Overview of Traditional and Contemporary Industrial Production Technologies for Biochar along with Quality Standardization Methods
Abstract
:1. Introduction
2. Traditional Methods for Producing and Using Charcoal in Different Regions
3. Cutting-Edge Techniques for Creating Biochar
3.1. The Pyrolysis Process and Its Stages
3.2. Gasification and Hydrothermal Carbonization
4. Standardization of Biochar
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kocsis, T.; Ringer, M.; Biró, B. Characteristics and applications of biochar in soil-plant systems: A short review of benefits and potential drawbacks. Appl. Sci. 2022, 12, 4051. [Google Scholar] [CrossRef]
- Spash, C.L. This changes nothing: The Paris Agreement to ignore reality. Globalizations 2016, 13, 928–933. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.; Yang, H.; Doran, J.; Rooney, D.W. Industrial biochar systems for atmospheric carbon removal: A review. Environ. Chem. Lett. 2021, 19, 3023–3055. [Google Scholar] [CrossRef]
- Novotny, E.; Maia, C.; Carvalho, M.; Madari, B.E. Biochar: Pyrogenic carbon for agricultural use—A critical review. Rev. Bras. CiÊNcia Do Solo 2015, 39, 321–344. [Google Scholar] [CrossRef]
- Factura, H.; Bettendorf, T.; Buzie, C.; Pieplow, H.; Reckin, J.; Otterpohl, R. Terra Preta sanitation: Re-discovered from an ancient Amazonian civilization—Integrating sanitation, bio-waste management and agriculture. Water Sci. Technol. 2010, 61, 2673–2679. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B. Prehistorically modified soils of central Amazonia: A model for sustainable agriculture in the twenty-first century. Philos. Trans. R. Soc. Biol. Sci. 2007, 362, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Bacskai, I.; Madar, V.; Fogarassy, C.; Toth, L. Modeling of Some Operating Parameters Required for the Development of Fixed Bed Small Scale Pyrolysis Plant. Resources 2019, 8, 79. [Google Scholar] [CrossRef]
- Peters, J.F.; Iribarren, D.; Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 2015, 49, 5195–5202. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- USBI—2023 Global Biochar Market Report. Int. Biochar Initiat. Available online: https://biochar-international.org/2023-global-biochar-market-report/ (accessed on 22 August 2014).
- Xia, L.; Chen, W.; Lu, B.; Wang, S.; Xiao, L.; Liu, B.; Yang, H.; Huang, C.; Wang, H.; Yang, Y.; et al. Climate mitigation potential of sustainable biochar production in China. Renew. Sustain. Energy Rev. 2023, 175, 113145. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture—A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- IBI—International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar that is Used in Soil: Version Number 2.1. Available online: https://biochar-international.org/wp-content/uploads/2020/06/IBI_Biochar_Standards_V2.1_Final2.pdf (accessed on 22 August 2014).
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- Olarieta, J.R.; Padrò, R.; Masip, G.; Rodríguez-Ochoa, R.; Tello, E. ‘Formiguers’, a historical system of soil fertilization (and biochar production?). Agric. Ecosyst. Environ. 2011, 140, 27–33. [Google Scholar] [CrossRef]
- Miret, J. Las rozas en la Península Ibérica. Apuntes de tecnología agyar n tradicional. Hist. Agrar. 2004, 34, 165–193. [Google Scholar]
- Marks, E.A.; Mattana, S.; Alcañiz, J.M.; Pérez-Herrero, E.; Domene, X. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial. Agric. Ecosyst. Environ. 2016, 215, 30–39. [Google Scholar] [CrossRef]
- Smith, K.R.; Pennise, D.M.; Khummongkol, P.; Zhang, J.; Panyathanya, W.; Rasmunsen, R.A.; Khalil, M.A.K. Greenhouse Gases from Small Scale Combustion Devices in Developing Countries: Phase III: Charcoal Kiln in Thailand; Summary of Complete Report for USEPA; U.S. Environmental Protection Agency: Washington, DC, USA, 1999.
