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Abstract: Sediment deposition is critical in maintaining riparian plant communities by providing
essential nutrients and posing growth challenges. This study focuses on Cynodon dactylon, a dominant
clonal species in the riparian zones of the Three Gorges Reservoir, and its interaction with sediment
deposition over three years. Results indicated an average sediment deposition depth of 2.85 cm in
the lower riparian regions. Observations revealed that C. dactylon coverage increased progressively
at lower elevations despite its dominance diminishing with rising elevation levels. Additionally,
positive linear correlations between C. dactylon coverage and sediment deposition depths were
identified during flood periods, underscoring the species’ role in enhancing sediment deposition.
These findings suggest that C. dactylon plays a significant role in sediment accumulation, which may
bolster its growth and survival prospects during subsequent growing cycles. The study highlights
the importance of riparian vegetation, mainly perennial clonal species like C. dactylon, in promoting
sediment accumulation and contributing to the stability and functionality of riparian ecosystems.
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1. Introduction

Human activities such as dam construction significantly impact river ecosystems,
disrupting hydrological connectivity and sediment transport [1,2]. Dams alter water flow
regimes, leading to significant changes in sediment transport, often causing sediment
accumulation upstream and increased erosion downstream. This disruption affects the
physical structure of rivers and has cascading effects on nutrient cycling, aquatic habitats,
and overall biodiversity. The ecological consequences include shifts in species composition,
loss of critical habitats, and a reduction in ecosystem functionality, ultimately compro-
mising rivers’ ecological services. Recent studies highlight that these impacts are more
severe and widespread than previously understood, with long-term implications for local
ecosystems and broader environmental health [3,4]. The Three Gorges Dam (TGD), the
world’s largest hydroelectric dam, has profoundly altered sediment dynamics in the Three
Gorges Reservoir, leading to significant ecological changes [5,6].

Sediment deposition is essential for forming and maintaining riparian zones, acting as
both a nutrient source and a physical stressor for vegetation [7,8]. The accumulation of sedi-
ment benefits riparian plants by providing germination seedbeds and facilitating propagule
dispersal [9]. However, sediment deposition can also impose physical stress by burying
plants, reducing light availability, and affecting seedling emergence and survival [8]. The
TGD has significantly altered the sediment transport and deposition patterns within its
reservoir, with observed sediment deposition depths ranging from 3 to 80 cm [5]. This
increased sediment depth is associated with prolonged flooding durations and enhanced
fluvial sediment yields, profoundly impacting riparian ecosystem health [10].
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Sediment deposition in riparian zones is influenced by hydrological fluctuations,
human activities, and vegetation [11]. The morphological traits of riparian plants are
determinants of their impact on fluvial sediment dynamics [12]. Riparian plants affected
by dam regulation must complete their life cycles within a limited growth period. These
plants must employ various life-history strategies to survive in this changing environment.
Cynodon dactylon (L.) Pers., the dominant species in the riparian zone of the Three Gorges
Reservoir (TGR), exhibits a trend of decreasing coverage and dominance as elevation
increases [13]. As a clonal plant, C. dactylon reproduces asexually by regenerating new
plants from the axillary buds of stolon and rhizome nodes [14]. After prolonged flooding,
C. dactylon reemerges in the spring, often accompanied by sediment deposition dozens of
centimeters deep. Research indicates that up to 90% of C. dactylon can survive and quickly
recover from its deep root system following months of submergence [15]. Long-term
flooding significantly promotes the stem growth of C. dactylon [16]. However, sediment
deposition has been found to significantly inhibit the formation and growth of C. dactylon
seedlings [17]. As burial depth increases and particle size decreases, the height and leaf
length of C. dactylon are markedly suppressed [18]. With the regulation of the TGD, the
riparian zone of the reservoir experiences extended periods of flooding and significant
sediment deposition, creating a challenging environment for C. dactylon.

Despite extensive research on the interactions between dams, sediments, and riparian
vegetation, there remains a significant gap in our understanding of the long-term, in situ
responses of plants to sediment dynamics, particularly in environments that are highly
variable due to seasonal changes or dam operations. This study addresses critical gaps by
focusing on the specific interactions between C. dactylon and sediment deposition in the
Three Gorges Reservoir, a unique dam-regulated environment. By analyzing this dominant
riparian zone in a highly variable hydrological context, the study provides new insights into
the adaptive strategies of riparian plants facing sedimentation stress across different seasons.
Understanding the role of C. dactylon in sediment dynamics can guide more effective
vegetation management, erosion control, and habitat restoration strategies. This research
not only fills a significant knowledge gap but also offers valuable information for enhancing
the ecological resilience of riparian zones under ongoing environmental pressures.

