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Abstract: Karst ecosystems have become complex social–ecological systems (SESs) as a result of the
interventions of large-scale ecological restoration programs, and the ecosystem services (ESs) that
provide regional well-being can, to some extent, be described as social–ecological system services
(S–ESs). Understanding the relationships among multiple S–ESs and exploring their drivers are
essential for effective ecological management in karst areas, especially in regions differently affected
by ecological engineering programs. Taking South China Karst (SCK) as a study area, we first
identified two regions as comparative boundaries, namely significant engineering impact regions
(SEERs) and non-significant ecological engineering impact regions (NEERs). Then we used ES
assessment models, Spearman correlation, and optimal parameter geographic detector to identify the
supply capacity, trade-offs/synergies, and their drivers of six types of S–ESs in SEERs and NEERs.
The findings included: (1) SEERs were predominantly concentrated in the central and southern
SCK regions, accounting for 33.98% of the total SCK area, with the most concentrated distribution
observed in Guizhou and Guangxi. (2) Within the entire SCK, six S–ESs maintained a relatively stable
spatial distribution pattern over time, with the most pronounced increase in soil conservation and a
slight decrease in water retention, and the S–ES hotspots were more concentrated within the SEERs.
(3) Most S–ES pairs within SEERs were optimized synergistically, with lower trade-off intensity
and higher synergy intensity compared to NEERs. (4) S–ES pairs were affected by the interactions
between the natural and socio-economic factors, with land use changes playing a crucial role, and
natural factors were difficult to predict but cannot be ignored. Based on the results, we propose
different SES sustainable development suggestions, with a view to providing theoretical support for
the optimization of SES functions and the consolidating of integrated ecological construction.

Keywords: South China Karst; ecological engineering programs; social–ecological system services;
trade-offs/synergies; sustainable development

1. Introduction

Ecosystem services (ESs) encompass products and benefits derived from nature that
are crucial for human survival and development [1,2]. They serve as a link between natural
environmental systems and socio-economic systems [3,4], and are categorized by the Millen-
nium Ecosystem Assessment (MEA) into provisioning, regulating, supporting, and cultural
services [5]. Ecosystem services research is rooted in ecological processes but is inherently
a social endeavor [6]. The ecosystems crucial for human survival and development have
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evolved into complex social–ecological systems, rather than purely natural ecosystems.
Social–ecological systems (SESs) are complex, dynamic natural ecosystems and social sys-
tems that are interdependent and closely linked, and constitute a system of human–earth
relations [7]. Based on the discussed concept of SESs, some current studies argue that
the concept of ES puts the benefits that humans obtain from ecosystems at the center,
and places ecosystems in a subordinate position to serve human societies, ignoring the
objective fact that humans are originally part of natural ecosystems [8], and dismisses the
interaction between societies and ecosystems [9]. Therefore, some studies have proposed
such terms as “social–cultural ecosystem services” [10], “social–ecological services” [11],
“social–ecological system service” [12], or “society–ecosystem service” [13], as they more
accurately reflect the interrelationship between social systems and ecological systems.

Relevant environmental policies strive to optimize multiple ESs through effective man-
agement [14], whereas the intertwined ecological and spatial dynamics often prevent the
simultaneous maximization of all services [15]. Diverse human preferences can determine
the feedback and interactions among ESs, manifesting as spatial trade-offs or synergies:
trade-offs arise when one or several ESs are increased at the cost of others; synergies
arise when multiple ESs are increased at the same time [16,17]. These relationships can
respond to the external or internal changes (drivers) within a system [18]. Investigating
and analyzing the trade-offs and synergies among different ESs has become central to
current ES research, offering insights into optimal and suboptimal ecological manage-
ment decisions [19,20]. As the research progresses, the concept of ES trade-offs/synergies
has evolved from a simple understanding of objective laws to a decision-making tool for
social–ecological systems [19]. Numerous researchers have quantified the ES trade-offs and
synergies using various methods and scales including spatial mapping [21,22], statistical
analysis [23,24], scenario analysis [25,26], and model simulation [27]. Most of the studies
have measured the ES trade-offs and synergies for the entire study area. However, this
approach cannot entirely capture the nuances of these relationships on a microscopic scale.
Increasingly, there has been a growing focus on examining the spatial heterogeneity of
service relationships, which helps to identify the leading functions of different regions and
effectively allocate the environmental resources [28]. The transformation of ES relation-
ships has been generally affected by certain factors such as climate, vegetation type, terrain,
geomorphological features, land-use modes and management measures, urbanization, and
ecological engineering [29]. Studies on the driving mechanisms behind ES relationships are
moving towards integrated land use management [30]. Several researchers have leveraged
the changes in ES interactions to assess the overall impact of ecological engineering pro-
grams [31,32]. In conclusion, analyzing multiple non-linear relationships between ESs and
identifying driving factors, characteristics, and response rates at different scales is crucial
for implementing appropriate policies [33]. Although many studies have been conducted
to demonstrate that ecological restoration improves ESs, there is a lack of systematic evalu-
ation of the effectiveness of restoration actions in enhancing ESs [34]. Moreover, most of
the studies on ES trade-offs/synergies have focused on the local scale, with fewer studies
at the macro scale [35].

