Spatial Variations in Relationships between Urbanization and Carbon Emissions in Chinese Urban Agglomerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Kernel Density Estimation
2.4. Markov Chain Model
2.5. Measurement of UL
2.6. Bivariate Spatial Autocorrelation Analysis
2.7. Multiscale Geographically Weighted Regression
3. Results
3.1. Spatiotemporal Patterns of CEs Intensity in Chinese UAs
3.1.1. Spatiotemporal Patterns of CEs Intensity
3.1.2. Dynamic Evolution of CEs Intensity
3.2. Spatiotemporal Patterns of UL in Chinese UAs
3.3. Spatial Autocorrelation Analysis of CEs Intensity and UL in Chinese UAs
3.4. Regression Results
3.4.1. Global Regression Results
3.4.2. Spatial Heterogeneity Analysis Based on Multi-Scale GWR Model
Multi-Scale Analysis
Multi-Scale GWR Model Regression Analysis
3.4.3. Spatial Heterogeneity Analysis of Local Parameters in Multi-Scale GWR Model
4. Discussion
4.1. Summary of Findings
4.2. Policy Implications
4.2.1. Controlling Urban Expansion and Optimizing Spatial Layout
4.2.2. Implementing Differential Carbon Reduction Policies
4.2.3. Promoting the Low Carbon Transition Development of New-Type Urbanization
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sun, W.; Ren, C. The impact of energy consumption structure on China’s carbon emissions: Taking the Shannon-Wiener index as a new indicator. Energy Rep. 2021, 7, 2605–2614. [Google Scholar] [CrossRef]
- Le Quere, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 2020, 10, 647. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Lu, H.; Zhou, G.; Azimi, M.; Yang, Q.; Tian, W. A hybrid algorithm for carbon dioxide emissions forecasting based on improved lion swarm optimizer. J. Clean. Prod. 2020, 244, 118612. [Google Scholar] [CrossRef]
- Seto, K.C.; Dhakal, S.; Bigio, A.; Blanco, H.; Carlo Delgado, G.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S.; et al. Human Settlements, Infrastructure, and Spatial Planning; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Luqman, M.; Rayner, P.J.; Gurney, K.R. On the impact of urbanisation on CO2 emissions. npj Urban Sustain. 2023, 3, 6. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, J.; Chen, Z.; Zhang, D. Study of City Land Expansion and Carbon Emission Correlation Effect: Taking Changsha City as an Example. J. Univ. South China (Sci. Technol.) 2013, 27, 82–88. (In Chinese) [Google Scholar] [CrossRef]
- Pan, S.P.; Guo, J.; Ou, M. Exploring the Coupling and Decoupling Relationship of Urbanization and Carbon Emissions in China. Environ. Sci. Pollut. Res. 2023, 30, 96808–96826. [Google Scholar] [CrossRef] [PubMed]
- Fang, C. Progress and the future direction of research into urban agglomeration in China. Acta Geogr. Sin. 2014, 69, 1130–1144. (In Chinese) [Google Scholar] [CrossRef]
- Fang, C.; Gao, Q.; Zhang, X.; Cheng, W. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment: Case study on the northern slope of the Tianshan Mountains. Sci. China Earth Sci. 2019, 62, 1461–1472. [Google Scholar] [CrossRef]
- Fang, C.; Liang, L.; Wang, Z. Quantitative simulation and verification of upgrade law of sustainable development in BeijingTianjin-Hebei urban agglomeration. Sci. China Earth Sci. 2019, 62, 2031–2049. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Li, R. Does urbanization redefine the environmental Kuznets curve? An empirical analysis of 134 Countries. Sustain. Cities Soc. 2022, 76, 103382. [Google Scholar] [CrossRef]
