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Abstract: Reasonable land use planning and management efficiently allocates land resources, pro-
motes socio-economic development, protects the ecological environment, and fosters sustainable
development. It is a crucial foundation for achieving harmonious coexistence between humans
and nature. Optimizing land use is key to land use planning and management. Four scenarios are
established: an economic development scenario (EDS), an ecological protection scenario (EPS), a
natural development scenario (NDS), and a coordinated development scenario (CDS). This study
simulates land use patterns under these scenarios through the coupling of the GMOP and PLUS
models. It analyzes the land use efficiency transformation index, landscape ecological index, com-
prehensive land use benefits, and ecosystem service value (ESV) for each pattern. The optimal land
use pattern is determined by balancing these factors. The results indicated that under the CDS,
the areas of wasteland, grassland, forest land, water bodies, construction land, and unused land in
Lvliang City were 6724.29 km2, 6664.74 km2, 6581.84 km2, 126.94 km2, 1017.33 km2, and 0.42 km2,
respectively. This represented the optimal land use plan for Lvliang City. The plan minimized human
interference with the landscape pattern, achieved the highest land use efficiency transformation index,
and reached a reasonable balance between land use benefits and ESV. The research findings provide
valuable insights and decision support for regional land use planning, territorial space planning, and
related policy formulation.

Keywords: land use optimization; MOP model; PLUS models; ecosystem service values; Lvliang city

1. Introduction

China possesses extensive land resources; however, the significant population leads to
a limited availability of land per capita. Additionally, inefficiencies in land use structures
are evident, manifesting as low land use efficiency, loss of farmland, and an imbalance
between urban and rural land distribution [1–3]. The land use structure illustrates the
distribution and proportion of diverse land use types within a defined area, thereby reflect-
ing the composition of land designated for various purposes in a specific spatial context.
An inadequate land use structure directly hinders regional economic development and
disrupts the harmonious functioning of ecosystems, thereby affecting the sustainability
of the region [4]. Land use structure optimization involves the utilization of scientific
methodologies to improve the allocation and management of finite land resources. This
process requires the consideration of multiple development objectives and strives to attain
an optimal balance among different regions and land uses. By doing so, the efficiency of
land resource utilization is enhanced, the ecological environment is preserved, the quality
of life for residents is improved, and sustainable development is promoted across economic,
social, and environmental dimensions [5,6]. With the rapid progression of urbanization,
land utilization and development are essential components of urban construction. Nev-
ertheless, the intensification of land development inevitably exerts a negative impact on
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the environment. Activities such as deforestation, the encroachment on farmland, over-
grazing, and coal mining significantly disrupt the balance between economic advancement
and environmental conservation [7–10]. Severe impacts on the ecosystem are inevitably
caused by inefficient land use, and significant depletion of ESV is likewise occasioned by
excessive land development and inappropriate land use type conversions. The conflict
between economic development and environmental preservation is mitigated through the
optimization of land use structures and layouts. This approach simultaneously addresses
multiple objectives, such as promoting economic growth, ensuring ecological protection,
and fostering social harmony, thus contributing to sustainable regional development.

There has been extensive research on land use optimization both domestically and
internationally. Land use structure optimization is primarily divided into quantitative
structure optimization and spatial layout simulation optimization [11,12]. The main
tools for quantitative structure optimization include GM (1, 1), system dynamics models,
and Markov chains. However, these models have drawbacks such as high data require-
ments, simple model assumptions, sensitivity to external factors, and limited prediction
ranges [13–15]. The GMOP model, on the other hand, can simultaneously consider mul-
tiple objectives and factors, has strong data processing capabilities and flexibility, and
can simulate land use changes under different policy implementations, providing more
scientific and reasonable predictions for land use planning [16,17]. Many scholars have
conducted extensive research on using GMOP for land use structure optimization. For
example, Zhu et al. [18] developed a multi-objective, constrained regional land use structure
model known as PLUS-GMOP, in which three scenarios were hypothesized. This model
facilitated the selection of the optimal land use strategy for the Wuhan metropolitan area,
providing an innovative technical framework for the sustainable development of large
urban regions; Li et al. [19] developed a grey linear programming optimization model
designed to improve the land use structure in the Sichuan-Yunnan ecological barrier region.
This model aimed to maximize ecological value while also enhancing economic benefits,
utilizing the current land use conditions in the study area. This approach offered a clear
methodology for optimizing ecological service value within large ecological functional
zones; Mo et al. [20] employed the gray linear multi-objective programming approach,
framed within the context of production–living–ecological space (PLES), to develop the
GMOP-Markov-PLUS model. This model effectively predicted future land use patterns
across various scenarios. Additionally, it proposed three distinct long-term land use strate-
gies for the study area, which included considerations for ecological conservation, economic
growth, and sustainable development prospects.

