

[
patchij

])
Mean of related circumscribing circle CIRCLE_MN CIRCLEMN = mean

(
CIRCLE

[
patchij

])
GYRATE

[
patchij

]
: The radius of gyration of each UGS; PARA

[
patchij

]
: The perimeter area ratio of each UGS;

SHAPE
[

patchij

]
: The shape index of each UGS; FRAC

[
patchij

]
: The fractal dimension index of each UGS.

CIRCLE
[

patchij

]
: The related circumscribing circle of each UGS.
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2.3. Methods
2.3.1. Calculating Carbon Saving Capacity and Extracting of UGS

The carbon-saving capacity of UGSs due to heat mitigation is estimated as the amount
of CO2 emissions that will be necessary to achieve equivalent cooling effects in the absence
of UGSs. The carbon-saving capacity of UGSs is defined as the product of CSI and CSE.
Drawing from previous studies [24,40], an area-adaptive method is utilized to define
the cooling distance of each UGS. Assuming UGSs are circular, the cooling distance is
defined as a buffer area approximately equal to the UGS area (Figure 3). The area-adaptive
method resolves issues combined with using inflection point methods to determine cooling
distances for small UGSs [25], and it avoids the pitfalls of applying fixed thresholds to
UGSs of varying sizes [41]. The calculation formula is as follows:

P =
(√

2 − 1
)
×

√
A
π

(1)

where, P and A represent the buffer distance and the area of the UGS, respectively.
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This study employs the slice carbon saving model proposed by existing works to
calculate CSI and CSE [18,42]. The formula is as follows:

CSI = α ×
∫ H

0

N

∑
i=0

1
3
(Si + Si+1 +

√
SiSi+1))∆T × h (2)

here, α represents the product of the specific heat capacity of air (1004.68 J kg−1 ◦C−1), air den-
sity (1.2923 kg m−3), and coal consumption per unit of electricity generated
(841 g/3.6 MJ) [18]. The horizontal influence distance is denoted by h (70 m) [42]. The
basis zones are Si and Si+1, and the temperature difference between adjacent buffer zones is
represented by ∆T. Finally, CSE is calculated as CSI divided by UGS area.

The information on UGSs in this study is extracted from GF-2 remote sensing imagery
with a resolution of 0.8 m on 10 August 2021. To delineate the distribution of green spaces
in Shangqiu City, an object-based classification method is employed in ENVI 5.3. This
approach is enhanced by optimizing samples using high-resolution imagery from Google
Earth in 2021, and further refined through expert visual inspection to minimize errors in
land use data. The extraction results of UGSs in Shangqiu are shown in Figure 1c.

2.3.2. Random Forest Regression

The present research has used an RFR model to examine the link between CSC and po-
tential affecting factors. Random Forest is a machine learning algorithm based on individual
decision trees that is widely used in environmental and ecological research [43–45]. Com-
pared to traditional linear regression models, RFR is more robust against multicollinearity
and interaction effects among independent variables. It is less sensitive to outliers and noise
in the dataset, making overfitting less likely [46]. For the same dataset, RFR demonstrates
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higher accuracy compared to other traditional regression models [47,48]. In this study, RFR
is implemented using the “randomForest” and “caret” packages in R 4.2.1.

2.3.3. Shapley Additive Explanation (SHAP)

This study utilizes the SHAP method alongside RFR to elucidate the relationship
between potential influencing factors and CSC. By computing each factor’s SHAP value,
SHAP successfully addresses the “black box” issue that arises with machine learning
regression models by quantifying each factor’s impact on the final result. It identifies
the relative contribution of each factor to the CSC [36,49]. SHAP is a game theory-based
additive attribution algorithm. The factor’s impact on saving carbon emissions becomes
more substantial as the absolute SHAP value increases [50]. The calculation formula for
SHAP feature attributions is as follows:

∅j = ∑ S ⊆ {x1, . . . , xp}\{xj} |S|!(p − |S| − 1)!
p!

