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Abstract: Urban agglomerations (UAs) are the main battlefield of urbanization and the most concen-
trated areas of carbon emissions (CEs). Nevertheless, limited studies have examined the impact of
urbanization level (UL) on CEs in UAs in China. This study aimed to identify the spatial relationship
between UL and CEs in Chinese UAs and to conduct a comprehensive analysis of the differences
in CEs caused by urbanization. The findings would provide scientific support for the China’s dual-
carbon goals and the achievement of green and low-carbon urban development. Spatial variations in
UL and CEs in 19 Chinese UAs were assessed in 2000, 2010, and 2020 using distribution dynamics and
spatial regression models. The results indicated that the UL of UAs in China evidently increased over
time, and UAs contributed approximately 80% of the national CEs. Significant spatial dependence
was identified between urbanization factors and CEs. The regression results indicated that an increase
in UL promoted the growth of CEs, and the form of the urban land had a significant and highly
variable impact on CEs. Our findings provide a valuable case study for exploring relationships
between UL and CEs in other UAs worldwide.

Keywords: carbon emissions; urbanization level; bivariate spatial autocorrelation; multiscale
geographically weighted regression; urban agglomerations; China

1. Introduction

Climate change, particularly global warming, exerts a significant impact on the nat-
ural ecosystem and socioeconomics [1]. Extreme climates, such as deadly heat extremes,
droughts, floods, and rising sea levels, are directly or indirectly caused by global warming
and are being reported increasingly frequently [1]. The main culprit is ever-increasing
carbon emissions (CEs) [2]. CEs caused by human activities have led to global warming [3],
which is projected to increase another 1–5 ◦C over the next century [4]. As global attention
to the issue of climate change continues to grow, the implementation of the Paris Agreement
will face more challenges and opportunities. In 2020, global energy-related CEs exhibited
the largest negative annual growth rate to date. However, the subsequent decline was
not as rapid as anticipated, resulting in a new record high of 37.4 Gt in 2023. Urban areas
are responsible for close to 70% of global CEs associated with energy consumption [5].
Globally, urban CEs are increasing, with per capita urban emission trends exceeding their
national equivalents in nearly all regions. This suggests that urbanization will become a
more significant challenge in the future [6].

Land 2024, 13, 1303. https://doi.org/10.3390/land13081303 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land13081303
https://doi.org/10.3390/land13081303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-1102-5583
https://orcid.org/0000-0002-3488-4380
https://doi.org/10.3390/land13081303
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land13081303?type=check_update&version=1


Land 2024, 13, 1303 2 of 20

China is the world’s largest energy consumer and carbon emitter, accounting for
approximately one-third of the world’s CEs. Consequently, it is facing increasing interna-
tional pressure to reduce CEs. China’s current socioeconomic development is characterized
by rapid urbanization [7], which has had a significant impact on CEs, with far-reaching
consequences for society [8]. As the volume of CEs generated by human activities con-
tinues to increase [1], China is striving to assist in achieving the “30·60 dual carbon” goal
proposed in 2020. It aims to actively and steadily promote dual-carbon goals and accel-
erate the green transformation of development mode. This entails advocating for green
and low-carbon transitions across all sectors, with a particular focus on Chinese urban
agglomerations (UAs). As the growth pole of economic development [9], UAs account for
29.39% of China’s total area but contribute approximately 80% of the country’s CEs. It is
imperative to enhance urbanization strategies to advance socioeconomic development in
China in a manner that mitigates environmental impact, thereby ensuring the realization of
sustainable development [10,11]. Nevertheless, there is a paucity of research examining
the spatial relationship between urbanization level (UL) and CEs at the UAs level. An
investigation into the spatial variations in the relationships between UL and CEs in Chinese
UAs would facilitate the implementation of green and low-carbon transformations.

The process of urbanization is a defining feature of modern civilization and is a
crucial driver of economic growth [12]. Moreover, research has demonstrated that the
phenomenon of accelerated urbanization can precipitate the deterioration of habitats and
the diminution of ecosystem structure and functionality [13,14], which in turn influences
CEs. Nevertheless, the impact of UL on CEs remains a topic of contention, with existing
empirical studies yielding disparate results [15,16]. Zhu and Gao (2019) [17] reported that
UL promoted CEs in the transport sector. However, Amin et al. (2020) [18] argued that
UL did not significantly impact CEs. Dong et al. (2018) and Zhou et al. (2021) [19,20]
demonstrated that UL can effectively reduce CEs with advances in technological progress.
Moreover, Li et al. (2022) [21] have demonstrated that UL exerts a non-linear negative
impact on CEs in the transport sector. A substantial body of research has addressed
the intricate relationship between UL and CEs, and several key findings have emerged.
Prior studies that have assessed the extent of UL have predominantly focused on social,
demographic, economic, and spatial urbanization factors [22–24]. Meanwhile, existing
studies have demonstrated that population urbanization has a significantly positive impact
on CEs [25,26]. For example, Imhoff et al. (2000) and Milesi et al. (2003) reported that spatial
urbanization could positively promote CEs because rapid advancement of urbanization
accelerates the demand for urban land, which had the highest total CEs among all forms of
land [27,28]. Moreover, previous studies have also revealed that the urban landform exerts
a considerable influence on CEs, with a discernible discrepancy [29–33]. In conclusion,
previous studies have primarily concentrated on individual urbanization factors, while the
process of urbanization in UAs was inherently complex [34,35]. It is therefore imperative to
undertake a comprehensive analysis of the impact of UL, including economic, population,
social, and spatial urbanization factors as well as urban form, to identify the impact of UL
on CEs in UAs.