Multi-objective linear programming effectively addresses the quantitative aspects
of land use optimization, generating appropriate schemes for land use quantities. The
predominant models for simulating land structure optimization scenarios currently en-
compass the CA–Markov model [21], the CLUES model [22], and the FLUS model [23].
Nonetheless, these models are encumbered by challenges such as low spatial resolution,
omission of local details, inadequate local adaptability of model parameters, and an absence
of dynamic adaptability. While they attain high precision in simulations of small-scale
land use, their performance is diminished in larger-scale simulations. The PLUS model
primarily functions as a simulation tool for forecasting future alterations in land use. It
integrates a module for analyzing land expansion strategies along with a cellular automata
model that is influenced by various classes of stochastic patch seeds. It is distinguished
by its user-friendly interface and simplicity of operation. The PLUS model is particularly
effective for large-scale regional land use simulations. Its integration with GIS enables a
detailed analysis of spatial heterogeneity, characteristics, and temporal dynamics within
land use structures. As a result, this integration significantly improves the optimization of
spatial configurations in land use patterns [24,25].

As urban development progresses and various social factors drive change, the pattern
of land use is becoming increasingly complex and uncertain, making the study of land
use structure optimization a hot topic. Zhong et al. [26] combined the GMOP and PLUS
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models, considering the existing land use layout and policy constraints, and concluded that
the land pattern under the balanced development (BD) scenario ensured economic growth
without compromising ecological benefits. Shu et al. [27] employed the ESV, GMOP, and
PLUS models to forecast land use changes and ESV across various development scenarios.
Their findings indicated that the sustainable development (SD) scenario was likely more
appropriate for future regional advancements. While the ESV was marginally lower
compared to the ecological land protection (ELP) scenario, there was a notable increase
in economic benefits. Luan et al. [28] conducted simulations of land use patterns across
different scenarios by integrating the NSGA-II and PLUS models. Their analysis revealed
that the most significant variations among the scenarios were predominantly observed
in the areas designated for forest land and cultivated land. Meng et al. [29] utilized a
combination of the GMOP and PLUS models to simulate land use configurations across
four distinct scenarios. Their analysis focused on changes in ecological benefits, economic
advantages, and carbon emissions, enabling the identification of the most favorable land
use arrangement.

Previous studies primarily used the PLUS model to simulate land use configurations
under various development scenarios, and then conducted a basic analysis of ecosystem
service value (ESV) and land use benefits to identify the optimal land use structure. How-
ever, these studies did not examine the conversion efficiency between ESV and land use
benefits as land use patterns evolved, nor did they account for the impact of changing land
use patterns on landscape configurations. This study is based on the coupling of the GMOP
and PLUS models, establishing different scenarios and constraints to predict the land use
structure of Lvliang City in 2035. A land use benefit conversion index is constructed to
explore the conversion efficiency between land use benefits and ESV during the transi-
tion from the current land use pattern to future patterns. The sustainable development
potential is evaluated under various development scenarios, and the optimal land use
structure for Lvliang City is determined through a comprehensive analysis of the land
use benefit conversion index, land use benefits, landscape pattern indices, and ESV across
different scenarios.

2. Study Area and Data Sources
2.1. Study Area

Lvliang City, a prefecture-level city under the administration of Shanxi Province,
boasts abundant mineral resources and favorable metallogenic conditions, with coal, iron,
and dolomite being the primary minerals (Figure 1). It is distinguished by multiple metal-
logenic epochs, extensive distribution, varied mineral types, significant reserves, superior
quality, and ease of extraction. Spanning latitudes from 36◦43′ to 38◦43′ North and longi-
tudes from 110◦22′ to 112◦19′ East, Lvliang City is adjacent to Taiyuan and Jinzhong in the
east, separated from Shaanxi Province by the Yellow River to the west, and borders Linfen
and Xinzhou to the south and north, respectively, with a total area of 21,000 square kilome-
ters. The city possesses a favorable climate, with local economic development primarily
dependent on activities such as coal mining and agricultural cultivation. However, human
activities like mineral resource extraction pose a threat to the ecological environment. To
address the conflict between local economic growth and environmental protection, Lvliang
City was chosen as the study area to optimize a land use pattern that considers both
economic advancement and ecological preservation.
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Figure 1. Map of the study area.