Karst is an important component of the world’s fragile ecological zones, and extensive
human activities, such as mining, agricultural and grazing activities, as well as urban-
ization and deforestation, have led to severe ecosystem degradation in many karst areas
around the world [36]. In recent years, the phenomenon of karst ecosystem degradation
has been reported in Southwest China [37], the Mediterranean [38], and the Caribbean [39],
with studies related to the degradation of karst landscapes, the pollution of underground
water resources, and karst disasters, etc. [40]. However, studies on large-scale ecological
management of karst ecosystem degradation have mainly focused on China. China has
approximately 3.44 million km2 of karst area, accounting for approximately 36% of its
total land area and 15.6% of the global 2.2 × 107 km2 karst area [41,42]. South China
Karst (SCK) is one of the largest contiguous karst areas on Earth, with an exposed area
of 5.5 × 105 km2 [43,44]. Due to the human disturbance, most of these areas are currently
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characterized by secondary coppices and shrubs, and some have experienced karst desertifi-
cation (KD), which is difficult to restore [45]. Accompanied by severe soil erosion, extensive
exposure of basement rocks, and a sharp decline in soil productivity, KD is gradually
encroaching on production, living, and ecological spaces, severely threatening and limiting
regional sustainable development [43,46–48]. In response to various social-ecological issues,
the Chinese government has actively promoted karst desertification control (KDC) at the
national level since 2000 [49]. Over the past two decades, ecological restoration programs in
the SCK have notably increased vegetation cover, especially in karst areas [50,51]. However,
this can only be a preliminary step in the restoration process. Recent studies at local and
regional scales have begun to focus on ecosystem functions and services [52].

Following the implementation of several ecological engineering programs, the im-
provements of ecosystem functions in SCK are evident. These include enhancements in soil
conservation [53], soil quality [54], and carbon sequestration and oxygen release [55,56].
However, there are also certain adverse impacts, such as reduced water yield [57] and
declines in habitat quality and biodiversity [58]. These changes have increased the complex-
ity of the relationships between ESs within the SCK. Therefore, a quantitative analysis of
these relationships and their social-ecological drivers is crucial for enhancing the capacity
of karst landscapes to provide benefits to society over time [36]. Numerous studies have
focused on these objectives, utilizing either the entire SCK or typical karst regions as study
areas. They have examined the impacts of ecological engineering on ES trade-offs and
synergies [59], identified the key factors influencing these trade-offs and synergies to guide
effective ecological protection and restoration policies [60], and predicted scenarios for ES
trade-offs and synergies to inform the priority restoration recommendations and land use
development [61,62]. Further research integrating social and ecological factors is essential
to elucidate the underlying mechanisms of ES relationships in the context of ecological
restoration, particularly through comprehensive studies across the entire SCK.

Given the large-scale ecological restoration measures in SCK, we adopted the term
“social–ecological system service (S–ES)” to highlight the importance of human intervention
in this region. Based on the above background, we first identified the significant engi-
neering impact regions (SEERs) and non-significant ecological engineering impact regions
(NEERs) in SCK. We then quantitatively analyzed the supply capacity, trade-offs/synergies,
and trade-off/synergistic driving mechanism for six S–ESs: food production (FP), carbon
sequestration and oxygen release (CS&OR), water retention (WR), soil conservation (SC),
habitat quality (HQ), and ecological recreation (ER). This study focused on four specific
objectives: (1) identifying different ecological engineering impact regions; (2) illustrating
the spatiotemporal change characteristics of the S–ESs from 2000 to 2020; (3) exploring the
S–ES trade-offs/synergies relationships and social–ecological drivers within two ecolog-
ical engineering impact regions; and (4) providing some suggestions for the sustainable
management of SES in SCK. The overall concept and data processing flow were depicted
in a comprehensive analytical framework (Figure 1), organized into four main sections
corresponding to the study objectives.
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Figure 1. Comprehensive analytical framework (SCK: South China Karst; SEERs: significant engineering
impact regions; NEERs: non-significant ecological engineering impact regions; S–ESs: social–ecological
system services; OPGD: Optimal parameter geographic detector; SES: Social–Ecological System).

2. Materials and Methods
2.1. Study Area

SCK is situated between 97◦21′–117◦19′ E and 20◦13′–34◦19′ N, spanning eight provinces
(cities) in Southwest China (Figure 2). Centered on the Yunnan–Guizhou Plateau and
southern hilly regions, it covers approximately 1.94 × 106 km2, with the karst formations
occupying 27.36% of this area [59]. It experiences an average annual temperature above
15 ◦C, with the annual precipitation exceeding 1100 mm, occurring predominantly during
warm periods. The region features a special geological background, with strong karst
erosion, dense distribution of mountain hazards, and a small ecological capacity, making
the ecological environment very fragile. At the same time, this region is home to 100 million
people living at a population density of 1.5 times the national average, and human–land
conflicts are extremely acute [63]. It is one of the vulnerable areas with the most serious
regional environmental problems and socio-economic conflicts in China.
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Figure 2. Study area: (a) location, (b) provincial boundaries, and (c) digital elevation model (DEM).

2.2. Data Sources

The data in our study include natural ecological aspects such as land use, digital
elevation model (DEM), soil properties, precipitation, and temperature on the one hand; on
the other hand, socio-economic data from statistical yearbooks, government websites, etc.
were also incorporated. Details of the data used and their sources are given in Table S1 of
the Supplementary Materials.

2.3. Identification of Ecological Engineering Impact Regions

Three conditions were simultaneously established to identify the ecological engineer-
ing impact areas: (1) in sub-region 1, the Normalized Difference Vegetation Index (NDVI)
value demonstrated a significant improvement (verified by the F test), with the slope trend
higher than the regional average; this step was processed by Slope trend detection; (2) in
sub-region 2, there was no significant correlation between NDVI and climate change (an-
nual average temperature and annual precipitation), so this step was processed by Partial
correlation detection in Matlab (v. 2016a) software; and (3) sub-region 3 fell within the
boundaries of ecological programs implemented in SCK since 2000, with the main data
sources including the “Dataset of Eco-efficiency Assessment of Major Ecological Projects
in China, 2000–2019” [64] and the research of Shao et al. [65]. Overlaying these three
sub-regions could yield significant ecological engineering impact regions (SEERs), while
non-significant ecological engineering impact regions (NEERs) consisted of the regions
that did not fulfill these conditions. The above identification methods and results were
validated in similar research by Chen et al. [31]. The SEERs in this study primarily refer to
regions with significant vegetation cover improvement through human governance over
the past 20 years. The details of the slope trend and partial correlation detection formulas
are provided in the Supplementary Materials.