(
fx
(
S ∪

{
xj
})

− fx(S)
)

(3)

here, ∅j stands for the contribution of the j-th influencing factor, x is the vector of influ-
encing factor values for the instance being explained, and p is the number of influencing
factors. fx(S) denotes the prediction value for the subset S, where features not included
in S are marginalized [37,51]. SHAP values are computed based on an additive feature
attribution method, as expressed by the following formula:

g(z) = ∅0 + ∑M
j=1 ∅jzj (4)

here, g represents the explanatory model, z indicates the presence of a factor, M is the
number of factors, and ∅j is the model coefficient, representing the attribution of the j-th
factor to the model prediction [36]. ∅0 is a constant, indicating the expected value of the
model prediction [52].

In this study, global SHAP values are used to express the overall importance of each
factor, while local SHAP interpretability identifies the most critical factors affecting the CSC
of UGSs [34]. Negative SHAP values represent a negative influence on CSC, whilst positive
values show a beneficial effect. Additionally, SHAP interaction values are employed to
elucidate the interaction effects of influencing factors on CSC.

3. Results
3.1. The Heterogeneity of UGS’s CSC

In Shangqiu City, the 769 UGSs collectively have contributed to a saving of 7716 t
CO2 emissions. Specifically, the total area of UGSs was 1973 ha, with CSI values ranging
from 0.05 to 293.66 t CO2. On average, each UGS has mitigated 10.03 t CO2 emissions by
alleviating UHI. Spatially, UGSs with higher CSI values are predominantly situated on the
outskirts of the city, while those in the city center generally display lower CSI values. The
UGSs with significant CSI are primarily located in the northwest and northeast parts of
Shangqiu. The CSE of UGSs ranged from 0.004 to 10.44 t CO2 ha−1, with an average CSE
of 2.9 t CO2 ha−1. There is evident spatial heterogeneity in the distribution of CSE, with
higher values concentrated within the urban core and lower values more prevalent on the
urban periphery (Figure 4a,b).

The frequency plot analysis has shown that the CSI of the green space in Shangqiu
City is highly variable. The CSI is mainly distributed in 0~20 t CO2, with a total of 687,
accounting for 89% of the total (Figure 4c). Compared with CSI, CSE was more evenly
distributed. CSE was mainly distributed in 0~5 t CO2 ha−1, totaling 651, accounting for
85%. As the value of CSE increases, the number of UGSs decreases gradually (Figure 4d).
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As the area of UGSs expanded, CSI generally exhibited a linear growth trend
(R2 = 0.66) (Figure 5). UGSs of comparable sizes have displayed significant heterogeneity
in CSI. For instance, a 16 ha UGS has a CSI of 235.5 t CO2, while a 33 ha UGS has a 98.97 t
CO2, indicating a difference of 136.53 t CO2. These differences are less noticeable in UGS
areas smaller than 5 ha. However, as the size of UGSs increased, the variability in CSI has
become more apparent. Further binning analysis has illustrated the relationship between
the CSI of UGSs (5th percentile, 95th percentile, and mean values) and their respective
areas (Figure 5c). The results have demonstrated a stronger positive correlation (R2 = 0.99)
between CSI and the UGS area, with CSI values escalating from 1.68 t CO2 in Bin 1 to
82.42 t CO2 in Bin 20. Moreover, the heterogeneity of CSI has become more pronounced
with the increase in area, especially in larger UGSs. The largest observed difference in CSI
within Bin 20 can reach up to 292.21 t CO2.