2.2. Data Sources

The data utilized in the study primarily consisted of spatial and textual information.
Spatial data includes land use, topographical, and meteorological datasets, while textual
data encompasses the Lvliang Statistical Yearbook (2017–2023) and the Land Spatial Plan-
ning (2021–2035) datasets. Based on the relevant classification criteria, the present land use
data were classified into six main categories. Processing of the spatial data is conducted
using the ArcGIS 10.8 platform, with further details provided in Table 1. The data em-
ployed in this study were sourced from reputable websites. Extensive research carried
out by numerous scholars utilizing these datasets has confirmed their scientific rigor and
objectivity, establishing their relevance for investigations into land use optimization.

Table 1. Data sources and description.

Data Type Data Content Data Description Data Source

Land Use Type Land use monitoring data for
Lvliang City, 2005, 2010 and 2020

The spatial resolution is 30 m × 30 m,
and it was divided into six categories
according to the purpose of the study

https://www.resdc.cn/,
accessed on 16 March 2024.

Topographic Data

Soil Type Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

DEM Initial resolution of 250 m × 250 m https://www.resdc.cn/,
accessed on 16 March 2024.

Slope Initial resolution of 250 m × 250 m Generated by DEM

River Data vector data https://www.webmap.cn/,
accessed on 16 March 2024.

Meteorological Data
Rainfall Data Image element size is 1000 × 1000 https://www.resdc.cn/,

accessed on 16 March 2024.

Temperature Data Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

https://www.resdc.cn/
https://www.resdc.cn/
https://www.resdc.cn/
https://www.webmap.cn/
https://www.resdc.cn/
https://www.resdc.cn/
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Table 1. Cont.

Data Type Data Content Data Description Data Source

Social Data

GDP Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

Population Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

County Government Locations Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

Primary roads
Secondary roads

Tertiary roads
Road vector data https://www.webmap.cn/,

accessed on 16 March 2024.

3. Design Framework and Methodology
3.1. Data Processing
3.1.1. Research Framework

The research methodology presented in this paper included three main components
(Figure 2):

(1) Prediction of Land Use Quantity Structure: The prediction of land quantity structure
involves forecasting the proportions of different land types within a specific area
in the future. Four different development scenarios are initially set, as follows: a
natural development scenario (NDS), an economic development scenario (EDS), an
ecological protection scenario (EPS), and a coordinated development scenario (CDS).
The prediction of land use structure under the NDS is based on the land use data of
Lvliang City from 2005 and 2020. Using the Markov Chain model, the land area for
each type of land use in Lvliang City in 2035 is predicted. This process is implemented
in the PLUS model. The EDS and EPS fall under single-objective planning problems,
as each of these scenarios requires maximizing either economic or ecological benefits
as the sole objective. By calculating and predicting the economic and ecological benefit
coefficients for each land type in 2035 and setting constraints for each type of land
use, the solution is achieved using LINGO20.0 software. LINGO, developed by Lindo
System, Inc. (Chicago, IL, USA) in the United States, is an interactive solver for both
linear and general optimization. It effectively addresses nonlinear programming
challenges in addition to solving various linear and nonlinear equations, making it a
highly versatile tool and an optimal choice for tackling complex optimization models.
The CDS falls under multi-objective planning problems, solved using the NSGA-II.

(2) Simulation of Land Use Structure Layout: Based on the predicted land use quantity
structures under different scenarios, and using the 2020 land use data as the baseline,
the spatial layout of land use in Lvliang City under various future development
scenarios is simulated.

(3) Analysis of Land Use Layout: Based on the predicted areas of each land type un-
der different scenarios, the benefits of land use are calculated using ecological and
economic benefit coefficients. The ESV is calculated using the Xie Gaodi equivalent
factor method. In this study, four landscape pattern indices are selected to analyze
the land use layout under different scenarios. These indices include the aggregation
index (AI), the largest patch index (LPI), the landscape division index (DIVISION),
and the Shannon Diversity Index (SHDI), all calculated using Fragstats4.2 software.
These landscape pattern indices reflect the aggregation and dispersion states of the
landscape under different development scenarios. Additionally, a land use benefit
conversion index is constructed to analyze the efficiency of conversion between ESV
and land use benefits. Finally, a comprehensive analysis of land use benefits, ESV,
landscape pattern indices, and land use benefit conversion indices under different
scenarios is conducted to determine the optimal land use structure.

https://www.resdc.cn/
https://www.resdc.cn/
https://www.resdc.cn/
https://www.webmap.cn/
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Figure 2. Diagram of the research idea.

