Land Use Thematic Maps Recommendation Based on Pan-Map Visualization Dimension Theory
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source
3. Theory and Method
3.1. Pan-Map Visualization Dimension Theory
- Time captures the temporal evolution of spatial phenomena, manifesting in linear, branching, and cyclic structures.
- Status conveys the condition of each object or element on the map, including static and dynamic states.
- Geometry details the geometric shapes and topological relationships between graphic elements in map visualizations.
- Format involves arranging spatial objects, including vector, raster, and hybrid forms.
- Dimensionality refers to the spatial dimensions represented in maps, including one, two, three, or even more dimensions.
- Reference plane includes various planes and curves, enhancing the user’s spatial understanding through the conversion of different reference surfaces.
- Carrier denotes the medium of map expression, such as physical and electronic media.
- Form encompasses three styles of expression: abstract, realistic, and stylized.
- Scale indicates the spatial extent and level of detail the map portrays, which can vary from single scale to multi-scale and vario-scale.
- Reader viewpoint offers multiple perspectives on spatial objects, including internal and external viewpoints and personal perspectives.
3.2. Land Use Thematic Map Recommendation Method
- Land use thematic map knowledge system organization: This involves integrating the actual needs for land use thematic expression with the existing land use data. The analysis is conducted from four perspectives: spatial data, data characteristics, visualization dimensions, and application scenarios. The aim of this step is to determine the required map type, establish correlations between land use thematic expression needs and map types, and formulate a comprehensive knowledge system tailored for land use thematic expression.
- Construction of land use thematic map knowledge graph: Leveraging the previously organized knowledge system of land use requirements and map type correlation, this process defines the ontology layer of the knowledge graph. It employs knowledge extraction technology to derive the corresponding knowledge triplets from this layer, constructing a land use thematic map knowledge graph and forming a robust knowledge network to recommend suitable land use thematic maps.
- Similarity calculation: This step utilizes one-hot encoding to embed the user entity, expression needs, data characteristics, and visualization dimensions within the land use thematic map knowledge graph, thereby transforming this knowledge into feature vectors. The cosine similarity calculation model is then applied to analyze the overall similarity between the data characteristics and visualization dimensions of user needs and those represented in the knowledge base.
- Personalized map type recommendation: Based on the results of the similarity calculations, this phase involves selecting the thematic map types that most closely align with the user’s land use thematic expression needs. The method then recommends the most suitable map visualization forms accordingly.
3.2.1. Constructing the Knowledge System of Land Use Thematic Maps
- (1)
- Analyzing thematic expression needs: Leverage cartographic knowledge to categorize and understand different types of requirements for land use thematic expression.
- (2)
- Dissecting data and scenarios: Examine and segment the spatial data, data characteristics, and application scenarios pertinent to thematic expression. This includes dividing spatial data into categories such as land use data, land planning data, statistical data, image data, etc. Data characteristics are classified into temporal, spatial, and attribute features while application scenarios are divided into quantitative distribution, static element distribution, spatiotemporal change trend expression, etc.
- (3)
- Visualization dimensions analysis: Based on the identified thematic expression needs, assess the relevant visualization dimensions and their inter-relationships to formulate a combination that aligns with user preferences.
- (4)
- Establishing correlations: Utilize the preferred combination of visualization dimensions to establish comprehensive correlations among user needs, spatial data, data characteristics, visualization dimensions, thematic map forms, and application scenarios.
3.2.2. Construction of the Land Use Thematic Map Knowledge Graph
3.2.3. Land Use Thematic Map Knowledge Embedding
3.2.4. Land Use Thematic Map Similarity Calculation
4. Result
4.1. Construction of a Knowledge Graph for Zhangjiakou Land Use Change Thematic Maps
- First to third places: zoning statistical map, dynamic map, Dorling cartogram.
- Fourth to sixth places: area cartogram, whisper map, kriskograms.