2.4. Social–Ecological System Services Assessment

Given the naturally fragile characteristics of the region and insights from previous
studies in SCK [57–59], this study evaluated six types of S–ESs. Here, S–ES is simply a
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name proposed based on the context of the study; the connotation and categorization
methodology were not substantially changed, and the classification in our study still refers
to the MEA [5]. The assessment methods of provisioning services (food production), regu-
lating services (carbon sequestration and oxygen release, and water retention), supporting
services (soil conservation and habitat quality), and cultural services (ecological recreation)
are described below.

2.4.1. Food Production (FP)

FP serves as a fundamental provisioning service that is crucial for ensuring the resi-
dent production and livelihood, thereby contributing significantly to food security. Previ-
ous studies have established a strong linear correlation between food provision and the
NDVI [66]. Accordingly, grain production for agriculture was allocated to the cultivated
land based on the NDVI values [67]. The calculation formula for FP is as follows:

Gx =
NDVIx

NDVIsum
× Gsum (1)

where Gx (t/ha) is the food production of grid x; Gsum (t/ha) is the total output of food
production (rice, wheat, corn, soybean, and potato crops) for each city; NDVIx is the NDVI
value in the xth grid; and NDVIsum is the total value of the NDVI for cultivated land.

2.4.2. Carbon Sequestration and Oxygen Release (CS&OR)

CS&OR plays a crucial role in regional climate regulation. According to the reaction
equation for the vegetation photosynthesis and respiration, the formation of 1 g of dry
matter involves the release of 1.63 kg of CO2 and production of 1.2 kg of O2. The volume of
CS&OR can be calculated from NPP (net primary productivity) based on this ratio [68,69].
The NPP data were derived from the MODIS17A3 datasets, which were processed through
splicing, formatting, reprojection, and other operations (the details are provided in Table S1
of the Supplementary Materials). The equation for calculating CS&OR is:

CS&ORx = NPPx × 1.63 + NPPx × 1.2 (2)

where CS&ORx (g C/m2) is the carbon sequestration and oxygen release of grid x; and
NPPx (g C/m2) is the NPP value of grid x.

2.4.3. Water Retention (WR)

WR is a critical factor for the climate regulation in karst regions, as determined by
water yield (WY) and a corresponding correction coefficient [70]. According to the InVEST
model (v. 3.14.0), the WY adheres to the principles of the water cycle, incorporating
precipitation, plant transpiration, surface evaporation, root depth, and soil depth. The
adjustments included the topographic index, soil saturation water conductivity, and flow
velocity coefficient. The details regarding the setup and calculations are available in the
Supplementary Materials:

WRx = min(1,
249

Velocity
)× min(1,

0.9 × TI
3

)× min(1,
Ksat
300

)× WYx (3)

WYx = (1 − AETx

Px
)× Px (4)

where WRx (mm) is the water retention of grid x; Velocity is the velocity coefficient without
dimension; TI is topographic index without dimension; Ksat (cm/d) is the soil saturated
water conductivity [71]; WYx (mm) is the annual water yield of grid x; AETx (mm) is
the average annual evapotranspiration of grid x; and Px (mm) is the average annual
precipitation of grid grid x. The details regarding the setup and calculations are available
in the Supplementary Materials.
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2.4.4. Soil Conservation (SC)

Soil degradation is a prominent issue associated with KD. Therefore, the selection of
SC as a representative supporting service is crucial for karst areas. SC was calculated by the
RULSE model, known for its simplified structure, appropriate parameters, and effective
simulation capabilities [72]. The equation for calculating SC is as follows:

SC = R × K × LS × (1 − C × P) (5)

where SC (t/ha) represents soil conservation; R represents the rainfall erosion factor [73]; K
represents the soil erosion factor [74,75]; LS indicates the slope length slope factor [76,77];
C represents the vegetation cover and crop management factor [78]; and P represents the
soil retention and water retention measure factor [79,80]. The details regarding the settings
and calculations are available in the Supplementary Materials.

2.4.5. Habitat Quality (HQ)

Karst areas can face various ecological challenges including KD and biodiversity
degradation. HQ is defined as the capacity to support biodiversity and can be assessed
using the Habitat Quality module of InVEST, which can determine the HQ of land cover
type j in each raster cell x within the study area. The habitat degradation index can quantify
the stress level experienced by each cell grid. Higher values indicate greater stress, whereas
lower values indicate better HQ on a scale from 0 to 1. Following the methodology proposed
in references [81,82], the equation for calculating HQ is as follows:

Qxj = Hj

[
1 −

(
Dz

xj

Dz
xj + kz

)]
(6)

where Qxj is the habitat quality of pixel x in landscape category j; Dxj is the stress level of
grid x in landscape category j; k is the half-saturation constant; z is the normalized constant;
and Hj is the habitat suitability of landscape category j. Details regarding the settings and
calculations are available in the Supplementary Materials.

2.4.6. Ecological Recreation (ER)

Karst areas exhibit diverse landforms and offer a range of ecological landscapes and
recreational opportunities. The evaluation of the ecological recreation involves utilizing
an appropriate index framework based on the recreational potential and opportunity [83].
The principle of index universality and transferability was employed to select the most
widely used indicators, which were then applied to evaluate the supply potential of the
ER, considering the actual conditions of SCK. Six key indicators were adopted, including
the degree of naturalness [84], landscape diversity, vegetation coverage, connectivity of
natural attractions, elements of rivers and lakes, and accessibility level [85], and the data
were processed as shown in Figure 3. The equation for calculating the ER is as follows:

ERx = (R1x + R2x + R3x + R4x + R5x + R6x)/6 (7)

where R1x is the degree of naturalness of grid x determined by the Hemeroby index; R2x
is the landscape diversity of grid x; R3x is the vegetation coverage of grid x; R4x is the
connectivity of natural attractions of grid x; R5x represents the elements of rivers and lakes
of grid x; and R6x is the accessibility level of grid x.
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2.4.7. Hotspot Identification (Getis–Ord Gi*)

S–ES hotspots are areas where the provisioning capacity of one or more services is
relatively outstanding within a given region, while cold spots are areas of weakness. With
the help of the Getis–Ord Gi* module in ArcGIS (v. 10.8) software, we analyzed the S–ESs
concentration of high value areas (hot spots) and low value areas (cold spots) at the county
(district) scale, based on observing each S–ES distribution trend from 2000 to 2020. The
equation is as follows:

G∗ =
∑n

i=1 Qij − a∑n
i=1 Qij√

∑n
i=1 a2

i
n − a−2

√
∑n

i=1 Q2
ij−(∑n

i=1 Qij)
2

n−1

(8)

where G* is the agglomeration index of grid i; ai is the attribute of grid i; Qij is the weight
matrix; n is the total number of cells; ā is the average of the total S–ES of all pixels.