3.1.2. Verification of Simulation Accuracy

The spatial distribution of land use in Lvliang City in 2020 was obtained by simulat-
ing land use data from 2010 (Figure 3). The analysis indicated a strong correspondence
between the land use pattern simulated for 2020 by the PLUS model and the actual land
use conditions. The arrangement of the six simulated land use categories demonstrated
significant agreement with real-world observations. The model’s accuracy was evaluated
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by comparing the simulated outcomes with the actual 2020 land use data, resulting in a
Kappa coefficient of 0.88 and an overall accuracy of 91.60%. These findings underscore the
high precision of the PLUS model, confirming its effectiveness in forecasting future land
use changes within the study area.
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3.2. Methodology
3.2.1. The GMOP Model

The GMOP model is developed by integrating the GM (1, 1) model with the MOP
model. Within this framework, the GM model predicts the eco-efficiency and economic
coefficients of potential land use types, thereby establishing a foundation for the formu-
lation of the objective function. Meanwhile, the MOP model addresses multi-objective
optimization challenges across different scenarios [30], yielding the area allocated to each
land use type by the year 2035 under various conditions. The MOP model, a pivotal model
in the study of land use optimization, is predicated on constrained data and objective laws
to facilitate scientifically grounded predictions. It provides a method for optimizing one or
multiple objectives [31]. The detailed model is delineated below:

F1(x) = max
n

∑
j=1

ajxj (1)

F2(x) = max
n

∑
j=1

bjxj (2)

s.t =


n
∑

j=1
cijxj = (≥, ≤)di (i = 1, 2, 3 . . . , m)

xj ≥ 0 (j = 1, 2, 3 . . . , n)
(3)

where F1(x) and F2(x) denote the functions for land economic benefits and ecological
benefits, respectively. Here, xj represents the area allocated to each land use type, while n
indicates the total number of variables. The coefficients aj and bj relate to the economic and
ecological benefit coefficients for each respective land use type. The notation “s.t” indicates
the constraints imposed on land use for each category, with cij representing the coefficient
associated with the j-th variable in the i-th constraint, and m signifying the total number of
constraint conditions. Finally, di pertains to the i-th constraint condition.

3.2.2. The PLUS Model

The PLUS model, operating as a grid-based cellular automaton (CA), is used to
simulate land use and land cover (LULC) changes. This model integrates a land expansion
analysis strategy (LEAS) within the CA framework, enabling the exploration of different
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land use transitions. It supports the creation of various scenarios to forecast and analyze
future land use dynamics [32].

(1) Adaptation Probability. The LEAS module incorporates a stochastic sampling mech-
anism designed to reduce computational costs while simultaneously utilizing the
random forest algorithm to assess the development probabilities associated with
various land use types. The formula is presented as follows:

Pd
i,k(X) =

M
∑

n=1
I[hn(X) = d]

M
(4)

where M denotes the total count of decision trees, X represents the vector that com-
prises the driving factors, hn(X) indicates the predicted land use type generated by
the n-th decision tree, and d takes on a value of either 0 or 1.

(2) Adaptive Inertia Coefficient. This coefficient is adaptively adjusted during repeated
runs, based on the discrepancy between the expected land type data and the actual
land type data. This mechanism effectively mitigates the uncertainties and com-
plexities associated with natural processes and human activities involved in land
use conversion. Consequently, it improves the accuracy of the simulation model
and attains the intended outcomes regarding land use types [33]. The formula is
as follows:

Dt
k =


Dt−1

k

(∣∣∣Gt−1
k

∣∣∣) ≤
∣∣∣Gt−2

k

∣∣∣)
Dt−1

k × Gt−2
k

Gt−1
k

(
0 > Gt−2

k > Gt−1
k

)
Gt−1

k × Gt−1
k

Gt−2
k

(
Gt−1

k > Gt−2
k > 0

) (5)

where Dt
k signifies the inertia coefficient for the k-th land use type at time t. Addition-

ally, Gt−1
k and Gt−2

k represent the discrepancies between the actual land amount and
the demand at times t − 1 and t − 2, respectively.

(3) Optimization of Land Use Layout. Twelve factors, encompassing elevation, slope,
population, soil type, GDP, road networks, rivers, and distance to the county gov-
ernment seat, are identified as driving forces for land use change. Concurrently,
water bodies are designated as restricted areas during the optimization process. The
precision of the model is assessed through two primary parameters: overall accuracy
and the Kappa coefficient.

3.2.3. Constructing the Objective Function

(1) Economic Benefit Function. The economic advantages of land are primarily defined
by the economic output per unit area for each category of land. This study utilizes
statistical yearbooks from Luliang City spanning the years 2017 to 2023. The output
for cultivated and forest land is indicated by the values of agricultural and forestry
production, respectively. The output for grassland is denoted by the value derived
from animal husbandry, while the output for aquatic areas is represented by the fishery
output value. Furthermore, the economic impact of construction land is demonstrated
through the output values generated by the secondary and tertiary industries.