In contrast to CSI, the CSE has exhibited a weaker correlation with the UGS area (Figure 5).
Similar to CSI, CSE has displayed significant heterogeneity even among UGSs of identical
size. For example, the largest UGS (33 ha) has a CSE value of 2.97 t CO2 ha−1, while a
1.6 ha UGS has a CSE value of 12.95 t CO2 ha−1, representing a difference of 4.3 times
(9.98 t CO2 ha−1). Furthermore, higher CSE values are more common in smaller UGSs
(>10 ha). This study has identified 28 UGSs with high CSE (<10 t CO2 ha−1), 25 of which
are smaller than 10 ha, accounting for 89% of the total. However, further binning analysis
has revealed that the variability of CSE with respect to UGS area is more pronounced and
did not necessarily increase with area. For instance, the difference in CSE was larger in Bin 5
(8.75 t CO2 ha−1) than in Bin 16 (8.01 t CO2 ha−1). Additionally, an exploration of the
relationship between CSE (5th percentile, 95th percentile, and mean values) and UGS area
(Figure 5d) has indicated a weak overall positive correlation between UGS area and the mean
value of each bin, despite significant fluctuations. These results have underscored the strong
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influence of internal structure within UGSs on CSE and have highlighted the potential for
significant enhancement of UGS carbon sequestration capabilities through thoughtful and
scientifically informed landscape planning.
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Figure 5. The scatter plot depicting the relationship between UGS area and CSI (a) and CSE (b); The
5th (blue line), mean (green dots), and 95th (orange line) of CSI (c) and CSE (d) along the 20 area bins
of 769 urban green spaces. The ranges of area bins are: Bin1: 1–1.04, Bin2: 1.04–1.07, Bin3: 1.07–1.12,
Bin4: 1.12–1.18, Bin5: 1.18–1.23, Bin6: 1.23–1.29, Bin7: 1.29–1.36, Bin8: 1.36–1.47, Bin9: 1.47–1.56,
Bin10: 1.56–1.65, Bin11: 1.65–1.8, Bin12: 1.8–2.0, Bin13: 2.0–2.2, Bin14: 2.2–2.5, Bin15: 2.5–2.8, Bin16:
2.8–3.3, Bin17: 3.3–4.0, Bin18: 4.0–5.1, Bin19: 5.1–9, and Bin20: >9 (ha).

3.2. Relationships between Carbon-Saving Capacity and Landscape Influencing Factors

The Pearson correlation coefficients, which show the relationship between Landscape
Indices and CSC, are visualized in Figure 6. The CSI shows a significant positive correla-
tion with AREA (0.90), indicating that larger UGSs can notably enhance CSI. CSE is also
positively correlated with AREA, but the correlation is weaker compared to CSI (0.48).
Furthermore, there is a substantial positive correlation between CSI and CSE and the
SHAPE and PERIM indices. This shows that the irregularly shaped green spaces can en-
hance the cooling effect of green spaces on the atmosphere around them, hence improving
UGS’s capacity to reduce carbon emissions. The GYRATE positively has influenced both
CSI and CSE, suggesting that a more compact arrangement of UGS patches significantly
has enhanced their capacity for cooling and CSC. In contrast, the PARA negatively im-
pacts both CSI and CSE, indicating that reducing this ratio can notably increase the CSC
of UGSs. Moreover, the FRAC has correlated positively with CSI (0.24) and CSE (0.12),
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which indicates that higher complexity in the configuration of UGS patches has enhanced
the CSC.
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In the RF regression model for CSI and CSE, seven key landscape factors can explain
82% and 64% of the variance. The SHAP method is used to analyze the global SHAP value
of each factor (Figure 7). Our findings indicated that the most significant factor influencing
CSI and CSE is AREA (SHAP = 14326 and 0.31), accounting for 49.5% and 54.6% of the
model, respectively. FRAC, SHAPE, and GYRATE are the following configuration metrics
of green space, contributing 25.1%, 11.9%, and 8.1% of the CSI variations, respectively.
PARA, SHAPE, GYRATE, and PERIM are the following configuration metrics to CSE, with
contribution rates of 11.8%, 9.6%, 7.8%, and 7.6%, respectively. The factors with the least
influence on CSI variations are PARA and CIRCLE, and together, they have shared only
2.8% of the total variability. Meanwhile, CIRCLE and FRAC are the least factors, accounting
for 8.6% of the CSE variations.
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3.3. Responses of CSI and CSE to the Configuration Metrics of UGS