2.5. Trade-Off or Synergy Analysis

1. We employed the Spearman’s non-parametric correlation analysis, a quantitative
method to measure the variation and strength of these interactions, to assess trade-offs
and synergies among S–ES pairs [86]. Using ArcGIS (v. 10.8) software, we established
a 5 km × 5 km grid to encompass the six types of S–ESs and collected sample points
with varying S–ES values. Subsequently, using Origin (v. 2001) software, we applied
Spearman’s correlation analysis to determine the correlation coefficients:

r =
∑ i
(
xij − x

)(
yij − y

)√
∑ i
(

xij − x
)2

∑ i
(
yij − y

)2
) (9)

where r is the correlation coefficient and the value domain [−1, 1]. If r > 0, there is
a synergistic relationship between the two S–ESs, and r < 0 indicates that there is a
trade-off between the two S–ESs. Moreover, xij and yij represent the data values of
different types of S–ESs.

2. The root mean square deviation (RMSD) can quantify the intensity of dispersion
of an individual ES from the standard deviation of the average ES and has been
widely used for the quantitative analysis of trade-offs. At this point, the meaning of
trade-offs is not limited to characterizing negative trade-off relationships, but can also
effectively express the degree of imbalance in the rate of isotropic change among ES
synergies [62,87]. The calculation formula is as follows:
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RMSD =

√
∑n

i=1
(
ESi − ES

)
2

n − 1
(10)

where RMSD is the balance strength of the S–ES; n is the number of samples; ESi is the
value of the ith standardized S–ES; and ES is the expected value of all types of S–ESs.

To eliminate the dimensional effects, each type of S–ES was standardized using the
following equation:

EX =
Ex − Emin

Emax − Exmin
(11)

where EX is the standardized value for each S–ES, with its value ranging from 0 to 1; Ex is
an observed S–ES value; and Exmin and Emax are the minimum and maximum observed
S–ES values, respectively.

2.6. Driving Factor Detection

1. Driving factors: Identifying the driving mechanisms is crucial for assessing the likeli-
hood of trade-offs or synergies between ESs [88]. DEM, slope, lithology, and landform
type were selected as some of the natural variables to represent the unique topography
and geomorphology in karst regions; annual average temperature, annual precipita-
tion, potential evaporation, and NDVI were widely used as climate and vegetation
factors; light density, population density, and Gross Domestic Product were widely
used to estimate socio-economic activities; and land use change reflected changes in
human activities (Table 1).

Table 1. Driving factors types and discretization methods (taking factor-discretization methods of
FP-CS&OR pairs in SEERs as an example).

Factor Types Factors Data Types Discretization Methods

Natural

DEM (De) Continuous Equal breaks
Slope (Sl) Continuous Quantile breaks

Landform type (Lf) Classified -
Lithology (Li) Classified -

Annual average temperature (Te) Continuous Standard deviation breaks
Annual precipitation (Pr) Continuous Standard deviation breaks
Potential evaporation (Pe) Continuous Natural breaks

NDVI (Nd) Continuous Natural breaks

Socio-economic

Light density (Lt) Continuous Quantile breaks
Population density (Po) Continuous Quantile breaks

Gross Domestic Product (GDP) (Gd) Continuous Quantile breaks
Land use change (Lu) Classified -

2. Optimal parameter geographic detector (OPGD): The traditional geographic detector
requires the manual setting for discretizing the continuous data, which is suscep-
tible to inaccurate discretization and subjective factors. The OPGD addresses this
issue by calculating the q-values across various grading methods and intermittent
numbers, ensuring robust results across different spatial scales. Furthermore, it can
extract the geographic features and spatial explanatory variables to reveal underlying
patterns [89]. The GD package in R (v. 4.3.1) software was utilized with methods
such as equal breaks, natural breaks, quantile breaks, geometric breaks, and standard
deviation breaks. The classification series ranging from five to ten classes was set, and
the spatial scale yielding the highest q-value was selected as the geodetector analysis
parameter. The data types and discretization methods for the different factors are also
listed in Table 1.

3. Single-factor Detection: The core of factor detection lies in determining whether an
independent variable x affects a dependent variable y by examining whether their
spatial distributions converge. The calculation formula is as follows:
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q = 1 − ∑L
h=1 Nh σ2

h
N σ2 (12)

where q is the explanatory rate of the influencing factors, with a value ranging from
0 to 1; the larger the value of q, the stronger the explanatory rate; x and y vari-
ables are superimposed to form an L-layer in the y-direction, which is denoted by
h = 1, 2, . . ., L; Nh and N are the sample sizes of the sub-region h and the whole region,
respectively; and σ2

h and σ2 are the dispersion variances of sub-region h and whole
region y, respectively.

4. Interaction Factor Detection: The interaction detector assesses the interaction effects
of two overlapping control variables by evaluating the relative importance of their
interactions. It examines five types of interactions, including non-linear weakening,
univariate weakening, bivariate enhancement, independent enhancement, and non-
linear enhancement [90].