(2) Ecological Benefit Function. The ecological benefit coefficients of land are primarily
assessed using the equivalent factor method, as suggested by researchers such as
Xie Gaodi. This methodology primarily captures the ESV provided by land. Since
the supply services of land ecosystems are already incorporated into the economic
benefits, the ecological advantages encompass the regulatory, supporting, and cultural
services of ecosystems. This study employs the terrestrial ESV equivalent factor
method, as recommended by scholars, including Xie Gaodi [34], for the purpose of
evaluation. Additionally, the equivalent factor table is adjusted based on the ratio of
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the NPP level in Lvliang City compared to the national average [35]. Data regarding
the prices of local food crops and their yield per unit area are obtained by consulting
the Lvliang Statistical Yearbook from 2016 to 2022. The ESV is quantified at one-
seventh of the economic value linked to grain production per unit area of farmland.
This value encompasses a range of ecosystem services, including supply, regulatory,
supporting, and cultural services. Acknowledging that supply services are included
within economic benefits, ecological benefits are delineated by regulatory, supporting,
and cultural services. Annual coefficients for land ecological benefits are calculated,
and these coefficients are projected for Lvliang City in 2035 using the GM (1: 1) model.
To ensure the reliability of the revised eco-efficiency coefficients for land, a sensitivity
index is employed to evaluate how variations in these coefficients affect the total
ESV for each land type. The sensitivity of ESV to these coefficients is evaluated by
modifying the eco-efficiency coefficients for each land type by ±50 percent. The
formula is as follows:

Cs =
(E2 − E1)/E1

(V2i − V1i)/V1i
(6)

where CS denotes the sensitivity index that measures the response of a specific land
type to the value of land ecosystem services. E1 and E2 represent the ESV in Lvliang
City prior to and following the adjustment, respectively. V1i and V2i indicate the
ecological benefit coefficients for the i-th land type before and after the adjustment,
respectively. A CS value of less than 1 indicates that the ESV is inelastic regarding the
ecological benefit coefficients of that land type. Lower CS values suggest a diminished
responsiveness of the assessment of land ESV to the precision of the ecological benefit
coefficients, thereby indicating a higher degree of rationality in the coefficients [36].
Relevant parameters are shown in Tables 2 and 3.

Table 2. Parameters of economic and ecological benefits per unit area of land use type
(unit: RMB/km2).

Efficiency Farmland Forest Grassland Waterbody Construction Land Unused Land

economic efficiency 808.48 167.74 247.83 44.76 164,272.42 0.01
eco-efficiency 33.88 215.17 92.42 1316.57 0 2.47

Table 3. Sensitivity coefficients for each land use type.

Year Farmland Forest Grassland Waterbody Construction
Land

Unused
Land

2005 0.0043 0.0268 0.0096 0.0036 0 0.0001
2020 0.0015 0.0093 0.0037 0.0011 0 0.0001

3.2.4. Restrictive Condition

The constraints are primarily established in accordance with a series of land use poli-
cies and regulations promulgated by Lvliang City and Shanxi Province, including but not
limited to “The Overall Planning of Lvliang City’s Territorial Space (2021–2035)”, the State
Council’s approval of “The Territorial Spatial Planning of Shanxi Province (2021–2035),”
and “The Action Plan for Lvliang City to Create a National Forest City”. These constraints
delineate a series of conditions for socio-economic development and ecological protection,
as specified in Table 4.
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Table 4. Constraint information.

Constraint Prerequisite Foundation

Total land area X1 + X2 + X3 + X4 + X5 + X6 = 21,115.57 km2 Total land area constraint.

Farmland 4165.34 km2 ≤ X1 ≤ X1
+, X1

+ is the area of
farmland in Lvliang City in 2020

The Lvliang City Territorial Spatial Master Plan (2021–2035)
calls for farmland holdings of 4165.342 km2.

Forest 6334.67 km2 ≤ X2 ≤ 7528.98 km2
Action Programme for the Creation of a National Forest City in
Lvliang City: Lvliang citywide forest cover of more than 30 per

cent, which is less than 1.1 times the current value in 2020.

Grassland 6453.09 km2 ≤ X3 ≤ 6906.55 km2 Greater than projected under natural development conditions
and less than 1.1 times the current value in 2020.

Waterbody 121.17 km2 ≤ X4 ≤ 129.76 km2 Greater than the current value in 2020 and less than the
projected value of natural development.

Construction land 898.41 km2 ≤ X5 ≤ 1167.94 km2

The State Council’s approval of the “Shanxi Province Land
Space Planning (2021–2035)” requires that the expansion of the
urban development boundary be controlled within 1.3 times
the size of the urban construction land based on 2020, with

1.3 times the existing construction land in Lvliang City as the
upper boundary, and the lower boundary as the status quo

value in 2020.