- Micheli, F.; Mumby, P.J.; Brumbaugh, D.R.; Broad, K.; Dahlgren, C.P.; Harborne, A.R.; Holmes, K.E.; Kappel, C.V.; Litvin, S.Y.; Sanchirico, J.N. High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs. Biol. Conserv. 2014, 171, 186–194. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.; Zhang, A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Landsc. Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.; Wu, G.; Wei, Y. Analyzing impact factors of CO2 emissions using the STIRPAT model. Environ. Impact Assess. Rev. 2006, 26, 377–395. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models. Energy Econ. 2015, 48, 188–202. [Google Scholar] [CrossRef]
- Zhu, C.; Gao, D. A research on the factors influencing carbon emission of transportation industry in “the Belt and Road Initiative” countries based on panel data. Energies 2019, 12, 2405. [Google Scholar] [CrossRef]
- Amin, A.; Altinoz, B.; Dogan, E. Analyzing the determinants of carbon emissions from transportation in European countries: The role of renewable energy and urbanization. Clean Technol. Environ. Policy 2020, 22, 1725–1734. [Google Scholar] [CrossRef]
- Dong, F.; Yu, B.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 2018, 129, 187–201. [Google Scholar] [CrossRef]
- Zhou, Y.; Poon, J.; Yang, Y. China’s CO2 emission intensity and its drivers: An evolutionary Geo-Tree approach. Resour. Conserv. Recycl. 2021, 171, 105630. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Wang, Q. The impact of energy efficiency on carbon emissions: Evidence from the transportation sector in Chinese 30 provinces. Sustain. Cities Soc. 2022, 82, 103880. [Google Scholar] [CrossRef]
- Friedmann, J. Four theses in the study of China’s urbanization. Int. J. Urban Reg. Res. 2006, 30, 440–451. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G. Urbanization and ecosystem services: The multi-scale spatial spillover effects and spatial variations. Land Use Policy 2022, 114, 105964. [Google Scholar] [CrossRef]
- Tian, Y.; Jiang, G.; Zhou, D.; Li, G. Systematically Addressing the Heterogeneity in the Response of Ecosystem Services to Agricultural Modernization, Industrialization and Urbanization in the Qinghai-Tibetan Plateau From 2000 to 2018. J. Clean. Prod. 2021, 285, 125323. [Google Scholar] [CrossRef]
- Dong, F.; Long, R.; Li, Z.; Dai, Y. Analysis of carbon emission intensity, urbanization and energy mix: Evidence from China. Nat. Hazards 2016, 82, 1375–1391. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zhang, H.; Tan, T. The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China. Nat. Hazards 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Imhoff, M.; Tucker, C.; Lawrence, W. The use of multi- source satellite and geospatial data to study the effect of urbanization on primary productivity in the United States. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2549–2556. [Google Scholar]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R.; Running, S.W. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens. Environ. 2003, 86, 401–410. [Google Scholar] [CrossRef]
- Dai, S.; Zuo, S.; Ren, Y. A spatial database of CO2 emissions, urban form fragmentation and city-scale effect related impact factors for the low carbon urban system in Jinjiang city, China. Data Brief. 2020, 29, 105274. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wang, S.; Li, G. Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Liu, Y.; Jiang, R. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustain. Prod. Consum. 2021, 27, 1149–1164. [Google Scholar] [CrossRef]