A variety of methods have been utilized to ascertain the association between UL and
CEs, including index and structural decomposition analyses [36–38]. The most commonly
used methods at present are econometric techniques, including the logarithmic mean divisia
index method [31], the environmental Kuznets curve [12], and the system-generalized
method of moments [39]. A substantial number of studies were typically conducted at
the national, regional, or prefectural scale at various stages of development. For example,
Amin et al. (2020) employed ordinary least squares (OLS) and dynamic OLS estimations
to study CEs in European countries. Zhu and Gao (2019) [17] explored CEs in countries
of the “Belt and Road Initiative”. Li et al. (2022) [21] used the decoupling index and
panel threshold analysis to explore the relationship between UL and CEs in the transport
sector. However, existing studies have rarely been conducted in Chinese UAs with high
UL rates and CEs, even though UAs can play a dominant role in promoting a new-type
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urbanization that realizes green and low-carbon transformation [9,10]. As reported by
Wang et al. (2022) [40], large UAs were areas with high urban CEs performance values.
Consequently, an investigation into the spatial correlation between UL and CEs intensity in
Chinese UAs may facilitate the formulation of enlightened policies.

The UAs comprise numerous sizable cities and have become a significant region of
urbanization and economic growth in China [41–43]. It is of paramount importance to
ascertain the influence of UL on CEs, both for the sustainable development of UAs and
for the realization of China’s double carbon target [44]. What is the spatial relationship
between UL and CEs of UAs in China? What are the distinctions in the influence of
disparate urbanization factors on CEs? What policy recommendations can be provided
for green development, energy conservation, and emission reduction by studying the
relationship between UL and CEs in Chinese UAs? These issues require further elucidation.
To this end, this study employed kernel density estimation and the Markov chain model
to initially examine the evolution and spatial development trends of CEs intensity in
Chinese UAs in 2000, 2010, and 2020. Subsequently, the spatial autocorrelation and spatial
econometric models were employed to analyze the spatial variations in the relationships
between urbanization factors and CEs. The study attempted to address two key questions:
(1) What are the spatiotemporal patterns of CEs intensity and UL in Chinese UAs? (2) What
are the spatial variations in the relationships between urbanization factors and CEs intensity
in Chinese UAs?

2. Materials and Methods
2.1. Study Area

UAs represent a high-level spatial form of urban development. A total of 19 UAs were
proposed in China’s 14th Five-Year Plan, which has become an important starting point
for promoting China’s high-quality development (Figure 1). Due to their advantageous
natural conditions and substantial development potential, UAs accounted for the majority
of China’s total population, economic aggregate, and construction area, serving as the
primary growth engine for China’s economic expansion [23]. The 19 UAs in China ac-
counted for approximately 29.39% of the country’s total area and approximately 74% of the
country’s total population and generate approximately 83% of the country’s GDP [45]. UAs
represented the predominant form of new-type urbanization [9,46]. They served as spatial
conduits and focal points for a multitude of activities, encompassing political, economic,
ecological, cultural, and other domains. Additionally, they facilitated the aggregation and
divergence of diverse production factors. CEs in UAs accounted for approximately 80%
of the total CEs in China. However, the rapid and disorderly development of UAs has
caused a series of eco-environmental problems that may have seriously affected China’s
“30·60 dual carbon” development strategies, among which the rapid increase in CEs was a
typical example.
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2.2. Data Sources and Processing

China’s land-use remote sensing monitoring data, normalized difference vegetation
index (NDVI) data, economic density data (spatial resolution of 1 km), and main road
vector data for 2000, 2010, and 2020 were obtained from the Data Center for Resources
and Environment, Chinese Academy of Sciences (http://www.resdc.cn, accessed on 16
June 2024). Population density data with a spatial resolution of 100 m were obtained from
WorldPop (https://www.worldpop.org, accessed on 16 June 2024). The CEs data were
primarily sourced from the global CEs raster data published by the Open-Data Inventory
for Anthropogenic Carbon Dioxide from 2000 to 2022 (http://db.cger.nies.go.jp/dataset/
ODIAC/data_policy.html, accessed on 16 June 2024). These data were widely used in CEs
exploration, simulation, and prediction, and their simulation accuracy is greater than 80%.
Basic geographic information data were obtained from the National Geomatics Center of
China (http://www.ngcc.cn, accessed on 16 June 2024).

2.3. Kernel Density Estimation

Kernel density estimation is commonly employed to construct a probability distribu-
tion function that aligns with the original factor distribution [47–49]. The advantages of
kernel density estimation are that it does not depend on a model and the method is robust,
which is widely used to explore the dynamic evolution and spatial development of geo-
graphical factors [50–52]. Here, we used the method to describe the dynamic evolutionary
trends of CEs intensity in Chinese UAs to reveal their quantitative change characteristics.
The equations are as follows:

f (cei) =
1

NL

N

∑
i=1

K(
CEIi − cei

L
) (1)

K(cei) =
1√
2π

exp(− cei2

2
) (2)

where cei is the mean CEs intensity in the UAs, L is the bandwidth, N is the number of
observations, CEIi is the CEs intensity of the i-th observation, and K(cei) is the Gaussian
kernel function. In this study, the bandwidth was 0.02. To achieve a better visualization
effect, CEs intensity was normalized to the range of 0–1 before kernel density estimation.

2.4. Markov Chain Model

The Markov chain model, a stochastic process that exhibits no aftereffects, is typi-
cally employed to investigate the mutual transformation of factors over time. The model
employs an n × n transition probability matrix to characterize transition probability and di-
rection [51,53,54]. The spatial Markov chain model adds a spatial lag term, which converts
the n × n transition probability matrix into an n × n × n transition probability matrix. The
spatial Markov chain model is based on the original Markov chain model and considers
the spatial dependence of transfer factors [54,55]. In this study, we used the Markov chain
to analyze the dynamic evolutionary trend of CEs intensity in Chinese UAs in the future to
reveal its mutual transfer in different value domains.

2.5. Measurement of UL

Urbanization encompasses population growth, economic development, expansion
of construction land, and rising living standards [56]. Rising living standards are the
result of population growth, economic development, and the expansion of construction
land [57,58]. The methods of measuring UL are diverse, with population growth being the
core, land expansion being the guarantee, and economic growth being the engine [23,59].
An evaluation method for UL was constructed concerning previous literature [59,60]. Here,
economic, population, and spatial urbanization factors were comprehensively analyzed to

http://www.resdc.cn
https://www.worldpop.org
http://db.cger.nies.go.jp/dataset/ODIAC/data_policy.html
http://db.cger.nies.go.jp/dataset/ODIAC/data_policy.html
http://www.ngcc.cn
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construct the UL assessment method due to data availability and measurability [23,58–61].
The equation is as follows:

ULi = (EDi + POPi + DLPi)/3 (3)

where ULi represents the urbanization level of the i-th county, EDi, represents the economic
density, POPi, represents population density, and DLPi, represents the construction land
proportion of the i-th county.