Unused Land 0.37 km2 ≤ X5 ≤ 0.52 km2 Greater than the current value in 2020 and less than the
projected value of natural development.

4. Results
4.1. Analysis of the Quantitative Structure of Land Use

According to the statistical data presented in Table 5, the NDS indicated a substantial
increase in built-up land, which rose by 55.05% compared to 2020. Furthermore, grassland,
water bodies, and unused land experienced increases of 27.78%, 7.09%, and 39.13%, respec-
tively. In contrast, farmland and forest land decreased by 4.39% and 5.43%, respectively,
compared to 2020. The NDS encompassed land use changes from 2005 to 2020, which
were used to predict the areas of various land types in 2035. During this period, the areas
of farmland and forest land decreased, while the areas of built-up land, grassland, water
bodies, and unused land increased. Consequently, the anticipated changes in land areas by
2035 reflected the trends observed between 2005 and 2020. In this context, the unrestricted
expansion of built-up land encroached upon both farmland and forest land, highlighting a
distinctly unreasonable land use strategy.

Table 5. Changes in land quantity structure under different development scenarios (unit: km2).

Land Type 2020

Development Scenarios

Natural
Development

Economic
Development

Ecological
Protection

Coordinated
Development

Farmland 6972.40 6666.23 6972.40 5651.49 6724.29
Forest 6844.53 6473.01 6334.67 7528.98 6664.74

Grassland 6278.68 6453.08 6519.02 6906.55 6581.84
Waterbody 121.17 129.76 121.17 129.76 126.94

Construction land 898.41 1392.96 1167.94 898.41 1017.33
Unused Land 0.37 0.52 0.37 0.37 0.42

In the EDS, forest land experienced a notable reduction, declining by 7.45% relative
to 2020. Areas set aside for cropland, water bodies and unused land remain unchanged.
In contrast, grassland saw an increase of 3.83%, while construction land expanded signifi-
cantly by 30%. Construction land is a vital component supporting economic development,
hence the substantial increase. Lvliang City’s agricultural economy is well-developed, so
under the EDS, efforts were made to maintain farmland. Additionally, a slight increase in
grassland area was observed, attributed to the high output value of animal husbandry in
Lvliang City. In this development scenario, although the growth of built-up land slowed,
it continued to increase at an unsustainable rate. The area of farmland did not exhibit
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a significant decrease; however, the area of forest land declined markedly, which posed
serious challenges to ecological protection efforts.

In the EPS, the farmland area underwent a significant decrease of 18.95% compared to
2020. In contrast, both forest land and grassland increased by 10% relative to the same year.
The areas designated for construction land and unused land remained stable, while water
bodies experienced an increase of 7.09%. As demonstrated in Table 2, forest land and water
bodies were associated with greater ecological benefits. Consequently, under the EDS, these
areas were expanded, while construction land and unused land, which have low ecological
benefits, were maintained at their existing levels. In comparison to economic benefits, the
ecological benefits of farmland are negligible, leading to its substantial reduction. In this
scenario, although the expansion of built-up land area was minimal, substantial increases
were noted in both forest and grassland areas. Conversely, the cultivated land area faced a
notable decline. Considering the importance of construction and agricultural lands for the
economic development of Lvliang City, this development scenario, although advantageous
for ecological preservation, was evidently insufficient to support the local economy.

In the CDS, both farmland and forest land areas underwent slight reductions, decreas-
ing by 3.69% and 2.70%, respectively, relative to 2020. Conversely, grassland and water
body areas demonstrated increases of 4.61% and 4.55%, respectively. The area allocated
for construction experienced a significant growth of 11.69%, whereas the extent of unused
land expanded by 12.54%. When compared to the EDS, the increase in construction land
was more modest, and the areas of grassland and water bodies saw modest increases.
In comparison to the EPS, the decrease in farmland was less substantial, and the change
in forest land area was minimal. Consequently, the land use pattern established in this
development scenario effectively addressed the requirements for economic growth while
also reducing the conflict between economic development and ecological preservation.

4.2. Simulation Analysis of Spatial Layout of Land Use Structure

The land-use pattern simulation of the four scenarios is shown in Figure 4. In the NDS,
a significant increase in construction land was observed, primarily reflecting an outward
expansion from the city center in all directions. The most pronounced growth occurred in
the southern region, where forested areas and farmland were notably reduced to accommo-
date this expansion. Additionally, the southeastern sector experienced considerable growth
in construction land, mainly resulting from the encroachment upon farmland. Significant
reductions were observed in both forest and farmland areas, whereas the grassland area
experienced an increase, predominantly concentrated in the northern region, characterized
by the encroachment on forest land.