2. Materials and Methods
2.1. Study Sites

The study was conducted at five locations within the TGR: Fuling (FL), Zhongxian (ZX),
Kaizhou (KZ), Yunyang (YY), and Wushan (WS). This area is characterized by a humid
subtropical monsoon climate. Water levels varied due to anti-seasonal impoundment,
producing a fluctuation zone of approximately 350 km2.

The study was carried out at five sites in the TGR (Figure 1). The area has a humid
subtropical monsoon climate, with mean annual temperatures ranging from 16.5 to 18 ◦C
and yearly precipitation of about 1100 mm. Monthly rainfall varies between 18.72 cm and
197.32 cm, with the maximum occurring in July and the minimum in January. Relative
humidity ranged between 75.98% and 81.66%, and wind speed ranged between 0.9 m/s and
1.24 m/s, with no significant seasonality. The average annual frost-free period is 268 days,
accounting for 73% of the total days in the year.
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Figure 1. Location of the study area and the quadrat setting schematic.

2.2. Vegetation Investigation

Three belt transects were established perpendicular to the river in the study area
at every site. Quadrats were placed along the belt transects every five meters using
ArcGIS 10.5 with a WGS84+UTM48N coordinate system. Three 1 m × 1 m quadrats were
established in each transect. Carrier phase differential GPS with centimeter-level accuracy
was used to locate each quadrat precisely. Steel rods were placed at the four corners of
each quadrat to mark its location. Investigations were conducted at the end (July 2018 and
September 2019) and the beginning (April 2019 and May 2020) of the emerging period
from flooding of the riparian zone. To ensure the consistency of sedimentary data from
different locations, plots at elevations between 160 and 165 m above sea level were selected
for data statistics. Considering the preservation of steel rods and data integrity (based on
four surveys), a total of 25 datasets were obtained from five sites.

All plant species within the quadrats were identified, and the number of each species
was recorded. For each plant species, five individuals were selected to measure their height.
The height and coverage of each plant species were used to calculate its important value.
The height of the plant was defined as the length from the plant’s top to bottom. The
same botanist performed all of these vegetation assessments during the project to avoid
bias. The site’s topography, soil type, and ground cover were recorded along with the
vegetation assessment.

2.3. Sediment Deposition Depth

This study employed polypropylene-random (PPR) pipes to measure soil erosion and
deposition at the study sites accurately. PPR pipes were selected due to their durability,
resistance to environmental factors, and ease of installation, making them suitable for
long-term monitoring in varied field conditions.

In July 2018, before the reservoir was impounded, four PVC pipes were systematically
installed at each corner of the designated quadrats. Each pipe was 100 cm long and 25 mm
in diameter, with a mark made at the midpoint, 50 cm from the bottom. The pipes were
driven vertically into the soil, leaving 50 cm of each pipe exposed above the soil surface. The
length of the exposed portion of the pipe was recorded both before and after the flooding.
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Following the impoundment of the reservoir, periodic measurements were conducted
to assess any changes in the height of the pipes above the soil surface. These measurements
were taken from the top of each pipe to the current soil surface. An increase in the
visible length of the pipe above the soil surface was interpreted as evidence of soil erosion,
indicating that soil had been removed, thereby lowering the ground level relative to the
pipe. Conversely, a decrease in the visible length of the pipe above the soil surface was
considered indicative of soil deposition, suggesting that sediment or other materials had
accumulated on the surface, raising the ground level.

2.4. Data Analysis

Species richness and total coverage were used to measure plant community. Species
richness is the number of different plant species recorded in the quadrats. Total coverage is
the sum of the species coverage, the percentage of the quadrat area covered by one species.

The data were analyzed using SPSS for Windows, Version 12 (SPSS. Inc., Chicago,
IL, USA). Firstly, the raw data for all variables were assessed for normal distribution
rates using the one-sample Kolmogorov–Smirnov test and for homogeneity of variances
using Levene’s test. Means between groups were compared using a t-test and analysis of
variance (ANOVA), followed by Tukey’s post hoc tests. Associations between variables
were determined using Pearson’s correlation test. Additionally, the rank-sum and Fisher’s
exact tests were employed for data analysis.