2.6. Bivariate Spatial Autocorrelation Analysis

Bivariate spatial autocorrelation is employed to investigate the potential for a spatial
auto-correlation between CEs intensity and UL [23,62]. The global bivariate Moran’s I
index was employed to investigate the overall spatial agglomeration intensity/direction
of CEs intensity and UL, as delineated by Chen and Chi (2022) [23]. This study employed
global spatial autocorrelation to quantify the extent of the autocorrelation between CEs
intensity and UL, while local autocorrelation was utilized to illustrate the spatial clustering
patterns of CEs intensity and UL.

2.7. Multiscale Geographically Weighted Regression

First, the OLS model was employed to explore the impact of UL on CEs intensity. The
econometric model is constructed as follows:

CEIi = β0 + β1ULi +
7

∑
k=2

βkXki + εi (4)

where β0 represents the intercept, β1 represents the regression coefficient, i represents a
district or county, CEIi represents the CEs intensity in the i-th district, ULi represents the
UL in the i-th district, Xki represents the control variable affecting the CEs intensity in the
i-th district, and εi is the residual term.

Considering that UAs’ UL is influenced by spatial factors, the traditional global re-
gression model cannot identify potential spatial heterogeneity. Previous research has
sought to assess the spatial non-stationarity of urbanization development through the
use of the GWR model, which incorporates spatial factors into the analysis [63,64]. How-
ever, the GWR model has two inherent limitations. Firstly, although the GWR model
considers spatial factors, it fails to account for the multi-scale test problem, resulting
in an inability to accurately estimate local parameters. Secondly, the GWR model em-
ploys a fixed value for the optimal bandwidth, operating under the assumption that all
variables exert an influence on the explained variables at an identical spatial scale. To
address the aforementioned issues, the multi-scale GWR model does not scale for each
independent variable within the same spatial context. Instead, it employs a multi-scale
inference approach to identify the optimal bandwidth, thereby ensuring the reliability of
local parameter estimates. Here, we introduced the multi-scale GWR model to analyze the
spatially non-stationary response of CEs intensity to UL in Chinese UAs. The equation is
as follows:

CEIi = βbwi0 + βbwi1ULi + ∑7
k=2 βbwikXki + εi (5)

where βbwi0 represents the intercept, βbwi1 represents the regression coefficient, bwi rep-
resents the optimal bandwidth of each variable, i represents a district or county, CEIi
represents the CEs intensity in the i-th district, ULi represents the UL in the i-th district, Xki
represents the control variable affecting the CEs intensity in the i-th district, and εi is the
residual term. MGWR V2.2.1 software was used to estimate and calibrate the parameters
of the model, and the related maps were drawn using ArcGIS 10.8 software (Esri, Redlands,
CA, USA).
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Here, CEs intensity was expressed as CEs per unit area of each district and county. The
core explanatory variable was UL, which was measured by the methodology outlined in
Section 2.5. The measures of each control variable included patch density (PD), edge index
(ED), cohesion index (COHESION), agglomeration index (AI) of urban land, elevation
(digital elevation model, DEM), road density (RD), and vegetation cover (VC). Landscape
pattern metrics, including PD, ED, COHESION, and AI, were selected to measure the form
of urban land [30,32,33,65]. DEM and VC were selected to represent natural elements, while
RD was selected to represent socioeconomic elements [66].

3. Results
3.1. Spatiotemporal Patterns of CEs Intensity in Chinese UAs
3.1.1. Spatiotemporal Patterns of CEs Intensity

Figure 2 illustrates the spatiotemporal patterns of CEs intensity in Chinese UAs from
2000 to 2020. In 2000, 2010, and 2020, the average CEs intensity of Chinese UAs was
1152.689, 3124.253, and 3811.584 tons/km2, respectively. The CEs intensity growth rates
during 2000–2010 and 2010–2020 were 171.040% and 22.000%, respectively. This indicated
a decrease in the CEs intensity growth rate over time. Despite comprising only 29.390%
of the country’s total area, UAs were responsible for the vast majority of the country’s
total CEs. In 2000, 2010, and 2020, the total CEs in UAs contributed 78.347%, 78.927%,
and 78.941% of the total national CEs, respectively, demonstrating a continuous upward
trajectory. The highest CEs were observed in the Yangtze River Delta, while the lowest
was recorded in the central Guizhou UAs. Moreover, the CEs intensity in UAs in eastern
China (e.g., the Yangtze River Delta, Pearl River Delta, Shandong Peninsula, and Beijing-
Tianjin-Hebei UAs) was observed to be higher than that in UAs in western China. Addi-
tionally, the CEs intensity in the core areas of UAs was found to be higher than that in the
surrounding areas.
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3.1.2. Dynamic Evolution of CEs Intensity