- Tan, R.; Liu, Y.; Liu, Y.; He, Q.; Ming, L.; Tang, S. Urban growth and its determinants across the Wuhan urban agglomeration, central China. Habitat Int. 2014, 44, 268–281. [Google Scholar] [CrossRef]
- Shi, F.; Liao, X.; Shen, L.; Meng, C.; Lai, Y. Exploring the spatiotemporal impacts of urban form on CO2 emissions: Evidence and implications from 256 Chinese cities. Environ. Impact Asses. 2022, 96, 106850. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Chuai, X.; Yang, H. The impact of land urbanization on carbon dioxide emissions in the Yangtze River Delta, China: A multiscale perspective. Cities 2021, 116, 103275. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Liao, H.; Wei, Y. Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries. Energy Policy 2021, 151, 112171. [Google Scholar] [CrossRef]
- Alcantara, V.; Duarte, R. Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis. Energy Policy 2004, 32, 177–189. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Q.; Shen, L.; Huang, Y.; Wu, Y. What makes the difference in construction carbon emissions between China and USA? Sustain. Cities Soc. 2019, 44, 604–613. [Google Scholar] [CrossRef]
- Hoekstra, R.; Van den Bergh, J.C. Comparing structural decomposition analysis and index. Energy Econ. 2003, 25, 39–64. [Google Scholar] [CrossRef]
- Peng, Z.; Wu, Q.; Li, M. Spatial characteristics and influencing factors of carbon emissions from energy consumption in China’s transport sector: An empirical analysis based on provincial panel data. Pol. J. Environ. Stud. 2020, 29, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Z.; Fang, C. Evolutionary characteristics and driving factors of carbon emission performance at the city level in China. Sci. China Earth Sci. 2022, 65, 1292–1307. [Google Scholar] [CrossRef]
- Chen, W.; Wang, G.; Zeng, J. Impact of urbanization on ecosystem health in Chinese urban agglomerations. Environ. Impact Asses. 2023, 98, 106964. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Xia, C. Towards a greening city: How does regional cooperation promote urban green space in the Guangdong-Hong Kong-Macau Greater Bay Area? Urban For. Urban Green. 2023, 86, 128033. [Google Scholar] [CrossRef]
- Yeh, A.; Chen, Z. From cities to super mega city regions in China in a new wave of urbanisation and economic transition: Issues and challenges. Urban Stud. 2020, 57, 636–654. [Google Scholar] [CrossRef]
- Chen, W.; Gu, T.; Fang, C.; Zeng, J. Global urban low-carbon transitions: Multiscale relationship between urban land and carbon emissions. Environ. Impact Asses. 2023, 100, 107076. [Google Scholar] [CrossRef]
- Chen, W.; Wang, G.; Gu, T.; Fang, C.; Pan, S.; Zeng, J.; Wu, J. Simulating the impact of urban expansion on ecosystem services in Chinese urban agglomerations: A multi-scenario perspective. Environ. Impact Assess. Rev. 2023, 103, 107275. [Google Scholar] [CrossRef]
- Fang, C. China’s urban agglomeration and metropolitan area construction under the new development pattern. Econ. Geogr. 2021, 41, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Quah, D.T. Empirics for growth and distribution: Stratification, polarization, and convergence clubs. J. Econ. Growth 1997, 2, 27–59. [Google Scholar] [CrossRef]