- Pratiwi, Y.; Waluyo, J.; Widyawidura, W.; Aridito, M.N. Development of Jackfruit Peel Waste as Biomass Energy: Case study for traditional food center in Yogyakarta. Int. J. Renew. Energy Res. 2019, 9, 2138–2135. [Google Scholar]
- Sulistyo, J.; Marsoem, S.N.; Kholik, A.; Lukmandaru, G. Traditional charcoal manufacturing methods and its quality in Yogyakarta. In Proceedings of the Seminar Nasional MAPEKI IV, Samarinda, Indonesia, 6–9 August 2002; pp. 6–9. [Google Scholar]
- Nahayo, A.; Ekise, I.; Mukarugwiza, A. Comparative Study on Charcoal Yield Produced by Traditional and Improved Kilns: A Case Study of Nyaruguru and Nyamagabe Districts in Southern Province of Rwanda. Energy Environ. Res. 2013, 3, 40. [Google Scholar] [CrossRef]
- Kammen, D.M.; Lew, D.J. Review of Technologies for the Production and Use of Charcoal; Renewable and Appropriate Energy Laboratory Report; Renewable & Appropriate Energy Laboratory: Berkeley, UC, USA, 2005. [Google Scholar]
- Kokou, K.; Nuto, Y.; Atsri, H. Impact of charcoal production on woody plant species in West Africa: A case study in Togo. Sci. Res. Essays 2009, 4, 881–893. [Google Scholar]
- Veres, G. A bükki faszénégetés a 20. század utolsó évtizedében. Kelet-KözÉP-EurÓPai TörtÉNelmi TanulmÁNyok/East Cent. Eur. Hist. Stud. 2022, 49, 235–247. [Google Scholar]
- Mencarelli, A.; Cavalli, R.; Greco, R.; Grigolato, S. Comparison of Technical and Operational Conditions of Traditional and Modern Charcoal Kilns: A Case Study in Italy. Energies 2023, 16, 7757. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Eletta, O.A.; Adeniyi, A.G. Biomass carbonisation in retort kilns: Process techniques, product quality and future perspectives. Bioresour. Technol. Rep. 2022, 17, 100934. [Google Scholar] [CrossRef]
- Kocsis, T.; Biró, B.; Ulmer, Á.; Szántó, M.; Kotroczó, Z. Time-lapse effect of ancient plant coal biochar on some soil agrochemical parameters and soil characteristics. Environ. Sci. Pollut. Res. 2018, 25, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Gömöri, J. Az Avar Kori és Árpád-Kori Vaskohászat Régészeti Emlékei Pannóniában—The Archeometallurgical Sites in Pannonia from the Avar and Early Árpád-Period (Register of Industrial Archelogical Sites in Hungary 1. Ironworking); Archaeological Collection of the Museum of Sopron: Sopron, Hungary, 2000. [Google Scholar]
- Carrari, E.; Ampoorter, E.; Verheyen, K.; Coppi, A.; Selvi, F. Former charcoal kiln platforms as microhabitats affecting understorey vegetation in Mediterranean forests. Appl. Veg. Sci. 2016, 19, 486–497. [Google Scholar] [CrossRef]
- Hardy, B.; Cornelis, J.; Houben, D.; Leifeld, J.; Lambert, R.; Dufey, J. Evaluation of the long-term effect of biochar on properties of temperate agricultural soil at pre-industrial charcoal kiln sites in Wallonia, Belgium. Eur. J. Soil Sci. 2017, 68, 80–89. [Google Scholar] [CrossRef]
- Hirsch, F.; Raab, T.; Ouimet, W.; Dethier, D.; Schneider, A.; Raab, A. Soils on Historic Charcoal Hearths: Terminology and Chemical Properties. Soil Sci. Soc. Am. J. 2017, 81, 1427–1435. [Google Scholar] [CrossRef]
- Hirsch, F.; Schneider, A.; Bauriegel, A.; Raab, A.; Raab, T. Formation, Classification, and Properties of Soils at Two Relict Charcoal Hearth Sites in Brandenburg, Germany. Front. Environ. Sci. 2018, 6, 94. [Google Scholar] [CrossRef]