Furthermore, unconditional and spatial static kernel densities were employed to inves-
tigate the dynamic evolution of CEs intensity in Chinese UAs (Figure 3). The concentration
of unconditional kernel densities in proximity to the 45◦ diagonal suggested that CEs
intensity did not undergo a notable change. The peaks in the unconditional kernel densities
were primarily situated in areas with elevated CEs intensity-high UL and reduced CEs
intensity-low UL, suggesting that CEs intensity underwent dynamic evolution in these
regions. Regions with higher CEs intensity tended to convert to lower CEs intensity over
time. This may have been due to a series of CEs reduction measures implemented in
China from 2010 to 2020, which gradually reduced CEs intensity in regions with previously
higher CEs intensity. Furthermore, the findings indicated that the highest CE intensity
was concentrated in areas with low CEs intensity-low UL and medium CEs intensity-high
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UL, suggesting that CEs intensity in UAs exhibited notable spatial clustering tendencies.
Additionally, regions with elevated CEs intensity were situated close to UAs with similarly
high CEs intensity.
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In light of the spatial dependence of CEs intensity, a spatial Markov chain model
was employed to quantify the dynamic transfer trends of CEs intensity in Chinese UAs,
with CEs intensity for 2000, 2010, and 2020 sorted by size (Table 1) [51,52]. The transfer
trends of CEs intensity in UAs were investigated across time slices of 10 and 20 years. As
illustrated in Table 1, the value of the diagonal was greater than that of the off-diagonal.
However, the value of the diagonal exhibited a gradual decline with increasing time slices,
indicating that CEs intensity demonstrated notable mobility. Furthermore, the value of the
upper part of the diagonal was considerably higher than that of the lower part, indicating
that the probability of CEs intensity transferring to a high value was significantly greater
than that of transferring to a low value. This suggests that CEs intensity in UAs increased
at a steady rate. Furthermore, the greater probability of CEs intensity shifting to a high
value under the premise of spatial lag indicated that CEs intensity in UAs had a spatial
spillover effect.

Table 1. Spatial Markov transition probability matrix of CEs intensity.

Time Slice Spatial Lag Type L ML MH H

10

L

L 0.804 0.192 0.004 0
ML 0.014 0.521 0.465 0
MH 0 0 0.606 0.394
H 0 0 0 1

ML

L 0.697 0.297 0.006 0
ML 0.010 0.599 0.383 0.008
MH 0 0 0.681 0.319
H 0 0 0 1

MH

L 0.731 0.263 0.006 0
ML 0.002 0.500 0.485 0.013
MH 0 0 0.646 0.354
H 0 0 0 1

H

L 0.733 0.267 0 0
ML 0 0.465 0.535 0
MH 0 0 0.616 0.384
H 0 0 0 1
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Table 1. Cont.

Time Slice Spatial Lag Type L ML MH H

20

L

L 0.669 0.322 0.009 0
ML 0.022 0.222 0.756 0
MH 0 0 0.167 0.833
H 0 0 0 1

ML

L 0.495 0.480 0.025 0
ML 0.004 0.312 0.665 0.019
MH 0 0 0.325 0.675
H 0 0 0 1

MH

L 0.429 0.551 0.020 0
ML 0.004 0.172 0779 0.045
MH 0 0 0.204 0.796
H 0 0 0 1

H

L 0 1 0 0
ML 0 0 0.800 0.200
MH 0 0 0.058 0.942
H 0 0 0 1

Notes: L, CEs intensity less than the lower quartile; ML, CEs intensity between the lower quartile and median;
MH, CEs intensity between the median and upper quartile; and H, CEs intensity greater than the upper quartile.

3.2. Spatiotemporal Patterns of UL in Chinese UAs

Figure 4 illustrates the spatiotemporal UL patterns in Chinese UAs, indicating a
notable increase in UL from 2000 to 2020. The mean UL were 0.029, 0.035, and 0.059 in
2000, 2010, and 2020, respectively. The growth rates of UL during 2000–2010 and 2010–2020
were 20.690% and 68.571%, respectively. As with CEs intensity, the UL of UAs in eastern
China were markedly higher than those in western China, with those in the core UAs areas
exhibiting even higher values than those in the surrounding regions. The regions exhibiting
elevated UL were analogous to those displaying heightened CEs intensity.
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3.3. Spatial Autocorrelation Analysis of CEs Intensity and UL in Chinese UAs

The global bivariate Moran’s I were 0.468 (Z-value = 32.426), 0.510 (Z-value = 34.756),
and 0.537 (Z-value = 36.646) in 2000, 2010, and 2020, respectively. The results demonstrated
a significant (p = 0.0001) spatial autocorrelation between CEs intensity and UL in Chinese
UAs. The LISA cluster map provided a visual representation of the specific patterns of spa-
tial autocorrelation (Figure 5). In particular, low CEs intensity-low UL spatial correlations
were the main type, followed by high CEs intensity-high UL spatial correlations. The results
indicated a positive correlation between CEs intensity and UL. Low CEs intensity-low UL
spatial correlations were predominantly distributed in the regions surrounding UAs, while
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high CEs intensity-high UL spatial correlations were primarily observed in the core area
of UAs.
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3.4. Regression Results
3.4.1. Global Regression Results

In this study, the OLS model was initially employed to quantify the global impact of
UL on CEs in urban areas. As demonstrated in Table 2, UL exerted a markedly positive
influence on CEs intensity from 2000 to 2020 (p = 0.001), indicating that the advancement
of urbanization resulted in a notable increase in CEs. Concurrently, the expansion of
the economic scale was occurring at a rapid pace in conjunction with the continuous
advancement of urbanization, which was resulting in elevated pollution emissions and
a considerable surge in urban CEs. However, urban areas experience a significant influx
of population during the urbanization process, which intensified energy consumption
and land over-development, placing pressure on the urban environment and increasing
urban CEs.

Table 2. Global estimation results of the impact of UL on CEs.

Variables
2000 2010 2020

Coef t_Stat Prob Coef t_Stat Prob Coef t_Stat Prob

UL 4.567 *** 7.890 0.000 5.175 *** 11.240 0.000 3.265 *** 8.901 0.000
PD 0.001 *** 3.770 0.000 64.265 *** 11.680 0.000 50.268 *** 10.586 0.000
ED 0.257 *** 3.790 0.000 −0.247 *** −4.410 0.000 −0.201 *** −4.365 0.000

COHESION 0.024 *** 8.110 0.000 0.039 *** 13.640 0.000 0.055 *** 17.711 0.000
AI −0.009 *** −5.450 0.000 −0.013 *** −7.810 0.000 −0.016 *** −7.845 0.000

DEM −0.001 *** −11.750 0.000 0.000 *** −6.720 0.000 0.000 *** −7.699 0.000
RD 0.811 *** 4.590 0.000 1.199 *** 7.670 0.000 0.000 *** 0.037 0.971
VC −1.312 *** −12.390 0.000 −1.244 *** −12.700 0.000 −1.011 *** −10.782 0.000

Con_s 5.323 *** 47.880 0.000 5.060 *** 41.580 0.000 4.860 *** 0.000 1.000
OLS method

diagnosis
N R2 A_VIF N R2 A_VIF N R2 A_VIF

1769 0.637 2.52 1769 0.726 3.38 1769 0.765 4.16

Notes: *** means p ≤ 0.001; UL, urbanization level; PD, patch density; ED, edge index; COHESION, cohesion
index; AI, agglomeration index; DEM, elevation; RD, road density; and VC, vegetation cover.