- Yang, L.; Chen, W.; Zeng, J.; Pan, S. Regional differences in spatial determinants of land urbanization in China. Environ. Sci. Pollut. Res. 2023, 30, 119260–119274. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, H.; Pan, S.; Chen, W.; Zeng, J. Identifying the impact of global human activities expansion on natural habitats. J. Clean. Prod. 2024, 434, 140247. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.W.; Anwar, S. Assessing the pollution convergence across Chinese cities by considering ecological indicators: A continuous distribution dynamics approach. Ecol. Indic. 2021, 126, 107552. [Google Scholar] [CrossRef]
- Liu, H.J.; Guo, L.X.; Qiao, L.C.; Shi, Y. Spatial-temporal pattern and dynamic evolution of logistics efficiency in China. J. Quant. Tech. Econ. 2021, 38, 57–74. (In Chinese) [Google Scholar] [CrossRef]
- Shen, L.; Zhang, H.Y.; Li, W.J. Regional differences and dynamic evolution of China’s inclusive finance. J. Quant. Tech. Econ. 2019, 36, 62–80. (In Chinese) [Google Scholar] [CrossRef]
- Yang, W.; Deng, M.; Tang, J.; Jin, R. On the use of Markov chain models for drought class transition analysis while considering spatial effects. Nat. Hazards 2020, 103, 2945–2959. [Google Scholar] [CrossRef]
- Agovino, M.; Crociata, A.; Sacco, P.L. Proximity effects in obesity rates in the US: A spatial Markov chains approach. Soc. Sci. Med. 2019, 220, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fang, C.; Chen, W.; Zeng, J. Urban-rural land structural conflicts in China: A land use transition perspective. Habitat Int. 2023, 138, 102877. [Google Scholar] [CrossRef]
- Bai, X.; Shi, P.; Liu, Y. Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Shen, H.; Wu, W.H.; Liu, Y.; Wang, Y. Net primary productivity (NPP) dynamics and associated urbanization driving forces in metropolitan areas: A case study in Beijing City, China. Lands. Ecol. 2016, 31, 1077–1092. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Pickett, S.; Yu, W.J.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Tang, L.; Wei, X.; Li, Y. Spatial interaction between urbanization and ecosystem services in Chinese UAs. Land Use Policy 2021, 109, 105587. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, J.; Zhong, M.; Pan, S. Coupling analysis of ecosystem services value and economic development in the Yangtze River Economic Belt: A case study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Shen, T.; Yu, H.; Zhou, L.; Gu, H.; He, H. On hedonic price of second-hand houses in Beijing based on multi-scale geographically weighted regression: Scale law of spatial heterogeneity. Econ. Geogr. 2020, 40, 75–83. (In Chinese) [Google Scholar] [CrossRef]
- Li, W.; Xie, S.; Wang, Y.; Huang, J.; Cheng, X. Effects of urban expansion on ecosystem health in Southwest China from a multi-perspective analysis. J. Clean. Prod. 2021, 294, 126341. [Google Scholar] [CrossRef]
- Kafy, A.A.; Faisal, A.; Al Rakib, A.; Fattah, M.A.; Rahaman, Z.A.; Sattar, G.S. Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh. Build. Environ. 2022, 208, 108573. [Google Scholar] [CrossRef]
- Zhou, M.; Shao, W.; Jiang, K.; Huang, L. How does economic agglomeration affect carbon emissions at the county level in Liaoning China? Ecol. Indic. 2024, 158, 111507. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Guan, Y. Carbon emissions, energy consumption and economic growth: Mediating effect model based on Chinese provincial panel data. J. Appl. Stat. Manag. 2023, 1, 1–15. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Q.; Lin, J.; Zhou, K.; Fan, J.; Kwan, M.P. Does urbanization lead to less residential energy consumption? A comparative study of 136 countries. Energy 2020, 202, 117765. [Google Scholar] [CrossRef]