3. Results
3.1. Characteristics of Ecological Engineering Impact Regions

The extracting process of SEERs and NEERs is shown in Figure 4. SEERs were predom-
inantly concentrated in the central and southern SCK regions, with the most concentrated
distribution observed in Guizhou and Guangxi, which was consistent with the findings of
Wang et al. [91]. These regions coincided with areas of high concentration and intensity of
ecological engineering projects. NEERs were concentrated in the Sichuan Basin, upland
areas of western Sichuan, eastern Hunan and Hubei, and regions along the southeastern
coast of Guangdong, where no ecological engineering projects were implemented. In
addition, most of these regions were non-karst. SEERs accounted for 33.98% of the total
SCK area, more than a third of the total area. Notably, the SEERs in our study do not
encompass all of the regions presenting enhanced ecological restoration effects. Instead,
they primarily denote the regions in which substantial improvements in vegetation cover
have been achieved through human management over the past two decades.Land 2024, 13, x FOR PEER REVIEW 5 of 28 
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3.2. Spatio-Temporal Dynamic Characteristics of S–ESs

During the study period, the mean values of FP (+8.06%), CS&OR (+12.48%), SC
(+22.64%), and ER (+1.29%) exhibited the increasing trends, while WR exhibited a slight
decrease (−4.7%) and HQ decreased marginally (−0.9%). Spatial distribution patterns
of each S–ES were broadly similar in 2000 and 2020 (Figure 5). The FP hotspots were
concentrated primarily in the non-karst areas, such as the Sichuan Basin and the eastern
part of Hubei. The CS&OR values were lower in the north and higher in the south,
with prominent hotspots observed in south Yunnan, western Guangxi and most parts of
Guangdong. The SC hotspots were predominantly high along the edge of the Sichuan Basin
and the border area between Guizhou and Guangxi. The WR distribution corresponded
closely with the rainfall patterns (Figure S2 in the Supplementary Materials), presenting
higher values in the east and lower values in the west. Spatially, low HQ values were
notably clustered in the Sichuan Basin and eastern Hubei, presenting an inverse distribution
pattern compared with areas with high FP values. The ER hotspots were concentrated in
most parts of Guizhou and Guangxi, and central Guangdong. Overall, the FP and HQ
showed opposite trends spatially, with the remaining S–ESs showing large differences in
spatial distribution.Land 2024, 13, x FOR PEER REVIEW 12 of 27 
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The standard values of S–ESs within the entire SCK, SEERs, and NEERs are provided
in Figure 6, which shows that CS&OR, WR, SC, HQ, and ER in SEERs were generally higher
than those in NEERs and SCK, with HQ and ER showing the most pronounced performance.
This suggests that SEERs were more conducive to enhancing regulating, supporting, and
cultural services, but provisioning services were not involved. Furthermore, regions with
three or more S–ES spatial hotspots were superimposed as class I regions, while coldspots
and regions with fewer than three S–ES hotspots were grouped as class II, and the remaining
regions were not significant. Class II regions were distributed over a small area within
the SCK, mainly in south-eastern Guizhou and north-western and north-eastern Guangxi,
and the proportion of class II regions within the SEERs was higher than within NEERs
(Figure 6b). Overall speaking, the supply capacity of provisioning services in SEERs was
lower than in NEERs, but the S–ES hotspots were more concentrated within the SEERs.
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3.3. Characteristics of S–ES Relationships
3.3.1. Change Trends in S–ES Trade-Offs/Synergies

Figure 7 illustrates the 15 groups of correlations across different scales. Blue ovals
indicate positive correlations, while orange ovals indicate negative correlations. On the
SCK scale, all S–ES relationships passed the significance tests. A trade-off relationship was
observed between FP and the other five services. The strongest trade-off was between
FP and HQ, with an average annual correlation coefficient of −0.466. All other services
demonstrated varying degrees of synergy, with WR-HQ exhibiting the strongest synergistic
interaction with an average annual correlation coefficient of approximately 0.416.

The FP-HQ trade-off was the most significant in both SEERs and NEERs, with average
correlation coefficients of −0.419 and −0.336, respectively. The most synergistic relationship
were different in SEERs and NEERs: CS&OR-WR was the most pronounced in SEERs, with
an average correlation coefficient of 0.410, while WR-HQ was the most in NEERs (0.319).
Some pairs performed extremely differently, even developing in an inverse direction. For
FP-ER, we observed continuous synergistic trends in SEERs and NEERs compared to the
SCK. The FP-CS&OR within the two boundaries gradually shifted from a trade-off to a
synergistic relationship, increasing in significance. In SEERs, the HQ-ER exhibited a trade-
off relationship initially but subsequently evolved into a synergistic relationship, exhibiting
increased significance and synergy coefficients. The CS&OR-SC in NEERs consistently
showed a trade-off relationship that intensified over time. From 2000 to 2020, most S–ES
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pairs within the SEERs boundaries exhibited an increasing trend towards synergy, and
more than half of the S–ES pairs within the NEERs moved towards trade-offs.

In order to better articulate the changes in trade-offs/synergies between S–ESs, as well
as to further explore the trade-off/synergy intensity, we quantitatively explored the S–ES
pair relationships within different regions over the years 2000–2020 by taking the average
S–ES values as study targets. Specific results are displayed in Figure 8. In addition to these
pairs of FP-SC, WR-SC, SC-ER, and HQ-ER, there was a greater degree of synergy in S–ESs
in SEERs than in NEERs.
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3.3.2. Trade-Off/Synergy Intensity

In this study, the greater the RMSD value between S–ES pairs in a synergistic relation-
ship was, the greater was the degree of synergy. The RMSD distribution of the S–ES pairs
in SEERs and NEERs is illustrated in Figure 9. The highest synergy intensity emerged in
WR-HQ, with RMSD values of 0.440 in SEERs and 0.389 in NEERs. The FP-HQ exhibited a
notable degree of trade-off, with RMSD values of 0.334 in SEERs and 0.383 in NEERs. The
RMSD in these two pairs were spatially similar, although their correlation coefficients were
opposite, with high RMSD values in SEERs concentrated in Guizhou, Guangxi, and eastern
Hunan, and in the NEERs concentrated in western Sichuan. The degree of synergy for the
WR-SC was the lowest, with RMSD values of 0.041 for SEERs and 0.051 for NEERs. The
differences in the trade-off or synergy intensity for the remaining S–ES pairs were minimal,
with RMSD values ranging from 0.109 to 0.266 for SEERs and 0.120 to 0.271 for NEERs. In
a word, most S–ES pairs within SEERs had lower trade-off intensity and higher synergy
intensity compared to NEERs.
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3.3.3. Identification of Social-Ecological Drivers Based on OPGD

1. Single-factor detection

The q-values within SEERs and NEERs are shown in Figure 10. Generally, the S–ES
pairs within the SEERs were more responsive to the natural and socio-economic factors. In
the SEERs group, all factors were significantly correlated (F < 0.001). Within the NEERs,
the night light index did not significantly affect the CS-ER relationship (F = 0.518) and was
therefore excluded from further analyses.