As evidenced by the results presented in Table 2, PD had a significant and positive
impact on CEs intensity from 2000 to 2020. This finding aligns with expectations and
suggests that increased urban land fragmentation has contributed to the growth of urban
CEs. The effect of ED on CEs intensity was found to be significantly positive in 2000, but
significantly negative in 2010 and 2020. This suggests that the impact of ED on CEs intensity
was unstable. This may have been because continuous urban land improvement within UAs
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increased the degree of agglomeration, which was disadvantageous to the technological
progress and economic development of marginal cities, resulting in a gradual positive
impact on the marginal index of CEs intensity. The results indicate that an improvement in
the cohesion index significantly promoted the growth of CEs intensity in 2000, 2010, and
2020. The results indicate that AI had a significantly negative effect on CEs intensity. This
suggests that a higher degree of agglomeration within UAs facilitates economies of scale
and technology spillover, thereby reducing CEs intensity. As anticipated, DEM and VC
had a markedly adverse impact on CEs intensity, indicating that elevated altitudes and
expansive vegetative coverage were conducive to reducing CEs intensity. As anticipated,
the results demonstrated that RD had a markedly positive impact on CEs intensity. This
finding suggests that elevated road densities were associated with increased pollution
emissions, thereby facilitating the expansion of CEs intensity.

3.4.2. Spatial Heterogeneity Analysis Based on Multi-Scale GWR Model
Multi-Scale Analysis

The aforementioned estimation results, derived from the OLS model, failed to account
for spatial effects, thereby impeding the identification of potential spatial heterogeneity.
Accordingly, this study incorporated spatial factors through the use of the multi-scale GWR
model, to evaluate the influence of UL on CEs intensity. The findings of the aforementioned
traditional GWR model were also presented for comparison. As illustrated in Table 3, the
bandwidth selections varied for each influencing factor in the multi-scale GWR model.

Table 3. Bandwidth comparison between multi-scale GWR model and GWR model.

Variables
Multi-Scale GWR GWR

2000 2010 2020 2000 2010 2020

UL 1662 1074 1753 113 155 191
PD 155 170 184 113 155 191
ED 1673 1766 1766 113 155 191

COHESION 1607 198 1768 113 155 191
AI 1673 644 1766 113 155 191

DEM 79 157 1768 113 155 191
RD 450 47 49 113 155 191
VC 191 43 179 113 155 191

Con_s 354 548 43 113 155 191
R2 0.824 0.836 0.836 0.830 0.827 0.841

Adj. R2 0.797 0.814 0.824 0.797 0.803 0.824
AICc 2498.758 2299.793 2075.145 2572.331 2413.653 2156.661

The bandwidths of UL were considerable in 2000 (1662), 2010 (1074), and 2020 (1753),
indicating that spatial differences in UL had a limited impact on CEs. Additionally, the
spatial scale of other factors influencing CEs intensity exhibited a significant variation
from 2000 to 2020. To illustrate, the bandwidth of DEM was relatively narrow in 2000,
indicating that spatial variations in DEM had a considerable influence on CEs intensity
in that year. However, the bandwidth of DEM was markedly larger in 2020, indicating
that spatial differences in DEM had a markedly diminished impact on CEs intensity in
2020. These findings suggest that the multi-scale GWR model more accurately reflected
the varying influence of each factor on CEs intensity compared to the fixed scale in the
GWR model.

Multi-Scale GWR Model Regression Analysis

The descriptive statistical results of the multi-scale GWR model are presented in Table 4.
From 2000 to 2020, the estimated regression coefficients for UL were found to be significant
at the p < 0.1 level, with all coefficients exhibiting a positive sign. These findings illustrate
that UL exerted a significant influence on CEs intensity. In addition to the aforementioned
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influencing factors, approximately 50% of the PD regression coefficients were significant at
the p ≤ 0.01 level from 2000 to 2020, with over 70% of the coefficients falling at the p ≤ 0.1
level. Furthermore, all PD coefficients were positive, indicating that PD was a significant
factor influencing the growth of CEs intensity during this period. In contrast, the influence
of ED on CEs intensity was relatively limited. In 2000, only 6.90% of the ED coefficients were
at the p ≤ 0.1 level, and this proportion gradually decreased in 2010 and 2020. In contrast
with the global estimation results based on the OLSmodel, the impact on the marginal
index of CEs intensity was found to be significantly reduced after consideration of spatial
factors. The proportions of the COHESION and AI regression coefficients that were at the
p ≤ 0.01 level increased in 2010 and 2020, reaching 100% in both cases. Furthermore, all
coefficients were positive, indicating that COHESION and AI gradually became important
factors leading to CEs intensity growth with the advancement of urbanization. The level
of significance and ratio of positive to negative results for the DEM regression coefficients
exhibited fluctuations from 2000 to 2020. However, the overall effect was found to be
significantly negative, indicating that DEM exerted a detrimental influence on the growth
of CEs intensity. The proportion of RD and VC regression coefficients that were significant
at the p ≤ 0.1 level was less than 50% from 2000 to 2020. This indicated that RD and VC
had a relatively limited impact on CEs intensity during this period.

Table 4. Descriptive statistics of multi-scale GWR model regression parameters.