In order to quantify the response of the UGS patch structure to its CSC, we have
analyzed the relationship between each UGS index and the corresponding importance of
CSI and CSE and have drawn a dependency diagram (Figure 8). For the AREA, 87.1% of the
SHAP values are less than 0, indicating a predominantly negative impact of patch size on
both CSI and CSE. The negative influence of the AREA on CSI and CSE stabilized when
the area reached 3.66 ha and 5.03 ha, respectively, marking these values as potential turning
points. For the GYRATE, 70.7% of the SHAP values for CSI are less than 0, while 64% of
the SHAP values for CSE are greater than 0. This has suggested a negative overall effect of
GYRATE on CSI and a positive overall effect of GYRATE on CSE, with respective turning
points observed at 60 and 90. For the PERIM, 86.2% of the SHAP values for CSI are less than
0, while 53% of the SHAP values for CSE are greater than 0. Inflection points are observed at
2500 m and 1600 m. Similarly, the CIRCLE has affected CSI and CSE at critical points of 0.55
and 0.52, respectively. For the PARA, the critical points impacting CSI and CSE are found
to be 690 and 565, respectively. Notably, the FRAC and SHAPE do not exhibit any critical
points for either CSI or CSE, but the impact of this metric on CSI is negative.
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3.4. Interactions between the Configuration Metrics of UGS

The interaction between indicator pairs demonstrated a significant relationship be-
tween the effect of AREA on CSI and the metrics PERIM, GYRATE, and PARA (Figure 9).
As AREA has increased, the corresponding increase in PERIM, GYRATE, and PARA metrics
has raised the interaction value from −90,000 to −10,000, suggesting that PERIM, GYRATE,
and PARA may inhibit the CSC of AREA. Conversely, an increase in the metrics SHAPE,
FRAC, and CIRCLE can potentially enhance the CSC of AREA. When the values of SHAPE,
FRAC, and CIRCLE exceeded 700, 2.3, and 1.17, respectively, an increase in PARA reduced
the interaction value to 0, implying that SHAPE, FRAC, and CIRCLE were the primary
factors promoting PARA. The interaction of each parameter with PERIM and SHAPE
exhibited a pattern opposite to that of AREA. The impacts of the metrics CIRCLE, FRAC,
and GYRATE on CSI, in relation to the other parameters, are illustrated in Figures S2–S6.
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The influence of AREA on CSE is as significant as its relation to PERIM, GYRATE, and
PARA, albeit to a slightly different degree compared to CSI (Figure 9). As AREA has increased,
the corresponding rise in PERIM, GYRATE, and PARA metrics elevated the interaction value
from −1.1 to −0.2, potentially suppressing the CSC of AREA. Simultaneously, an increase
in the metrics SHAPE, FRAC, and CIRCLE can also enhance the CSC of AREA. When the
values of PARA, SHAPE, and CIRCLE have exceeded 900, 3.0, and 1225, respectively, the role
of FRAC in promoting carbon emission saving in green spaces is diminished. The interactions
among the remaining parameters are depicted in Figures S2–S6.

4. Discussion
4.1. Comparison of CSC of UGS

Our results have indicated that the average CSE of UGSs in Shangqiu is 2.90 t CO2 ha−1,
surpassing findings from studies on Shangqiu City parks and parks in the Chinese Yangtze
River Economic Belt (Table 2). The discrepancies can be explained by the following con-
siderations. Firstly, the amount and proportion of small-scale UGSs may be a contributing
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factor. Previous studies have identified a total of 118 parks in Shangqiu City, with 99 of
them being smaller than 10 ha, constituting 84% of all parks [19]. In contrast, this study
has encompassed 769 UGSs, with 755 of them being smaller than 10 ha, accounting for
98% of the total. Existing research has demonstrated a close relationship between the UGS
scale and CSE. For instance, studies by Mo Chen et al. have shown higher CSE in small
UGSs [18]. Weng Lin’s research on UGSs in Beijing similarly suggested that smaller UGSs
exhibit better CSE [42]. Jian Peng et al.’s findings indicated that smaller UGSs have a
greater cooling intensity, corresponding to higher CSE [53]. Previous studies on Shangqiu
City parks also has highlighted that small parks generally exhibit higher CSE compared
to medium and large parks [19]. Secondly, the exclusion of water bodies may lead to
differences in CSE. This study has employed a more precise method to quantify the CSC
of UGSs by excluding water bodies during LST calculations. In contrast, previous studies
on Shangqiu’s parks did not exclude water bodies. The cooling effect of water bodies has
been extensively proven by scholars [54–57]. Therefore, water bodies significantly have
lowered the average temperature of UGSs, increasing the temperature difference with
the surrounding environment and thus contributing to slightly higher CSE in this study
compared to those studies on Shangqiu’s parks.