Table S7 presents the top three q-statistic values for the impact of the S–ES pairs.
Some S–ES pairs were affected by the same single factor within both SEERs and NEERs
boundaries. The NDVI significantly contributed to the FP-CS&OR, with q-values of 0.424
in SEERs and 0.220 in NEERs. The land use change exerted the greatest explanatory power
on the FP-WR, FP-SC, FP-HQ, WR-HQ, and SC-HQ relationships, with q-values of 0.439,
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0.385, 0.098, 0.333, and 0.230 in SEERs, and 0.377, 0.265, 0.169, 0.378, and 0.214 in NEERs,
respectively. The DEM was the dominant factor influencing the FP-ER, with q-values of
0.396 in SEERs and 0.250 in NEERs. The annual average temperature had the largest effect
on the CS&OR-WR and SC-ER, with q-values of 0.436 and 0.432 in SEERs, and 0.350 and
0.186 in NEERs. The effect of the slope on the WR-SC was notable, with the q-value of 0.104
in SEERs and 0.132 in NEERs, respectively.
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The remaining S–ES pairs were influenced by different factors. Within the SEERs, the
land use change also exerted the greatest explanatory power on the CS&OR-HQ (q = 0.221)
and HQ-ER (q = 0.190). GDP played a significant role in shaping the relationship of
CS&OR-ER, with a q-value of 0.113. The annual average temperature significantly affected
the CS&OR-SC (q = 0.439) and WR-ER (q = 0.366). Within the NEERs, the DEM played
a dominant role in shaping the WR-ER, with a q-value of 0.132. The annual average
temperature had notable effects on the CS&OR-HQ, with a q-value of 0.142. The CS&OR-
SC was primarily influenced by annual precipitation (q = 0.413). The landform type
significantly affected the CS&OR-ER, with a q-value of 0.183. The GDP exhibited the
greatest explanatory power in the HQ-ER, with a q-value of 0.061.

2. Interaction factor detection

The interaction analysis suggested no mutual weakening of the interaction combi-
nations within either SEERs or NEERs boundaries. The interactions were predominantly
identified as bi-enhanced and non-linear enhancements. Table S8 illustrates that the influ-
ence of the factors increased under interaction, indicating that no individual factor in the
study area singularly governed the regional heterogeneity of each S–ES relationship.

Within the SEERs boundary (Figure 11), nearly half of the S–ES pairs were influenced
by the interactions involving the land use changes and other natural factors, primarily
of the bi-enhanced type. Specifically, the interaction between land use change and DEM
significantly affected the FP-SC, FP-HQ, CS&OR-HQ, WR-HQ, and SC-HQ. Some natural
factors presented significantly less influence when considered independently but gained
significance when interacting with other factors. For instance, the interaction of annual
average temperature with the DEM increased the q-value to 0.581 in the CS&OR-WR
(compared with 0.436 for annual average temperature alone). Similarly, the interaction
of DEM with NDVI in the FP-ER resulted in a q-value of 0.434 (compared with 0.396 for
the DEM alone). The interaction between the annual average temperature and landform
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type had the greatest impact on the CS&OR-SC and SC-ER (q = 0.529, 0.477). Some natural
factors such as slope, landform type, and lithology, while individually exhibiting lower
impact values, enhanced their effects when interacting with each other. For instance, the
interaction factor of landform type and lithology in the CS&OR-ER reached 0.184 (compared
to 0.111 for landform type alone).
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action of NDVI with other factors, which exerted considerable impacts on the FP-CS&OR,
FP-ER, and CS&OR-WR relationships, notably in the CS&OR-WR (NDVI × annual precip-
itation: 0.606). For CS&OR-SC and SC-ER, the dominant interaction factors in this area
mirrored those in the SEERs, specifically the annual average temperature × landform type.
Other natural factors, which were initially less impactful when considered individually,
demonstrated a strong impact after interacting with other factors.
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4. Discussion
4.1. Spatiotemporal Variations in S–ESs and the Necessity for Continuous Ecological
Engineering Programs
4.1.1. S–ESs Supply Capacity

The consistent enhancement of CS&OR and SC can indicate the effectiveness of forest
conservation and restoration efforts in karst areas [92,93]. However, favorable vegetation
cover can limit the increase in WY under similar weather conditions because of its water-
trapping and evapotranspiration capabilities [61]. Consequently, our study suggested a
declining WR trend during the study period. The increase in FP can be attributable to the
ongoing agricultural reforms and the adjustments in cultivation and farming practices.
Statistical analysis indicated that the total grain production in the study area increased from
1.54 × 107 t in 2000 to 1.59 × 107 t in 2020. The HQ was closely tied to the land suitability for
habitation and was threatened by human activities and landscape fragmentation. The built-
up land expanded by 104.17% between 2000 and 2020 in SCK (Table S9 in the Supplementary
Materials), indicating increased human disturbances and their impacts on the HQ. The
opposite trend in the spatial distribution of FP and HQ hotspots also demonstrates the
important impact of land fragmentation and human activities on HQ. The capacity of
the ER to respond comprehensively to various indices has seen an observed increase,
likely due to some key factors. For instance, vegetation restoration contributed to the
enhanced landscape recreational potential, evident in the 7.3% increase in NDVI from
2000 to 2020. Moreover, urban developments improved the transportation infrastructure,
thereby facilitating easier access to recreational opportunities.