- Liu, F.; Liu, C. Regional disparity, spatial spillover effects of urbanisation and carbon emissions in China. J. Clean Prod. 2019, 241, 118226. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, S. An empirical study on urbanization and CO2 emissions in China. Resour. Environ. Yangtze Basin 2011, 20, 1304–1309. (In Chinese) [Google Scholar]
- Zhang, T.; Yang, J.; Sheng, P. The impacts and channels of urbanization on carbon dioxide emissions in China. China Popul. Resour. Environ. 2016, 26, 47–57. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, K.; Dai, X. An empirical study on the relationship between urbanization and carbon emission in China. China Popul. Resour. Environ. 2013, 23, 41–48. (In Chinese) [Google Scholar] [CrossRef]
- Guo, J.; Liu, C. Impact of urbanization on carbon emissions intensity. Urban Probl. 2012, 5, 21–28. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, M.; Wang, D. Spatial differentiation and influencing mechanism of nearby urbanization in central and western China. Acta Geog. Sin. 2021, 76, 2993–3011. (In Chinese) [Google Scholar] [CrossRef]
- Bi, X. The impact mechanism of urbanization on carbon emissions. Shanghai J. Econ. 2015, 10, 97–106. (In Chinese) [Google Scholar] [CrossRef]
- Sun, C.; Jin, N.; Zhang, X.; Du, H. The impact of urbanization on the CO2 emission in the various development stages. Sci. Geogr. Sin. 2013, 33, 266–272. (In Chinese) [Google Scholar] [CrossRef]
- Fan, J.; Zhou, L. The Mechanism and Effect of Urbanization and Real Estate Investment on Carbon Emissions in China. Sci. Geogr. Sin. 2019, 39, 644–653. (In Chinese) [Google Scholar] [CrossRef]
- Feng, D.; Li, J. Impacts of Urbanization on Carbon Dioxide Emissions in the Three UAs of China. Resour. Environ. Yangtze Basin 2018, 27, 2194–2200. (In Chinese) [Google Scholar] [CrossRef]
- Liu, H. The influence of urbanization on carbon dioxide emissions: An empirical evidence from China. Shanghai J. Econ. 2012, 24, 24–35. (In Chinese) [Google Scholar] [CrossRef]
- Yang, X.; Chen, H. Effect of urbanization on CO2 emissions in China: Empirical study based on provincial panel data. J. China Univ. Geosci. (Soc. Sci. Ed.) 2013, 13, 32–37. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Shao, Y. Impact of urbanization on energy consumption and carbon dioxide emission: Empirical study based on China’s provincial panel data during 1995–2011. Technol. Econ. 2014, 33, 55–63. (In Chinese) [Google Scholar]
- Hu, J.; Jiang, X. Effects of urbanization on carbon emissions from the perspective of UAs. J. China Univ. Geosci. (Soc. Sci. Ed.) 2015, 15, 11–21. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, N.; Sun, F.; Hu, Y.; Tang, J. Regional difference and spatial convergence of land use carbon emissions in three urban agglomerations of Yangtze River Economic Belt. Environ. Sci. 2024, 45, 4656–4669. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Wen, R.; Li, J.; Yang, H.; Chen, T.; Zhu, N. Impact of land use landscape pattern on carbon emission performance in five major urban agglomerations in China. Econ. Geogr. 2023, 43, 1–12. (In Chinese) [Google Scholar]