Table 2. Average Carbon Savings Efficiency in different regions.

City or Region Carbon Savings Efficiency
(t CO2 ha−1) Source

Shangqiu Urban Green Space (771) 2.90 This study
Shangqiu City Park (118) 1.79 [19]

The Yangtze River Economic Belt City Park (1510) 1.08 [18]

Köppen’s subtropical humid climate 1.09

[18]

Köppen’s subtropical monsoon humid climate 0.91
Yangtze River Delta urban agglomeration 1.2

Cheng-Yu urban agglomeration 0.95
Middle-Reach Yangtze River urban agglomeration 0.89

Shaxing City 1.6
Meishan City 0.26

In detail, the CSEs of UGSs in Shangqiu City are all higher than the results of the
two climate zones, three city agglomerations, and other cities studied by the previous
researchers (Table 2). This difference may also be due to the calculation method and study
objectives. In other words, definitions of cooling effects and threshold distances of UGSs
may also contribute to differences in CSE. Xin Cao et al. have used a fixed buffer zone of
500 m to quantify park cooling effects [41]. Wenqi Lin et al. have equated the calculation of
UGS cooling intensity to that of lake basins, thereby defining the cooling intensity of UGSs
as equivalent to the watershed area of lakes [58]. Mo Chen has considered the inflection
point of LST around the buffer zone surrounding UGSs as the cooling boundary, resulting
in different cooling boundaries for each UGS [18]. Chi-Ru Chang et al. have defined the
cooling range of UGSs as the distance equivalent to one UGS width from the UGS, which is
also the method used in our research [40]. Moreover, variations in CSE can be caused by
variations in the study subjects. This study has focused on UGSs, whereas previous studies
focused on urban parks [19]. The cooling effects of both have been confirmed by many
studies [11,24,59,60]. However, parks have duties such as providing activity and service
facilities for urban residents, including squares, sports fields, and roads. According to
China’s park design guidelines, parks must have at least 65% green space, which allows for
the arrangement of 35% of impermeable surfaces. Parks have lower CSE compared to UGSs
because impermeable surfaces greatly raise LST and decrease the temperature differential
between them and the surrounding area [61,62]. Most previous studies have focused on
parks, but in China, parks are only part of the UGS [18,19,42]. Therefore, a large number
of green areas and urban forests have been neglected. Few studies have comprehensively
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investigated the CSC of all green spaces in the city. Our work quantifies the CSC of all
UGSs in the city, which has an important impact on the shift from “Quantity increase” to
“Quality improvement” of UGSs.

In addition, our results show that high CSE values are mostly distributed in the inner
part of the city, but high CSI values are mostly distributed in the outer part of the city.
This may be related to the distribution characteristics and planning strategies of UGSs.
The distribution of UGSs in Shangqiu City has the characteristics of a small area and a
small number in the city center, and a large number and a large area in the city periphery
(Figure 1c). The positive correlation between CSI and UGS areas and the higher CSE in small
UGS areas has been widely confirmed [18,24,63,64]. In recent years, various cities in China
have implemented afforestation policies to address urban climate issues. For example,
Beijing has implemented afforestation policies such as the “Plain Afforestation Project” and
“Planting Where Possible” [65]. However, due to the difficulty of directly increasing green
space area within cities, most policies have prioritized afforestation in suburban areas far
from the city center [17,66]. On the other hand, the UGS system planning of Shangqiu
City is also one of the reasons. The UGS of Shangqiu is planned to be divided into three
major zones based on the document “Shangqiu Master Plan (2015–2030)”, which are the
Yellow River Ecological Zone (north), the Agroforestry Ecological Zone (east), and the Relic
Ecological Zone (southwest) [67]. These three major UGS systems are located at the urban
periphery. While the smaller scale parks and green spaces are planned to be distributed in
spots in the city center. This indirectly reinforces the distributional characteristics of urban
green spaces, which leads to significant spatial heterogeneity of CSI and CSI.