Year Variable Mean STD Min Max p ≤ 0.01 p ≤ 0.05 p ≤ 0.1 + (%) − (%)

2000

UL 0.224 0.032 0.176 0.281 100.00 100.00 100.00 100.00 0.00
PD 0.176 0.123 0.019 0.629 49.41 62.52 74.05 100.00 0.00
ED 0.062 0.002 0.06 0.074 0.00 0.00 6.90 100.00 0.00

COHESION 0.245 0.098 0.05 0.495 82.14 94.12 96.21 100.00 0.00
AI −0.069 0.06 −0.171 0.012 33.63 35.27 40.81 3.11 96.89

DEM −0.246 0.27 −0.887 0.394 56.70 70.49 73.94 17.81 82.19
RD 0.213 0.285 −0.233 1.346 21.93 29.85 40.31 78.86 21.14
VC −0.128 0.218 −0.742 1.184 25.16 34.26 39.80 23.29 76.71

Con_s 0.12 0.112 −0.071 0.267 53.70 58.00 66.31 77.44 22.56

2010

UL 0.208 0.004 0.2 0.216 100.00 100.00 100.00 100.00 0.00
PD 0.178 0.113 0.037 0.556 46.52 69.87 82.42 100.00 0.00
ED 0.054 0.002 0.051 0.064 0.00 0.00 4.92 100.00 0.00

COHESION 0.333 0.001 0.33 0.336 100.00 100.00 100.00 100.00 0.00
AI −0.125 0.003 −0.133 −0.115 100.00 100.00 100.00 100.00 0.00

DEM −0.467 0.001 −0.469 −0.464 100.00 100.00 100.00 0.00 100.00
RD 0.173 0.187 −0.109 0.891 23.29 34.65 40.87 83.89 16.11
VC −0.051 0.128 −0.316 0.184 33.13 51.16 58.90 35.73 64.27

Con_s 0.153 0.431 −0.683 1.477 47.99 55.96 61.16 65.23 34.77

2020

UL 0.212 0.008 0.197 0.235 100.00 100.00 100.00 100.00 0.00
PD 0.165 0.097 0.004 0.468 54.55 66.53 72.87 100.00 0.00
ED 0.004 0.008 −0.008 0.03 0.00 0.00 0.00 60.66 39.34

COHESION 0.55 0.011 0.529 0.571 100.00 100.00 100.00 100.00 0.00
AI −0.144 0.006 −0.157 −0.133 100.00 100.00 100.00 100.00 0.00

DEM −0.315 0.392 −1.258 0.75 51.10 59.81 65.52 21.14 78.86
RD 0.037 0.07 −0.045 0.286 13.85 19.39 27.42 59.81 40.19
VC −0.071 0.099 −0.281 0.108 30.02 38.33 43.19 24.65 75.35

Con_s −0.069 0.202 −0.328 0.2 76.31 84.28 86.09 52.57 47.43

3.4.3. Spatial Heterogeneity Analysis of Local Parameters in Multi-Scale GWR Model

The primary factors influencing CEs intensity in the multi-scale GWR model were
analyzed using ArcGIS 10.3 software, and the spatial heterogeneity of their influence is
illustrated in Figure 5. UL was the core factor influencing the growth of CEs intensity,
with regression coefficients ranging from 0.1760 to 0.2810. From the perspective of spatial
heterogeneity between 2000 and 2020, the regression coefficients of UL exhibited a decline
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over time from north to south, indicating that the impact of UL on CEs intensity in southern
China was relatively limited. In 2000 and 2010, the areas with the highest UL regression
coefficients were primarily located in the Ha-Chang, mid-southern Liaoning, Beijing-
Tianjin-Hebei, Hu-Bao-E-Yu, and Northern Tianshan Mountain UAs in northern China.
However, in 2020, only the Northern Tianshan Mountain UAs exhibited high UL regression
coefficients, while the majority of northern UAs demonstrated a notable decline in UL
regression coefficients, indicating a diminished impact of UL on CEs intensity in the
Northern Tianshan Mountain UAs. This effect can be attributed to the ongoing process of
new-type urbanization construction in China, which placed a premium on the protection
and development of urban ecological environments, thereby contributing to a reduction in
CEs intensity.

There was a positive association between AI and CEs intensity in many counties
and a negative association in most counties. The results demonstrate that the element
agglomeration gives rise to disparate spatial spillover effects for UAs at varying stages of
development [67]. They also indicate that reducing CEs intensity was advantageous in
UAs with a higher degree of agglomeration. The regression coefficients for AI exhibited
a positive association and demonstrated a tendency to spread from the northwest to the
central plains. In 2000, only the Northern Tianshan Mountain UAs indicated a positive
association between AI and CEs intensity. However, a gradual increasing trend was
identified in 2010 and 2020. In particular, in 2020, positively correlated AI regression
coefficients were identified in the Hu-Bao-E-Yu, Lanxi, and Jinzhong UAs, as well as in
some areas of the Guanzhong Plain UAs. The varying degree of UAs at different levels
of economic development gives rise to the phenomenon whereby the agglomeration of
population, economy, industry, and other factors will lead to positive spatial spillover
effects, thereby increasing the CEs intensity. This is particularly the case in UAs with weak
core driving capabilities and where the overall UL is still on the rise. In contrast, AI was
significantly and negatively correlated with CEs intensity in the Yangtze River Delta, Pearl
River Delta, and West Taiwan Strait UAs, indicating that the effects of economies of scale
and technology spillover owing to UAs were conducive to reducing CEs intensity.

As illustrated in Figure 6, a positive association was observed between COHESION
and CEs intensity, with the regression coefficients ranging from 0.0499 to 0.4950. From the
perspective of spatial distribution between 2000 and 2020, the influence of COHESION
on CEs intensity exhibited temporal variation. Specifically, areas with high COHESION
regression coefficients in 2000 were mainly distributed in the Northern Tianshan Mountain
UAs in the northwest and middle reaches of the Yangtze River and Yangtze River Delta
UAs in the southeast. In 2010, the areas with the highest COHESION regression coefficients
were primarily concentrated in UAs in the northwest, north, and northeast regions of China.
In 2020, the areas exhibiting high coefficients of association extended further from the
northeast to the northwest of China. These findings suggest that the cohesion index played
a progressively facilitating role in the growth of CEs intensity in UAs in northern China,
whereas its promoting effect on CEs intensity growth in southern China was markedly
diminished in comparison. The siphon effect of UAs on resources and their radiation and
driving capabilities on surrounding areas result in the relatively concentrated distribution
of resources such as capital, professional knowledge, and technology. Technology, in turn,
leads to green development and production, thereby reducing CEs.