- Ellis, E.C.; Ramankutty, N. Putting people on the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Eriksson, O.; Lundin, L. Legacies of historic charcoal production affect the forest flora in a Swedish mining district. Nord. J. Bot. 2021, 39, 11. [Google Scholar] [CrossRef]
- Hernandez-Soriano, M.; Bart, K.; Goos, P.; Hardy, B.; Dufey, J.; Smolders, E. Long-term effect of biochar on the stabilization of recent carbon: Soils with historical inputs of charcoal. Bioenergy 2015, 8, 371–381. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Sohi, S.P. Black carbon affects the cycling of nonblack carbon in soil. Org. Geochem. 2010, 41, 206–213. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 3rd ed.; Routledge: London, UK, 2024; p. 884. [Google Scholar]
- Demirbas, A. Pyrolysis mechanisms of biomass materials. Energy Sources A 2009, 31, 1186–1193. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Taweekun, J.; Rahman, M.M.; Rasul, M.G.; Mahlia, T.M.I.; Ashrafur, S.M. An overview of recent developments in biomass pyrolysis technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef]
- Osman, A.I.; Young, T.J.; Farrell, C.; Harrison, J.; Al-Muhtaseb, A.A.H.; Rooney, D.W. Physicochemical characterization and kinetic modeling concerning combustion of waste berry pomace. CS Sustain. Chem. Eng. 2020, 8, 17573–17586. [Google Scholar] [CrossRef]
- Chen, W.H.; Kuo, P.C. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 2011, 36, 6451–6460. [Google Scholar] [CrossRef]
- Hornung, A. Biomass pyrolysis. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 1517–1531. [Google Scholar]
- Brassard, P.; Godbout, S.; Raghavan, V. Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosyst. Eng. 2017, 161, 80–92. [Google Scholar] [CrossRef]
- Yang, Y.; Brammer, J.G.; Mahmood, A.S.N.; Hornung, A. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol. 2014, 169, 794–799. [Google Scholar] [CrossRef]
- Waluyo, J.; Makertihartha, B.N.; Susanto, H. Pyrolysis with intermediate heating rate of palm kernel shells: Effect temperature and catalyst on product distribution. AIP Conf. Proc. 2018, 1977, 020026. [Google Scholar]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Tisserant, A.; Cherubini, F. Potentials, limitations, co-benefits, and trade-offs of biochar applications to soils for climate change mitigation. Land 2019, 8, 179. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, K.; Bhaskar, T. Advances in design strategies for preparation of biochar based catalytic system for production of highvalue chemicals. Bioresour. Technol. 2020, 299, 122564. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar production and applications in agro and forestry systems: A review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef] [PubMed]
- Malghani, S.; Gleixner, G.; Trumbore, S.E. Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol. Biochem. 2013, 62, 137–146. [Google Scholar] [CrossRef]
- Sharma, R.; Jasrotia, K.; Singh, N.; Ghosh, P.; Srivastava, S.; Sharma, N.R.; Kumar, A. A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem. Afr. 2020, 3, 1–19. [Google Scholar] [CrossRef]
- Afolabi, O.O.; Sohail, M.; Cheng, Y.L. Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation. Renew. Energy 2020, 147, 1380–1391. [Google Scholar] [CrossRef]
- EBC—European Biochar Certificate—(2012) European Biochar Certificate—Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland. Available online: http://European-biochar.org (accessed on 2 December 2020).