In the EDS, a rapid expansion of construction land was observed, predominantly char-
acterized by an outward extension from the city center in all directions. The southern region
of Lvliang City experienced particularly significant growth in construction land, largely at
the expense of forested areas. Conversely, the southeastern region did not exhibit notable
changes in construction land, as it was primarily composed of farmland, which remained
stable under this scenario. Consequently, no substantial expansion of construction land
occurred in that area. Additionally, an increase in grassland was documented, especially
in the central-western and western regions, with the latter showing a more pronounced
growth, largely due to encroachment on forested land.

In the EPS, notable increases were recorded in both forest and grassland areas. The
northwestern region experienced substantial expansion of forest land, which was character-
ized by diffusion in various directions. Similarly, the central-eastern area also saw a rise
in forest land, primarily due to encroachment upon farmland. Grassland expansion was
predominantly concentrated in the northwest, largely at the expense of agricultural fields.
Overall, the area of farmland diminished significantly, with major reductions documented
in the northwest and central-eastern regions, attributed to the encroachment of both forest
and grassland. In contrast, the southeastern region did not display significant contraction
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in farmland. Additionally, the area designated for construction remained stable, while the
water body area increased.
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Figure 4. Land use simulation of Lvliang City under different development scenarios in 2035.

In the CDS, an expansion of construction land was observed, predominantly marked
by the urban area’s extension in multiple directions. In the southern region, although
construction land expanded, the pace of growth was relatively gradual. Importantly, there
were no substantial decreases in the areas designated for arable or forest land. Conversely,
an increase in grassland was noted in both the central and northern regions.

Figure 5 indicates that the EPS demonstrated the highest LPI, whereas the EDS
recorded the lowest LPI. Generally, a higher LPI indicates the presence of a greater number
of large patches in the landscape, with less human disturbance to natural landscapes. The
LPI for the CDS was more like that of 2020 and exceeded the values observed in both
the NDS and EDS. This finding suggests that the landscape in the CDS experienced less
impact from human activities than that in the EDS. This result indicated a greater degree of
landscape patch aggregation in the CDS relative to the EPS. With regard to the SHDI, the
NDS demonstrated the highest value. In contrast, the CDS was found to be comparable
to both the EDS and the land use pattern of 2020, while surpassing the EPS. This finding
indicated that the CDS supported greater species diversity. Regarding the DIVISION, no
notable differences were observed across the various development scenarios. Overall, in
the CDS, the land use pattern was characterized by lower levels of human disturbance. The
landscape patches were more cohesively clustered, biodiversity was richer, and the quality
of the ecological environment was higher.
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4.3. Land Use Benefits and ESV

Using the projected economic and ecological benefit coefficients for land use in Lvliang
City in 2035, as detailed in prior sections, the benefits of land use across different develop-
ment scenarios for that year are calculated. The ESV equivalents from the years 2016 to 2022
were applied, and the GM (1: 1) model was used to predict the ESV equivalents for Lvliang
City in 2035. These predictions, along with the updated equivalent factor table, facilitated
the calculation of ESV for the simulated land use patterns across different scenarios in 2035.

As indicated in Table 6, the NDS yielded the highest land use benefits; however, the
corresponding ESV were comparatively low. In contrast, the EDS demonstrated increased
land use benefits but recorded the lowest ESV. Conversely, the EPS achieved the highest
ESV, albeit with the lowest land use benefits. This outcome, while satisfying ecological pro-
tection standards, proved detrimental to economic development. The CDS demonstrated
both high land use benefits and high ESV, capable of balancing economic growth with
environmental quality.

Table 6. Land use benefits and ESV under different scenarios in 2035 (Unit: million yuan).

Development Scenario Land Use Benefits Ecosystem Services Values

Natural Development Scenario 23,929.02 263.08
Economic Development Scenario 20,254.13 260.87
Ecological Protection Scenarios 15,775.43 286.65

Coordinated Development Scenario 17,553.64 268.61
2020 Land Use Pattern 15,837.95 270.14
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Numerous studies indicate that changes in land use patterns within a region signifi-
cantly affect ESV and land use benefits [37,38]. Improvements and optimizations in land
use enhance the capacity for ecosystem services. However, during the transition of land
use patterns, economic development and ecological protection within a region often appear
mutually exclusive, with economic development frequently occurring at the expense of
the environment. To examine the economic benefits that can be obtained at the cost of
ecological benefits, this study uses land use benefits to represent economic benefits and ESV
to represent ecological benefits. An index for land use benefit conversion (I) is established
to explore the conversion efficiency between land use benefits and ESV when land use
patterns transition to different scenarios in 2020. A larger index (I) indicates that for each
unit of ecological benefit sacrificed, greater economic benefits are achieved, suggesting
that the transformation of land use patterns in these scenarios has greater developmental
potential and is more conducive to sustainable development. The formula is as follows:

I =
∣∣∣∣ LUE2 − LUE1

E4 − E3

∣∣∣∣ (7)

where LUE2 denotes the land use benefits associated with various development scenarios,
while LUE1 reflects the land use benefits derived from the 2020 land use pattern as projected
for 2035. Similarly, E4 indicates the ESV corresponding to different development scenarios,
and E3 represents the ESV of the 2020 land use pattern projected for 2035.