4.2. Impact of Landscape Structures on UGS’s CSC

Overall, landscape patterns significantly influence the CSC of UGSs, aligning with
previous CSC studies [18,19]. Specifically, this study has revealed that the CSI and CSE
of UGSs are primarily influenced by the AREA indices, showing a significant positive
correlation. This is consistent with the results of previous studies on urban green spaces in
Beijing and parks in the Yangtze River Economic Belt. Wenqi Lin et al. showed a significant
and direct positive correlation between the CSC and the area of UGS in their study of green
spaces in Beijing [42]. The results of CSC studies on parks in the Yangtze River Economic
Zone also showed that larger parks can significantly increase CSC values [18]. The SHAP
analysis results indicate that the positive effect of area on CSI and CSE reaches a turning
point when the green space area exceeds 3.66 ha and 5.03 ha, respectively. This suggests
that larger UGSs tend to have higher CSC, and 5 ha is the minimum area for park design.
This finding is consistent with Wenqi Lin et al.’s research on the CSC of UGSs in Beijing,
which indicates a direct and significant relationship between CSC and UGS scale [42]. Some
previous studies have indicated that as green space area increases, the cooling distance
linearly increases while cooling intensity nonlinearly increases [68]. Larger patches of green
space are more stable in terms of climate evolution than smaller areas and are more likely to
provide effective cooling effects and CSC. Moreover, larger UGSs harbor more vegetation,
leading to increased transpiration and shading effects, thereby enhancing cooling and
elevating CSI values [10,64,69].

Additionally, PARA and SHAPE are identified as primary drivers of CSE in UGSs,
showing a significant positive correlation. This result is consistent with the findings of
Wenqi Lin et al. that the shape of the UGSs is directly and positively correlated with the CSC.
The more complex the shape of the UGS, the longer the boundaries of the unit UGS, and
thus more heat flows through these boundaries into the cooled UGS [42]. In other words,
this is attributed to the ability of complex-shaped UGSs to enhance thermal connectivity
with the surrounding environment, thereby improving cooling efficiency [18]. CSC studies
of parks in the Yangtze River Economic Zone have similarly demonstrated the contribution
of park shape to CSC, similar to the results of this study [18]. Currently, there are differing
conclusions in prior studies regarding the relationship between the shape of UGSs and
cooling effects. Some studies have suggested that regularly shaped UGSs exhibit better
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cooling effects [27,70,71], while others indicate that more complex-shaped UGSs achieve
superior cooling effects [69,72]. A study highlighted that increasing shape complexity in
medium-sized UGSs positively impacts cooling effects, whereas regularly shaped UGSs
in small or large sizes are more favorable for cooling effects [24]. Furthermore, a study
in Israel suggested that the SHAPE Index of UGSs has almost no effect on the cooling
effects [73]. Several reasons may account for these disparate results. Firstly, differences in
temperature data sources can lead to varying outcomes. For instance, studies in Israel have
used meteorological data from observation points, whereas some studies have relied on LST
derived from remote sensing imagery. Differences between air temperature and LST have
been documented in previous literature, where studies based on air temperature generally
find greater cooling effects from trees compared to water bodies [74,75], whereas those
based on land surface temperature often find greater cooling effects from water bodies
than from trees [76,77]. Secondly, climate characteristics play a crucial role in generating
different outcomes [78]. Previous studies often encompass cities located in diverse climatic
regions, where varying climate conditions significantly influence UGS cooling intensity and
the impact of landscape patterns on cooling effects [79,80]. In conclusion, cities represent
complex human ecosystems, and most case-based studies yield diverse results due to
distinct natural and economic conditions [81]. From another perspective, this underscores
the necessity of conducting CSC studies on individual cities.

4.3. Implications for Urban Management and Planning

This study underscores the indispensable and pivotal role of UGSs in mitigating the
UHI and indirectly contributing to the CSC [82]. In this context, urban planners must
recognize green spaces as critical components of urban infrastructure, deserving equal
attention alongside transportation networks and public service facilities [83]. Planners
should integrate green spaces organically into the overall urban framework, particularly
by expanding coverage in city centers and densely populated areas. While planning and
constructing large-scale green patches on urban peripheries to maximize their cooling
efficiency [26,84,85]. Achieving this goal requires enhancing the spatial precision of green
space planning to ensure that each green patch can effectively capture and utilize its cooling
potential [86].