During the study period, the implementation of ecological projects was more con-
ducive to enhancing the supply of regulating, supporting, and cultural services, and S–ES
hotspots areas had higher proportions in the SEERs than in NEERs. This revealed the
effectiveness of ecological management in enhancing the S–ES provision capacity. Taking
KDC as an example, by the end of 2015, the KDC had received over 1.3 × 1011 CNY in
total investment, with approximately 1.2 × 1010 CNY sourced from the central government,
covering an area of approximately 7.0 × 104 km2 [94]. The implementation of various
ecological restoration initiatives led to notable shifts in the land-use patterns, influencing
the dynamics of S–ESs across the study area.

4.1.2. S–ES Trade-Offs/Synergies

Previous studies have generally assumed a trade-off relationship between the provi-
sioning services and regulating or supporting services [95]. This pattern is evident across
the entire SCK but does not hold uniformly within the SEERs and NEERs. The spatial
heterogeneity in the ecosystem distribution can be attributed to the variations in ecological
context and resource conditions at different geographic scales, thereby influencing the
ecosystem relationships [96]. There was a general trend towards synergistic interactions
between the S–ES in SEERs, and the synergy intensity in SEERs tends to be larger than that
in NEERs. Studies have confirmed that the synergy among ESs can be typically greater
in ecological engineering areas than in the non-engineering areas, with the afforestation
programs affecting the vegetation cover changes and subsequent ES functions [91]. There-
fore, continuous ecological engineering efforts can play a significant role in enhancing
coordination and achieving ecological management goals.

A detailed comparison of the FP-SC and CS&OR-SC pairs within the SEERs and
NEERs boundaries revealed significant differences. Within the SEERs, the FP-SC exhibited
a trade-off trend, with the highest RMSD values concentrated in north-central Guizhou,
western Hunan, and southeastern Hubei, characterized by the mountainous terrain and
poor soil texture. Practices such as steep-slope plowing and sloppy cultivation can reduce
the capacity of the soil to store rainfall, resulting in decreased SC and increased FP [97]. The
trade-off trend between CS&OR and SC was larger in NEERs. Since the implementation of
the ecological construction, the vegetation cover in karst areas has generally increased, with
higher NPP and effective suppression of soil erosion, thereby increasing the SC; moreover,
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the NPP and SC can exhibit a synergistic relationship [98]. This finding confirmed the
importance of ecological restoration projects in karst areas for regional SC improvement.

4.2. Single/Interaction Factor Characteristics and the Necessities of Zoning Restoration and
Influencing Factor Management

The results of single-factor detection highlighted that natural factors and land use
changes were pivotal in explaining the spatial patterns of S–ES trade-offs. The natural
environmental factors, such as rainfall, vegetation coverage, and elevation, could form
the foundational elements to affect the spatial trade-offs and synergies [35,99]. Land use
change can be another critical factor directly affecting the S–ES trade-offs by altering the
ecosystem composition and structure to affect the ES supply dynamics [100]. Chen et al.
emphasized that the influence of various factors on the trade-off of ESs could exhibit
significant spatial imbalance, with forestland having the most prominent impact in a karst
region [31]. Furthermore, the study indicated that the S–ES relationships within the SEERs
could be more responsive to both the natural and socio-economic factors than the NEERs
under similar single-factor impacts. This sensitivity suggests that the environmental and
anthropogenic changes within the SEERs could exert a more pronounced impact on the
S–ES relationships.

The interaction detection indicated that the S–ES relationships could be affected by
bi- or non-linear enhancement effects, which could be supported by research in karst
areas. Previous studies have highlighted that the interactions between different drivers can
enhance the explanatory power of the spatial variations in the trade-off strength [101,102].
For the S–ES pairs related to the FP, the intensity of trade-offs was notably affected by
the interactions involving land use and other natural factors. Research has indicated
that the impact of FP on various ESs can result largely from the changes in land-use
patterns [103]. Regarding the S–ES pairs linked to the HQ, the interactions between
the land use change and other factors such as DEM, annual average temperature, and
population density can exhibit stronger effects than the interactions within the natural or
socio-economic factors alone. Therefore, the results of the interactions between multiple
factors should be considered in the SES management. The development and land use should
be selected to align with natural resources, and the economic and social development. For
certain S–ES pairs, such as CS&OR-WR, CS&OR-SC, WR-ER, and SC-ER, the interactions
between meteorological factors (annual average temperature, potential evaporation, and
annual precipitation) and topographic factors (landform types, lithology, DEM, and slope)
exerted significant effects. This was particularly pronounced within the SEERs boundary,
where these interactions were consistently synergistically enhanced. The karst areas were
characterized by complex and spatially heterogeneous structures, where the landforms,
climate conditions, vegetation, and soil properties varied significantly. These factors
could affect the ESs and their spatial relationships, whereas macroscopically, the landform
types could directly shape the natural ecological environment, affecting the supply and
maintenance of ESs [104]. Given the substantial topographic relief within the SEERs, it
could be crucial to differentiate and strengthen management strategies tailored to the
different landform zones.

Notably, NDVI could be a common factor influencing the trade-offs/synergies in the
FP-CS&OR and FP-ER within both the SEERs and NEERs boundaries, as well as in the
CS&OR-WR and CS&OR-HQ, specifically within the NEERs. Research has demonstrated
the significance of NDVI in these S–ES relationships, particularly in shaping the trade-off
patterns between the FP and NPP [105]. The increase in NDVI driven by the ecological
programs notably enhanced the NPP and HQ [32]. As mentioned earlier, NDVI serves
as a crucial indicator for assessing the ER potential. These findings have indicated the
importance of enhancing the NDVI to enhance the synergistic trend among FP, CS&OR,
ER, and HQ. In the future, we should pay more attention to the effects of factor interactions
on S–ES relationships when analyzing the influencing factors, and implement the factor
effects as much as possible, so as to better serve ecological management and decision-
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making. We believe that it is difficult to control climate-type impacts of natural factors
at the anthropogenic level. Natural factors such as topography and vegetation cover can
usually be improved through land use.