3. Results
3.1. Sediment Deposition

The results indicate a significant sediment accretion in the lower portions of the
riparian zone (Figure 2). The sediment deposition varied with elevation in different years,
with a relatively lower depth observed in 2019, while the average depth over the years was
2.53 cm. There was generally a reduction in sediment depth from 2018 to 2019 across the
sites, with the average sediment depth trending downwards from ZX to WS. ZX had the
highest sediment depth in 2018 but experienced a significant reduction in 2019. YY and WS
maintained relatively consistent sediment depths between the two years compared to the
other sites. FL showed a considerable increase from 2018 to 2019, having one of the lowest
sediment depths in 2018.
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3.2. Species Richness and Total Coverage of Riparian Plants

The species richness and total coverage of riparian plants showed a similar trend in
different seasons (Figure 3), with the highest value observed in September and the lowest
in April. The results indicate a wide range of species richness, while the total coverage is
relatively robust. Most plots in April 2019 had a total coverage lower than 0.5, while the
total coverage in September 2019 and May 2020 was higher than 1. Both species richness
and total coverage exhibited a significant decrease in April 2019. By May 2020, species
richness and total coverage decreased but remained higher than the April 2019 levels,
indicating moderate variability and resilience.
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3.3. Coverage of C. dactylon and Dominance of C. dactylon

Figure 4 shows the coverage and dominance of C. dactylon across four seasons. The
lowest coverage of C. dactylon was observed in April 2020, while the highest was in
September 2019. The highest dominance of C. dactylon was observed in April 2020, while
the highest was in May 2020. The coverage and dominance of C. dactylon significantly
decreased in April 2019, followed by a recovery in September 2019. By May 2020, the
coverage and dominance of C. dactylon slightly decreased compared to September 2019
but remained higher than in April 2019. The higher median values and a broader spread
of coverage in September 2019 and May 2020 indicate that C. dactylon exhibited increased
growth and expansion during these periods. The later elevated medians and distributions
of dominance show the competitive advantage of C. dactylon over other vegetation from
September 2019 to May 2020.
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3.4. Coverage of C. dactylon and Sediment Deposition

A positive linear relationship was observed between the coverage of C. dactylon and
the sediment deposition depth during the inundation (Figure 5). The sediment depth
increased with the coverage of C. dactylon and dominance of C. dactylon increasing before
the inundation (p < 0.01). While the dominance of C. dactylon decreased with the sediment
depth, the coverage of C. dactylon after the inundation showed an increasing trend with
increasing sediment depth.
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3.5. Logistic Regression of Coverage of C. dactylon and Sediment Deposition

During inundation in 2018–2019, an improvement trend in the dominance of C. dactylon
was found in total coverage and species richness (Figure 6). The dominance of C. dactylon
reduced with the coverage of C. dactylon and sediment depth increasing. The sediment
depth decreased with the coverage of C. dactylon increasing, while the dominance of
C. dactylon decreased with the sediment depth increasing. A different relationship was
observed between plant coverage and dominance of C. dactylon in two inundation seasons.
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4. Discussion

This study highlights the intricate relationship between sediment deposition and
riparian vegetation dynamics in the TGR, focusing on the resilience and adaptive strategies
of C. dactylon in the lower riparian zone. The findings underscore the importance of
understanding sediment heterogeneity and its ecological implications for riparian plant
communities, particularly in the context of large-scale dam projects.

4.1. Sedimentation Heterogeneity in the Riparian Zone

Our research has uncovered significant sediment deposition in the lower portions
of the riparian zone in the TGR, with depth varying by elevation across different years
(Figure 2). This finding underscores the crucial role of sediment deposition heterogeneity
in many coastal regions and river riparian zones. Mixed sand–gravel systems are often
associated with erosion and mechanical weathering, especially at mid-to-high latitudes [19].
The relationship between mixed grain and sediment zones and sediment supply and
energetic conditions is a key aspect, with heterogeneous sediment grading occurring where
significant wave and current activity results in sediment transport.