While the distribution patterns of the influence of ED on CEs intensity exhibited
temporal variation, they demonstrated overall consistency. The positively associated ED
regression coefficients were primarily concentrated in the northern region and exhibited
a decreasing gradient from north to south. The ED regression coefficients ranged from
0.0596 to 0.075, indicating that ED exerted a relatively minor influence on the growth of
CEs intensity. Concurrently, the high ED regression coefficients observed in the northern
region demonstrated a gradual upward trajectory between 2010 and 2020 when compared
to those recorded in 2000.
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PD was positively associated with CEs intensity, displaying regression coefficients
ranging from 0.0193 to 0.6282, which indicated that PD had a great impact on the growth
of CEs intensity. Concerning the spatial distribution of heterogeneity between 2000 and
2020, areas with high PD regression coefficients in 2000 and 2010 were primarily situated
in UAs in the northwest, northeast, and southwest regions of China. However, areas
with high PD regression coefficients in 2020 displayed a distinct tendency to expand
towards the central region, suggesting that the influence of PD on CEs intensity growth
was progressively intensifying.
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Furthermore, we examined the impact of distinct urbanization factors on CEs intensity,
and the findings are presented in Figure S1 (all control variables have been controlled). In
general, the various types of UL had a positive effect on CEs intensity. However, there was
considerable spatial heterogeneity in the impact of different types of UL on CEs intensity. In
particular, the process of population urbanization was observed to exert a more pronounced
influence on CEs intensity in northern UAs than in southern UAs. The impact of land
urbanization on CEs intensity was more pronounced and substantial in western UAs, yet
the significant areas exhibited a gradual shift towards the south over time. The least impact
on CEs intensity was observed in UAs in the North China Plain and Northeast China, while
a more significant impact was evident in other regions.

4. Discussion
4.1. Summary of Findings

From 2000 to 2020, the CEs intensity of Chinese UAs increased continuously, but the
growth rate slowed down evidently. High-intensity energy consumption, rising incomes,
and population growth triggered by rapid socioeconomic development led to an increase
in the contribution of UAs’ CEs to total national CEs [68,69]. As urbanization improved,
the impact of UL on local CEs changed from positive to negative [70]. Subsequently, the
negative effect gradually diminished [70]. Due to differences in the spatial distribution of
economic development, leading industrial structures, energy consumption, production,
and lifestyles in Chinese UAs, the spatial distribution pattern of CEs intensity was sig-
nificantly higher in coastal UAs than in inland UAs, with obvious spatial agglomeration
characteristics [71].

This study found that CEs intensity of Chinese UAs was significantly and positively
associated with UL. The regression results indicated that UL positively influenced the
growth of CEs, urban land fragmentation aggravated the growth of CEs, and increased
agglomeration reduced CEs. Previous studies have conducted extensive research between
UL and CEs intensity. Zhang et al. (2016) [72] showed that China’s urbanization process
had a positive impact on CEs. Zhou and Dai (2013) [73] reported that urbanization led
to an increase in CEs, and every 1% increase in the urbanization rate corresponded to a
1.61% increase in CEs. Guo and Liu (2012) [74], Zhao and Wang (2021) [75], and Xu and
Zhou (2011) [71] also believed that UL would continue to amplify the increase of CEs
and had a greater impact on eastern China, which was consistent with the results of this
study. However, some researchers have proposed different views. Bi (2015) and Sun et al.
(2013) [76,77] believed that UL had a dual effect of driving and braking CEs, and different
stages of urbanization development showed significantly different modes of action. Fan
and Zhou (2019), Feng and Li (2018), and Liu (2012) [78–80] further discussed the U-shaped
relationship between UL and CEs, that is, the effect of UL on CEs showed a dynamic pattern
of initial decrease followed by increase.

We also found apparent spatial heterogeneity in the influence of UL on CEs. There,
high CEs intensity-high UL spatial correlations were mainly distributed in the core area
of UAs, while low CEs intensity-low UL spatial correlations were mainly distributed in
regions surrounding UAs. The siphoning effect of the core area has gradually increased,
constantly attracting outflows of quality resources from neighboring areas. As a result,
urbanization was also at a relatively low level with a relatively weak resource base in the
peripheral cities [70]. In a previous study, UL and CEs in the whole country and eastern
region showed an inverted N-type relationship, whereas UL and CEs in the central region
showed an N-type relationship [81]. However, Wang and Shao (2014) [82] reported that UL
and CEs in the eastern region were directly proportional, whereas urbanization in central
and western China was inversely proportional to CEs. In addition, Hu and Jiang (2015) [83]
proposed that urbanization in the Yangtze River Delta UAs had a restraining effect on CEs,
while that in the Beijing-Tianjin-Hebei UAs had a significantly positive effect on CEs, and
that in the Pearl River Delta UAs had a U-shaped relationship with CEs.
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4.2. Policy Implications
4.2.1. Controlling Urban Expansion and Optimizing Spatial Layout

The findings of this research suggested that, in general, the process of urbanization in
Chinese UAs continued to exert a positive influence on CEs. It is therefore imperative to ex-
ercise reasonable control over the scale of urban expansion and construction, particularly in
eastern coastal UAs with high ULs. It is important that considerations be made concerning
the ecological environment, and that the development scale and boundaries of various land
types be controlled reasonably to ensure the integrity of the ecological environment [84].
Furthermore, researches has demonstrated that an increase in the fragmentation of urban
landscapes can also increase CEs intensity. From the perspective of the urban landscape,
it is essential that UAs prioritize considerations of land shape and compact layout while
pursuing a reasonable expansion of construction land. Firstly, it is of utmost importance to
avoid the excessive dispersion of urban land and instead seek a moderate concentration for
low-carbon urban land layout to reduce CEs. Secondly, the phenomenon of the “heat island
effect”, which is caused by the excessive concentration of urban land, can also increase
CEs. Accordingly, in the context of land use and layout, it is essential to prioritize the
enhancement of ecological land design and the augmentation of carbon sequestration
capabilities [85].