Figure 6 illustrates that the conversion rate associated with the NDS was the highest.
However, this scenario’s land use pattern underwent significant expansion of construction
land, surpassing the established constraints and failing to align with the future development
objectives of Lvliang City. The conversion rate observed in the CDS approached that of
the NDS, while it was markedly higher than those recorded for both the EDS and EPS.
This indicated that transitioning from the 2020 land use pattern to the pattern under the
CDS would yield the highest land use benefits per unit sacrifice of ESV, suggesting a high
potential for land development and greater sustainability under this pattern.
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5. Discussion

This study used land use data from 2005 and 2020 along with GMOP and PLUS
models to simulate both the quantity and spatial distribution of land use, predicting land
use patterns for 2035 under various development scenarios. Previous research primarily
identified optimal land use patterns by analyzing ecosystem service value (ESV) and land
use benefits across different development scenarios [39,40]. However, these studies did
not account for the conversion efficiency between ESV and land use benefits during the
transition from the current land use pattern to future scenarios, nor did they consider the
impact of land use pattern changes on landscape configurations [41]. Consequently, this
study introduced a land use benefit conversion index to represent the conversion efficiency
between ESV and land use benefits for the first time. A comprehensive analysis of ESV,
land use benefits, landscape pattern indices, and the land use benefit conversion index
was performed to evaluate these indicators and identify the optimal land use pattern.
The research findings provide scientific theoretical support for land use optimization and
ecological protection in Lvliang City and offer a methodological example for land use
optimization in other regions.

However, the study has some limitations. The land use categories were divided
into six primary categories, which, while reflecting changes in various land types under
different scenarios in Lvliang City, do not fully explain the relationship between economic
development, ecological protection, and mining development in a city rich in mineral
resources. The construction land category should be further detailed into types such as
mining land to explore its relationship with the economy and ecology. The ESV in this study
was calculated based on the equivalent factor table by Xie Gaodi. Although the equivalent
factors are simple, widely applicable, and have low data requirements [42], they have
certain limitations in accuracy, dynamism, complexity, and regional applicability. A more in-
depth analysis combined with other methods is needed to improve the comprehensiveness
and accuracy of the assessment.

Given the limitations of this study, future research should develop a more targeted
land use classification system and conduct a thorough analysis of the relationships among
economic development, ecological protection, and mining activities in mineral resource-
based cities. Additionally, the objective and comprehensive assessment of ESV within a
region, along with the reduction of errors introduced by subjective factors, necessitates
further exploration and analysis in future studies to improve the accuracy and objectivity
of the evaluation results.

6. Conclusions

In this study, a multi-objective structural optimization model that integrates GMOP
and PLUS was developed to achieve a balance among the economic, social, and ecological
benefits of land use. Various scenarios regarding land use structures were derived for
different development contexts in Lvliang City, based on specific constraints. The key
findings of this research are summarized as follows:

(1) The GMOP and PLUS coupling models are used to determine land use structure
and spatial distribution under various development objectives. By employing this
coupled approach, land use patterns for Lvliang City are derived across four distinct
development scenarios.

(2) From the perspective of landscape patterns, the land use pattern under the CDS is
characterized by minimal human disturbance, enhanced patch aggregation, greater
species diversity, and improved ecological quality.

(3) The land use benefits under the NDS, EDS, EPS, and CDS are 2392.902 billion yuan,
2025.413 billion yuan, 1577.543 billion yuan, and 1755.364 billion yuan, respectively.
The ESV are 26.308 billion yuan, 26.087 billion yuan, 28.665 billion yuan, and 26.861 bil-
lion yuan, respectively. This shows that the CDS can meet economic development
needs while also considering ecological environment protection.
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(4) Under the CDS, when the areas of cultivated land, grassland, forest land, water
bodies, construction land, and unused land are 6724.29 km2, 6664.74 km2, 6581.84 km2,
126.94 km2, 1017.33 km2, and 0.42 km2, respectively, the land use benefit conversion
index is at its highest.

The research method outlined in this paper provides a valuable reference for optimiz-
ing urban land use structures. The findings establish a foundation for developing land use
planning and management policies in resource-based cities.
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