- Antal, M.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Nunoura, T.; Wade, S.R.; Bourke, J.P.; Antal, M.J. Studies of the flash carbonization process. 1. Propagation of the flaming pyrolysis reaction and performance of a catalytic afterburner. Ind. Eng. Chem. Res. 2006, 45, 585–599. [Google Scholar] [CrossRef]
- Nartey, O.; Zhao, B. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Adv. Mater. Sci. Eng. 2014, 2014, 715398. [Google Scholar] [CrossRef]
- Hirst, E.A.; Taylor, A.; Mokaya, R. A simple flash carbonization route for conversion of biomass to porous carbons with high CO2 storage capacity. J. Mater. Chem. A 2018, 6, 12393–12403. [Google Scholar] [CrossRef]
- Cobut, A.; Beauregard, R.; Blanchet, P. Using life cycle thinking to analyse environmental labeling: The case of appearance wood products. Int. J. Life Cycle Assess. 2013, 18, 722–742. [Google Scholar] [CrossRef]
- Verheijen, F.G.; Bastos, A.C.; Schmidt, H.P.; Brandão, M.; Jeffery, S. Biochar sustainability and certification. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 795–812. [Google Scholar]
- Verheijen, F.G.; Bastos, A.C.; Schmidt, H.P.; Jeffery, S. Biochar and certification 1. In Sustainability Certification Schemes in the Agricultural and Natural Resource Sectors; Routledge: London, UK, 2019; pp. 113–136. [Google Scholar]
- Meyer, S.; Genesio, L.; Vogel, I.; Schmidt, H.-P.; Soja, G.; Someus, E.; Shackley, S.; Verheijen, F.G.A.; Glaser, B. Biochar standardization and legislation harmonization. J. Environ. Eng. Landsc. Manag. 2017, 25, 175–191. [Google Scholar] [CrossRef]
- He, M.; Xu, Z.; Hou, D.; Gao, B.; Cao, X.; Ok, Y.S.; Tsang, D.C. Waste-derived biochar for water pollution control and sustainable development. Nat. Rev. Earth Environ. 2022, 3, 444–460. [Google Scholar] [CrossRef]
- Schmidt, H.-P.; Shackley, S. Science and practice: Biochar horizon 2025. In Biochar in European Soils and Agriculture; Routledge: London, UK, 2016. [Google Scholar]
- Scarlat, N.; Dallemand, J.F. Recent developments of biofuels/bioenergy sustainability certification: A global overview. Energy Policy 2011, 39, 1630–1646. [Google Scholar] [CrossRef]
- Bachmann, H.J.; Bucheli, T.D.; Dieguez-Alonso, A.; Fabbri, D.; Knicker, H.; Schmidt, H.P.; Zehetner, F. Toward the standardization of biochar analysis: The COST action TD1107 interlaboratory comparison. J. Agric. Food Chem. 2016, 64, 513–527. [Google Scholar] [CrossRef]
- Renckens, S. Private Governance and Public Authority: Regulating Sustainability in a Global Economy; Cambridge University Press: Cambridge, UK, 2020; p. 306. [Google Scholar]
- Shackley, S.; Esteinou, R.I.; Hopkins, D.; Hammond, J. Biochar Quality Mandate (BQM) Version 1.0.; British Biochar Foundation: Edinburgh, UK, 2014; p. 55. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köves, M.; Madár, V.; Ringer, M.; Kocsis, T. Overview of Traditional and Contemporary Industrial Production Technologies for Biochar along with Quality Standardization Methods. Land 2024, 13, 1388. https://doi.org/10.3390/land13091388
Köves M, Madár V, Ringer M, Kocsis T. Overview of Traditional and Contemporary Industrial Production Technologies for Biochar along with Quality Standardization Methods. Land. 2024; 13(9):1388. https://doi.org/10.3390/land13091388
Chicago/Turabian StyleKöves, Mátyás, Viktor Madár, Marianna Ringer, and Tamás Kocsis. 2024. "Overview of Traditional and Contemporary Industrial Production Technologies for Biochar along with Quality Standardization Methods" Land 13, no. 9: 1388. https://doi.org/10.3390/land13091388
APA StyleKöves, M., Madár, V., Ringer, M., & Kocsis, T. (2024). Overview of Traditional and Contemporary Industrial Production Technologies for Biochar along with Quality Standardization Methods. Land, 13(9), 1388. https://doi.org/10.3390/land13091388