The fluvial process determines the sedimentary structure, which changes and adjusts
the riparian zone [20]. This shifting mosaic of habitat patches within riparian zones sup-
ports a diverse biota in the aquatic–terrestrial ecotone. Significant sedimentation has been
observed in the lower portions of the riparian zone of the TGR [5]. Water level fluctuations,
suspended sediment dynamics, and topography significantly influence sediment deposi-
tion in the riparian zone [21]. The hydrological process created by reservoir regulation and
natural hydrodynamics leads to temporally and spatially heterogeneous sedimentation in
the riparian zone. Dam construction altered sediment dynamics, leading to downstream
sediment starvation and upstream sediment accumulation. Higher variability of sedimen-
tation in 2018 compared to 2019 could be related to the flooding process during inundation
and landform changes caused by previous inundation events [22].
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4.2. The Dominance of C. dactylon in the Lower Portion of the Riparian Zone

The lower portion of the riparian zone is characterized by a relatively higher coverage
and dominance of C. dactylon. This perennial and representative pioneer species in the
riparian zone, known for its ability to regenerate from seeds and propagules, especially
in moist, bare sand microsites created by large, infrequent floods, is a key focus of our
research [23]. Catalase, an enzyme essential for riparian plants like C. dactylon, plays
a significant role in responding to flooding within the antioxidative system [24]. The
flood tolerance of C. dactylon, demonstrated through physiological and morphological
adjustments, aids in its survival and recovery post-flooding [25]. Its high resilience and
tolerance to extreme meteorological events, leading to significant shifts in competitive and
facilitative interactions with other species under increasing flood stress, further highlight
its importance [26].

Annual and perennial plants derived from the seed bank can increase roughness
and enhance sediment storage within highly disturbed or altered channels, contributing
to geomorphological recovery [27,28]. Perennial species provide suitable conditions for
establishing other species and vegetation succession by increasing the stability of geo-
morphic surfaces after disturbance [29]. Facilitative interactions are more likely to appear
in stressful environments according to the stress gradient hypothesis (SGH) [30,31]. The
decreasing dominance of C. dactylon and increasing total coverage and biomass of the plant
community with rising elevation in the riparian zone indicate that C. dactylon facilitates the
plant community in degraded environments.

4.3. The Sediment Deposition Depth with C. dactylon in the Lower Riparian Zone

Our research has revealed a significant positive linear relationship between the cov-
erage of C. dactylon and sediment deposition depth during inundation. This finding
underscores the role of vegetation in reducing sediment dragging by creating a rough
surface [32], altering hydrological processes [33] and increasing the geomorphic complexity
of river systems [34]. The influence of plant functional characteristics, such as biomass,
branching architecture, plant height, and root architecture, on streamflow and sediment
transport is a key aspect [35,36]. Riparian plants, by increasing roughness and enhanc-
ing sediment storage within highly disturbed or altered channels, play a crucial role in
geomorphological recovery [37].

Low-statured rhizomatous and herbaceous guilds have been linked with a higher
capability for sediment capture [38]. The timescales at which riparian plants form in
different geomorphic units and the influence of environmental conditions on species
richness and sediment deposition are significant. Plant traits and feedback on sedimentation
may reflect adaptive responses to flow regimes [39]. These effects can be exacerbated by
changes in base flows and groundwater availability. Sediment-rich nutrients provide plants
with considerable depth to the rhizosphere, and once a succession of herbaceous plants is
established, they can intensify sediment accumulation.

Sedimentary structures and grain size distribution found in geological records often
provide insights into past environmental conditions, such as flood events and vegetation
shifts, which may be comparable to current observations. Researchers highlighted how
significant hydrologic changes due to dam operations can reshape riparian zones and
impact their ecological dynamics [11,40]. Understanding past environmental conditions is
crucial in riparian research, as it provides valuable context for current observations and
helps us make informed predictions about future changes. The lack of geological records
could lead to uncertainty in interpreting past environmental conditions. Future research
should integrate multi-proxy approaches and advanced technologies to provide a more
comprehensive understanding and better predictions of riparian zone dynamics under
current and future environmental changes.
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5. Conclusions

In conclusion, the study identified an average sediment deposition depth of 2.85 cm
in the lower riparian regions of the Three Gorges Reservoir, where C. dactylon coverage
increased with elevation. The positive correlation between C. dactylon coverage and sed-
iment deposition during flood periods underscores the species’ critical role in sediment
accumulation. The results highlight the significance of perennial clonal species like C.
dactylon in stabilizing riparian ecosystems and enhancing their functionality, particularly in
dam-regulated environments.
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