4.2.2. Implementing Differential Carbon Reduction Policies

The influence of UL on CEs exhibited notable regional variations. This also served to
accentuate the spatial disparities in CEs intensity. It is therefore recommended that local
governments implement differentiated emission reduction policies to reduce regional dif-
ferences in CEs in UAs. Firstly, an investigation should be conducted into the development
of land use CEs standards applicable to different UAs in China. This should be followed by
the establishment of a mechanism that ensures a balance between the occupation of carbon
sink space and the implementation of compensation measures. Core areas of UAs leverage
the advantages of technological advancements to enhance energy efficiency and curtail
CEs intensity while ensuring the continued sustenance of economic growth. Furthermore,
marginal areas of UAs should facilitate the transformation of the industrial structure and
the construction of a green industrial structure system that aligns with objective reality. This
should be done in a manner that minimizes CEs generated along with economic growth
and promotes the synchronous realization of low CEs and high-quality urbanization [86].
Secondly, it is possible to enhance regional collaboration within each UAs, fully capitalize
on their respective advantages, collectively address pollution and other concerns, and
effectively advance the implementation of emission reduction policies [84].

4.2.3. Promoting the Low Carbon Transition Development of New-Type Urbanization

As a principal component of the new-type urbanization paradigm, UAs bear a signifi-
cant burden of responsibility for achieving energy conservation and emission reduction in
China. Since the 18th National Congress of the Communist Party of China, the construction
of new-type urbanization has been guided by ecological civilization. This has resulted in
the integration of energy conservation and emission reduction as a significant component
of the development process, to achieve a green and low-carbon urbanization model [87].
Consequently, in the context of promoting new-type urbanization, it is imperative to move
beyond mere expansion of city size or increase in the urbanization rate. There is a need
to pursue a sustainable urbanization path that is driven by scientific and technological
innovation. Firstly, eastern and southern UAs, which demonstrate greater socioeconomic
sustainability, should persistently investigate novel avenues for energy conservation and
emission reduction. They should capitalize on the advantages and driving forces of their
core regions, establish a networked system for energy conservation and emission reduc-
tion, and achieve coordinated regional emission reduction. Secondly, UAs in the central
and western regions must expedite technological innovation, construct a green industrial
system, facilitate the low-carbon transformation of leading industries, and enhance the eco-
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nomic vitality of the UAs. Finally, disparities in development levels among cities within the
northern UAs underscore the necessity for strengthened regional coordinated development
efforts. Furthermore, it is of paramount importance to expedite industrial modernization
and diversification to fully realize the economic potential of the region.

4.3. Limitations and Future Directions

This study analyzed the spatiotemporal patterns of CEs intensity and UL, as well as
the spatial non-stationary response of CEs intensity to UL in Chinese UAs. It aimed to
elucidate the relationship between CEs and UL. However, the study has some shortcomings
as follows. (1) The analysis of the spatiotemporal non-stationary response of CEs intensity
to UL was conducted using a cross-sectional model, and the spatial impact of UL on CEs
intensity was not analyzed based on a panel model. In subsequent studies, a panel model
analogous to the spatial Durbin model could be employed to analyze the impact of UL on
CEs intensity. (2) The relationship between UL and CEs intensity has not been explored
from the perspective of telecoupling, which is particularly important in the 21st century. In
subsequent research, the perspective of telecoupling could be introduced to analyze the
telecorrelation between UL and CEs intensity.

5. Conclusions

In this study, the spatial patterns of CEs in Chinese UAs were analyzed using distri-
bution dynamics models. The spatial relationships between UL and CEs were identified
through the use of bivariate spatial autocorrelation analysis and multi-scale GWR. This
study addressed the current deficiencies in understanding the relationship between UL and
CEs in China’s UAs. Furthermore, it examined the association between urban land patterns
and CEs. The data thus provided a basis for promoting the low-carbon transformation and
development of new-type urbanization, thereby facilitating the achievement of China’s
energy conservation and emission reduction targets. The principal findings were as follows.
The results showed that CEs in Chinese UAs contributed about 80% of the total national
CEs, with a gradually increasing trend. High CEs intensity was concentrated in the core
area of the UAs. A significant spatial autocorrelation was found between UL and CEs
intensity, among which low CEs intensity-low UL spatial dependence was the main type
identified. The regression results indicated that UL positively influenced the growth of CEs,
urban land fragmentation exacerbated the growth of CEs, and increased agglomeration
reduced CEs. In addition, the effect of UL on CEs intensity showed significant spatial
heterogeneity. From the perspective of spatial heterogeneity between 2000 and 2020, the
regression coefficients of UL showed a decline over time from north to south, indicating
that the impact of UL on CEs intensity in southern China was relatively weak. The overall
regional development level of UAs in the south was higher than that in the north. The
association between AI and CEs intensity was found to be positive in many counties and
negative in most counties, indicating that a higher degree of agglomeration within UAs
facilitated economies of scale and technology spillover, thereby reducing CEs intensity.
DEM, COHESION, and VC had a significantly negative effect on CEs intensity, while RD
had a significantly positive effect on CEs intensity.

In light of these findings, the CEs reduction strategies proposed in this study—
controlling urban sprawl, optimizing spatial layouts, implementing differentiated carbon
reduction policies, and fostering low-carbon transformation in new-type urbanization—
offer valuable guidance for global UAs. These strategies can contribute to alleviating
resource pressures, reducing CEs, enhancing land use efficiency, improving urban environ-
ments, fostering equitable development, and leading the global trend towards low-carbon
transformation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/land13081303/s1, Figure S1: Regression coefficient of different
urbanization factors.
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