Furthermore, this study reveals a close correlation between landscape pattern indices
and CSC, emphasizing that the layout of UGSs profoundly influences their capacity to
mitigate carbon emissions [18]. Urban planners can optimize the form, scale, and dis-
tribution of UGSs to enhance their CSC [87]. Specifically, designing green spaces with
more complex shapes and higher perimeter-to-area ratios can significantly improve their
cooling efficiency, thereby expanding their indirect CSC [69]. Additionally, the widespread
adoption of high-resolution remote sensing technology and machine learning algorithms
should be promoted to assess and predict the impact of different landscape configurations
on CSC. This approach provides robust guidance for urban design by demonstrating the
predictive capability of data-driven methods in urban planning. In this study, machine
learning models successfully predicted the impact of landscape patterns on CSC, showcas-
ing the substantial value of data-driven approaches in urban planning [43,46,88]. Planners
should leverage these models to simulate various configurations of UGSs and their effects
on temperature and carbon emissions, thereby identifying design solutions that maximize
CSC. Furthermore, integrating real-time remote sensing data into urban planning processes
can offer timely insights into the current status and effectiveness of existing green spaces,
guiding adaptive management strategies effectively.

To fully harness the CSC of UGSs, it is crucial to develop supportive policies and pro-
mote widespread community engagement in sustainable urban greening efforts. Effective
policies should incentivize individuals and groups to create and maintain green spaces.
Community involvement is essential for ensuring these spaces are well-managed and for
enhancing public awareness of their role in addressing climate change challenges [89]. Ed-
ucational initiatives and participatory planning processes empower residents to participate
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in urban greening efforts, foster a sense of ownership, and ensure the long-term success of
these action plans.

4.4. Limitations and Uncertainties

Using the Random Forest model and SHAP algorithm, the influence of the UGS
landscape pattern index on CSC is identified, highlighting the specific contribution of key
factors to CSC, and confirming that the pattern and design of the UGS can significantly
enhance CSC. However, there are still some limitations in this study that can be improved
in future research. Firstly, only the landscape pattern index was used as an influencing
factor on CSC, and the influence mechanism of CSC can be comprehensively explored in
the future using a multidimensional approach. Among them, green space accessibility,
green space maintenance cost, urban economic level, and population around the green
space can be comprehensively investigated from the aspect of influence on CSC. Secondly,
only LST images from 2020–2021 are used in this study, and a long-time series of UGSs can
be investigated in the future using Google Earth Engine. Thirdly, the carbon sequestration
capacity of the UGS can be combined with the CSC in the future to more comprehensively
estimate the contribution of the UGS to the achievement of the carbon neutrality goal.

5. Conclusions

This study evaluated UGS’s potential to save carbon emissions in Shangqiu City using
machine learning techniques and high-resolution remote sensing data. The results of the
study are as follows:

1. The findings demonstrate that UGSs contribute to CSC by alleviating the urban heat
island effect. Specifically, the total CSI mitigated by UGSs in Shangqiu City amounts
to 7716 t CO2, with an average CSE of 2.9 t CO2 ha−1. These results underscore the
critical role of UGSs in mitigating carbon emissions amidst rapid urbanization and
exacerbated UHI.

2. There is a close relationship between landscape pattern indices and CSC in UGSs. The
area of green spaces emerges as a crucial determinant of CSI and CSE, followed by
perimeter–area ratio, shape index, and fractal dimension of UGSs. These findings
show that optimizing UGS layout and design can significantly enhance their CSC.

3. Machine learning models, particularly RFR models, demonstrate strong predictive ca-
pabilities by explaining 82% of the variation for CSI and 64% for CSE. This underscores
the value of data-driven approaches in urban planning and management.

The study provides clear suggestions for urban planning and policy: strategically
integrate UGS into city structures, emphasizing their spatial distribution and configuration
to maximize cooling and CSC. Encouraging community participation and implementing
supportive policies are also crucial for promoting sustainable urban greening initiatives.
Overall, this study provides empirical evidence of the CSC of UGSs and offers a method-
ological framework applicable to other urban environments. It contributes to the field by
advocating for strategic UGS planning that fully considers their ecological and climatic
benefits for urban sustainability and climate change mitigation.
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