- Wu, X.; Guan, W.; Zhang, H.; Wu, L. Spatio-temporal coupling characteristics and driving factors of carbon emission efficiency and high-quality development in Yangtze River Delta urban agglomeration. Resour. Environ. Yangtze Basin 2023, 32, 2273–2284. (In Chinese) [Google Scholar] [CrossRef]
- Liu, S.; Jia, L.; Zhang, F.; Wang, R.; Liu, X.; Zou, L.; Tang, X. Do New Urbanization Policies Promote Sustainable Urbanization? Evidence from China’s Urban Agglomerations. Land 2024, 13, 412. [Google Scholar] [CrossRef]
Time Slice | Spatial Lag | Type | L | ML | MH | H |
---|---|---|---|---|---|---|
10 | L | L | 0.804 | 0.192 | 0.004 | 0 |
ML | 0.014 | 0.521 | 0.465 | 0 | ||
MH | 0 | 0 | 0.606 | 0.394 | ||
H | 0 | 0 | 0 | 1 | ||
ML | L | 0.697 | 0.297 | 0.006 | 0 | |
ML | 0.010 | 0.599 | 0.383 | 0.008 | ||
MH | 0 | 0 | 0.681 | 0.319 | ||
H | 0 | 0 | 0 | 1 | ||
MH | L | 0.731 | 0.263 | 0.006 | 0 | |
ML | 0.002 | 0.500 | 0.485 | 0.013 | ||
MH | 0 | 0 | 0.646 | 0.354 | ||
H | 0 | 0 | 0 | 1 | ||
H | L | 0.733 | 0.267 | 0 | 0 | |
ML | 0 | 0.465 | 0.535 | 0 | ||
MH | 0 | 0 | 0.616 | 0.384 | ||
H | 0 | 0 | 0 | 1 | ||
20 | L | L | 0.669 | 0.322 | 0.009 | 0 |
ML | 0.022 | 0.222 | 0.756 | 0 | ||
MH | 0 | 0 | 0.167 | 0.833 | ||
H | 0 | 0 | 0 | 1 | ||
ML | L | 0.495 | 0.480 | 0.025 | 0 | |
ML | 0.004 | 0.312 | 0.665 | 0.019 | ||
MH | 0 | 0 | 0.325 | 0.675 | ||
H | 0 | 0 | 0 | 1 | ||
MH | L | 0.429 | 0.551 | 0.020 | 0 | |
ML | 0.004 | 0.172 | 0779 | 0.045 | ||
MH | 0 | 0 | 0.204 | 0.796 | ||
H | 0 | 0 | 0 | 1 | ||
H | L | 0 | 1 | 0 | 0 | |
ML | 0 | 0 | 0.800 | 0.200 | ||
MH | 0 | 0 | 0.058 | 0.942 | ||
H | 0 | 0 | 0 | 1 |
Variables | 2000 | 2010 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Coef | t_Stat | Prob | Coef | t_Stat | Prob | Coef | t_Stat | Prob | |
UL | 4.567 *** | 7.890 | 0.000 | 5.175 *** | 11.240 | 0.000 | 3.265 *** | 8.901 | 0.000 |
PD | 0.001 *** | 3.770 | 0.000 | 64.265 *** | 11.680 | 0.000 | 50.268 *** | 10.586 | 0.000 |
ED | 0.257 *** | 3.790 | 0.000 | −0.247 *** | −4.410 | 0.000 | −0.201 *** | −4.365 | 0.000 |
COHESION | 0.024 *** | 8.110 | 0.000 | 0.039 *** | 13.640 | 0.000 | 0.055 *** | 17.711 | 0.000 |
AI | −0.009 *** | −5.450 | 0.000 | −0.013 *** | −7.810 | 0.000 | −0.016 *** | −7.845 | 0.000 |
DEM | −0.001 *** | −11.750 | 0.000 | 0.000 *** | −6.720 | 0.000 | 0.000 *** | −7.699 | 0.000 |
RD | 0.811 *** | 4.590 | 0.000 | 1.199 *** | 7.670 | 0.000 | 0.000 *** | 0.037 | 0.971 |
VC | −1.312 *** | −12.390 | 0.000 | −1.244 *** | −12.700 | 0.000 | −1.011 *** | −10.782 | 0.000 |
Con_s | 5.323 *** | 47.880 | 0.000 | 5.060 *** | 41.580 | 0.000 | 4.860 *** | 0.000 | 1.000 |
OLS method diagnosis | N | R2 | A_VIF | N | R2 | A_VIF | N | R2 | A_VIF |
1769 | 0.637 | 2.52 | 1769 | 0.726 | 3.38 | 1769 | 0.765 | 4.16 |
Variables | Multi-Scale GWR | GWR | ||||
---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
UL | 1662 | 1074 | 1753 | 113 | 155 | 191 |
PD | 155 | 170 | 184 | 113 | 155 | 191 |
ED | 1673 | 1766 | 1766 | 113 | 155 | 191 |
COHESION | 1607 | 198 | 1768 | 113 | 155 | 191 |
AI | 1673 | 644 | 1766 | 113 | 155 | 191 |
DEM | 79 | 157 | 1768 | 113 | 155 | 191 |
RD | 450 | 47 | 49 | 113 | 155 | 191 |
VC | 191 | 43 | 179 | 113 | 155 | 191 |
Con_s | 354 | 548 | 43 | 113 | 155 | 191 |
R2 | 0.824 | 0.836 | 0.836 | 0.830 | 0.827 | 0.841 |
Adj. R2 | 0.797 | 0.814 | 0.824 | 0.797 | 0.803 | 0.824 |
AICc | 2498.758 | 2299.793 | 2075.145 | 2572.331 | 2413.653 | 2156.661 |