4.3. Suggestions for SES Sustainable Management in SCK

(1) It is necessary to consolidate the results of previous ecological engineering construc-
tion and seek more integrated protection-restoration projects. In some regions where
ecological engineering is concentrated, some measures could involve large-scale trans-
formation and the reconstruction of inefficient plantation forests, upgrading and
transforming the shrub forests on the slopes and foothills of KD mountains, afforesta-
tion beneath the forest canopies, the selection of ecologically and economically viable
forestry and grass species, and the development of derivative ecological industries,
such as agroforestry and specialty economic crops and medicinal plants [94]. In
terms of integrated protection–restoration aspects, the “mountains–rivers–forests–
farmlands–lakes–grasslands” program provides a suitable development direction, and
it highlights the ecosystem connectivity and diversity through vegetation restoration,
effectively enhancing ecosystem stability and quality [106]. Furthermore, in smaller
karst ecological engineering implementation areas (watersheds, administrative units,
or grid units), it is necessary to manage zoning according to typical ES supplies and
relationships, so as to better carry out ecological effect assessment and later monitor-
ing. At the same time, the concept of ecological priority should be strongly advocated
in those areas where the impact of ecological engineering is small or where there is no
ecological engineering implementation.

(2) It is necessary to strictly control land development planning at all levels of units,
especially those ecological engineering regions that are more intensely subject to
anthropogenic factors. On the one hand, the development strategy of ecological red
line and arable land red line should be strictly enforced. For instance, as the foundation
of the national and regional ecological security, the ecological protection red line
preserves the essential functions of key ecosystems and enhances their ecological
support capacity for social and economic development [107]. Preserving the red
line of the cultivated land is fundamentally vital for ensuring the food security and
enhancing the productivity and efficiency of agricultural spaces [105]; this is especially
important in areas with high FP values. On the other hand, attention should be paid
to the problem of ecological land compression brought about by the expansion of
construction, and increasing green patch sites around existing built-up areas and
introducing green space systems are necessary [108].

(3) There is a need to promote the study of ES trade-offs/synergies under different sce-
narios in order to adjust SES development strategies at different scales. Scenario
modeling is an effective way to integrate land use, climate change, and factor man-
agement to provide decisions for SES development. Future scenarios can not only
predict the evolution of trade-offs/synergies on the supply side of ESs [62,109], but
can also simulate the evolution of trade-offs/synergies on the supply–demand side of
ESs [110]. This is a scientific approach and a favorable reference for optimal SES de-
velopment at different scales, and decision makers can be helped to develop targeted
and differentiated strategies [111].

(4) There is a need to play market mechanisms and improve diversified ecological
protection and restoration paths. Firstly, enterprises, private individuals and non-
governmental organizations can be introduced to reduce the government’s financial
and management burden. Secondly, county governments can give full play to their
autonomy, vigorously broaden the channels for realizing the value of ecological prod-
ucts, and actively strive for the introduction of ecological industry-type projects, so
as to transform rich natural resources and high-quality ecological environments into
ecological products and enhance market competitiveness. Thirdly, certain policy
preferences and financial incentives will be given to regions with good results in the
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implementation of ecological projects, so as to balance the ecological restoration needs
of different regions.

4.4. Research Limitation and Outlooks

Our study had several limitations. First, although we aimed to simulate typical S–ESs
in the study area as accurately as possible, uncertainties remained owing to the utilization
of proxies and models. For example, the WR and SC were evaluated in our study, but
due to the special “dual” structure above and below ground in the karst region, surface
water and soil seepage occurs along rock cracks, funnels, and sinkholes, and migrate
to other areas [112]. Therefore, the assessed values of these two types of S–ES may be
higher than the actual values. Second, the karst and non-karst landscapes exhibited distinct
behaviors concerning the ES trade-offs and synergies [113], suggesting the need for a
flexible methodology to explore these relationships across different landscape types. Third,
although we incorporated many influencing factors based on existing studies, some of
the factors that have a significant impact on karst areas, such as mining, tourism, and
urbanization, were not considered, and current research has not spatially explored positive
or negative changes in natural and socio-economic factors. In the future, more scientific
impact factors should be considered, and spatial characteristics of the positive or negative
impacts on the S–ES relationships can be explored by spatial models (e.g., geographically
weighted regression models), with a view to guiding development policies at different
scales (administrative or grid units). Fourth, the effects of various influencing factors on S–
ES relationships are not linear; thus, we should focus on exploring the thresholds at which
various factors affect S–ES relationships to better predict the trends of trade-offs/synergistic
transitions and make better decisions.

5. Conclusions

By overlaying three sub-regions, we identified two ecological engineering impact areas
(SEERs and NEERs). We then assessed the key S–ESs (FP, CS&OR, WR, SC, HQ, and ER)
in 2000, 2010, and 2020 with various assessment models. Further, we compared the S–ES
trade-offs/synergies relationships, and their influencing drivers within SEERs and NEERs.

Our study revealed several key findings. First, SEERs were predominantly concen-
trated in the central and southern SCK regions, with the most concentrated distribution
observed in Guizhou and Guangxi. Second, the mean values of the S–ESs within the SEERs,
except for the FP, exceeded those in the NEERs and the entire SCK, and the S–ES hotspots
were more concentrated within the SEERs. Third, the trade-off and synergistic relationships
varied across different boundary scales, with most S–ES pairs within the SEERs exhibiting
synergistic trends, with lower trade-off intensity and higher synergy intensity compared to
NEERs. Finally, the two-factor interactions exerted a stronger impact on the S–ES trade-off
intensity than the single-factor interactions, with the land use change playing a particularly
significant role. Over the past two decades, human activities have emerged as an important
driver affecting the changes in the S–ES relationships in SCK. Our study provides theo-
retical support for the optimization of SES functions and the consolidation of ecological
construction in karst areas, even in vulnerable areas.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/land13091371/s1, Figure S1: Plant Available Water Fraction (PAWC) in
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