Year | Variable | Mean | STD | Min | Max | p ≤ 0.01 | p ≤ 0.05 | p ≤ 0.1 | + (%) | − (%) |
---|---|---|---|---|---|---|---|---|---|---|
2000 | UL | 0.224 | 0.032 | 0.176 | 0.281 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 |
PD | 0.176 | 0.123 | 0.019 | 0.629 | 49.41 | 62.52 | 74.05 | 100.00 | 0.00 | |
ED | 0.062 | 0.002 | 0.06 | 0.074 | 0.00 | 0.00 | 6.90 | 100.00 | 0.00 | |
COHESION | 0.245 | 0.098 | 0.05 | 0.495 | 82.14 | 94.12 | 96.21 | 100.00 | 0.00 | |
AI | −0.069 | 0.06 | −0.171 | 0.012 | 33.63 | 35.27 | 40.81 | 3.11 | 96.89 | |
DEM | −0.246 | 0.27 | −0.887 | 0.394 | 56.70 | 70.49 | 73.94 | 17.81 | 82.19 | |
RD | 0.213 | 0.285 | −0.233 | 1.346 | 21.93 | 29.85 | 40.31 | 78.86 | 21.14 | |
VC | −0.128 | 0.218 | −0.742 | 1.184 | 25.16 | 34.26 | 39.80 | 23.29 | 76.71 | |
Con_s | 0.12 | 0.112 | −0.071 | 0.267 | 53.70 | 58.00 | 66.31 | 77.44 | 22.56 | |
2010 | UL | 0.208 | 0.004 | 0.2 | 0.216 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 |
PD | 0.178 | 0.113 | 0.037 | 0.556 | 46.52 | 69.87 | 82.42 | 100.00 | 0.00 | |
ED | 0.054 | 0.002 | 0.051 | 0.064 | 0.00 | 0.00 | 4.92 | 100.00 | 0.00 | |
COHESION | 0.333 | 0.001 | 0.33 | 0.336 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | |
AI | −0.125 | 0.003 | −0.133 | −0.115 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | |
DEM | −0.467 | 0.001 | −0.469 | −0.464 | 100.00 | 100.00 | 100.00 | 0.00 | 100.00 | |
RD | 0.173 | 0.187 | −0.109 | 0.891 | 23.29 | 34.65 | 40.87 | 83.89 | 16.11 | |
VC | −0.051 | 0.128 | −0.316 | 0.184 | 33.13 | 51.16 | 58.90 | 35.73 | 64.27 | |
Con_s | 0.153 | 0.431 | −0.683 | 1.477 | 47.99 | 55.96 | 61.16 | 65.23 | 34.77 | |
2020 | UL | 0.212 | 0.008 | 0.197 | 0.235 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 |
PD | 0.165 | 0.097 | 0.004 | 0.468 | 54.55 | 66.53 | 72.87 | 100.00 | 0.00 | |
ED | 0.004 | 0.008 | −0.008 | 0.03 | 0.00 | 0.00 | 0.00 | 60.66 | 39.34 | |
COHESION | 0.55 | 0.011 | 0.529 | 0.571 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | |
AI | −0.144 | 0.006 | −0.157 | −0.133 | 100.00 | 100.00 | 100.00 | 100.00 | 0.00 | |
DEM | −0.315 | 0.392 | −1.258 | 0.75 | 51.10 | 59.81 | 65.52 | 21.14 | 78.86 | |
RD | 0.037 | 0.07 | −0.045 | 0.286 | 13.85 | 19.39 | 27.42 | 59.81 | 40.19 | |
VC | −0.071 | 0.099 | −0.281 | 0.108 | 30.02 | 38.33 | 43.19 | 24.65 | 75.35 | |
Con_s | −0.069 | 0.202 | −0.328 | 0.2 | 76.31 | 84.28 | 86.09 | 52.57 | 47.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wu, J.; Yang, L.; Chen, W.; Cui, X.; Lin, M. Spatial Variations in Relationships between Urbanization and Carbon Emissions in Chinese Urban Agglomerations. Land 2024, 13, 1303. https://doi.org/10.3390/land13081303
Li W, Wu J, Yang L, Chen W, Cui X, Lin M. Spatial Variations in Relationships between Urbanization and Carbon Emissions in Chinese Urban Agglomerations. Land. 2024; 13(8):1303. https://doi.org/10.3390/land13081303
Chicago/Turabian StyleLi, Weisong, Jiahui Wu, Liyan Yang, Wanxu Chen, Xinghua Cui, and Mingyu Lin. 2024. "Spatial Variations in Relationships between Urbanization and Carbon Emissions in Chinese Urban Agglomerations" Land 13, no. 8: 1303. https://doi.org/10.3390/land13081303
APA StyleLi, W., Wu, J., Yang, L., Chen, W., Cui, X., & Lin, M. (2024). Spatial Variations in Relationships between Urbanization and Carbon Emissions in Chinese Urban Agglomerations. Land, 13(8), 1303. https://doi.org/10.3390/land13081303