4.2. Accuracy Analysis of Visual Recommendation for Different Types of Land Use Spatial Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Chen, Y.Q.; Shao, X.M.; Zhang, Y.Y.; Cao, Y.G. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Long, H. Land use policy in China: Introduction. Land Use Policy 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Nkwasa, A.; Chawanda, C.J.; Jägermeyr, J.; Griensven, A.V. Improved representation of agricultural land use and crop management for large-scale hydrological impact simulation in Africa using SWAT+. Hydrol. Earth Syst. Sc. 2022, 26, 71–89. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, M.Y.; Na, J.M.; Liang, Z.Q.; Lu, Y.; Yang, J. Incorporation of Spatially Heterogeneous Area Partitioning into Vector-Based Cellular Automata for Simulating Urban Land-Use Changes. Land 2023, 12, 1893. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Y.; Liu, X.; Chen, Y.; Liu, D. Thematic maps for land consolidation planning in Hubei Province, China. J. Maps 2014, 10, 26–34. [Google Scholar] [CrossRef]
- Huang, Q.H.; Liu, Y.X.; Li, M.C.; Mao, K.; Li, F.X.; Chen, Z.J.; Chen, L. Thematic maps for county-level land use planning in Contemporary China. J. Maps 2012, 8, 185–188. [Google Scholar] [CrossRef]
- Polous, N. Smart Cartography: Representing complex geographical reality of 21st century. Int. J. Cartogr. 2023, 9, 619–637. [Google Scholar] [CrossRef]
- Kraak, M.; Fabrikant, S.I. Of maps, cartography and the geography of the International Cartographic Association. Int. J. Cartogr. 2017, 3 (Suppl. 1), 9–31. [Google Scholar] [CrossRef]
- Roth, R.E. Cartographic Design as Visual Storytelling: Synthesis and Review of Map-Based Narratives, Genres, and Tropes. Cartogr. J. 2020, 58, 83–114. [Google Scholar] [CrossRef]
- Liqiu, M. The constancy and volatility in cartography. Acta Geod. Et Cartogr. Sin. 2017, 46, 1637. [Google Scholar]
- Guo, R.Z.; Ying, S. The rejuvenation of cartography in ICT era. Acta Geod. Et Cartogr. Sin. 2017, 46, 1274. [Google Scholar]
- Guo, R.Z.; Chen, Y.B.; Ying, S.; Lu, G.N.; Li, Z.L. Geographic visualization of pan-map with the context of ternary spaces. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 1603–1610. [Google Scholar]
- Guo, R.Z.; Chen, Y.B.; Zhao, Z.G.; He, B.; Lu, G.N.; Li, Z.L.; Ying, S.; Ma, D. A theoretical framework for the study of pan-maps. J. Geomat. 2021, 46, 9–15. [Google Scholar]
- Guo, R.Z.; Chen, Y.B.; Zhao, Z.G.; Han, D.Z.; Ma, D.; Ying, S.; Ti, P.; Ke, W.Q.; Fang, Y. Scientific Concept and Representation Framework of Maps in the ICT era. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1978–1987. [Google Scholar]
- Shimizu, E.; Inoue, R. A new algorithm for distance cartogram construction. Int. J. Geogr. Inf. Sci. 2009, 23, 1453–1470. [Google Scholar] [CrossRef]
- Xiao, N.; Chun, Y. Visualizing migration flows using kriskograms. Cartogr. Geogr. Inf. Sc. 2009, 36, 183–191. [Google Scholar] [CrossRef]
- Reimer, A.W. Understanding chorematic diagrams: Towards a taxonomy. Cartogr. J. 2010, 47, 330–350. [Google Scholar] [CrossRef]
- Zhu, Y.; Gu, J.; Lin, Y.; Chen, M.; Guo, Q.; Du, X.X.; Xue, C.Q. Field Cognitive Styles on Visual Cognition in the Event Structure Design of Bivariate Interactive Dorling Cartogram—The Similarities and Differences of Field-Independent and Field-Dependent Users. ISPRS Int. J. Geo Inf. 2022, 11, 574. [Google Scholar] [CrossRef]
- Wang, J.Y.; Sun, Q.; Wang, G.X. Principles and Methods of Cartography; Science Press: Beijing, China, 2014. [Google Scholar]
- Tian, J.; Huang, R.; Guo, Q. Study on intelligent choice of representation methods in thematic map. Sci. Surv. Mapp. 2007, 32, 170–172. [Google Scholar]
- Nan, J.; Jian, M.A.; Wu, L.; Sun, Q. The Formalization Expression of Representation Method Rules Oriented to Automatic Recommendation. Bull. Surv. Mapp. 2015, 9, 36. [Google Scholar]
- Wu, M.; Sun, Y.; Li, Y. Adaptive transfer of color from images to maps and visualizations. Cartogr. Geogr. Inf. Sc. 2022, 49, 289–312. [Google Scholar] [CrossRef]
- Tennekes, M. Tmap: Thematic Maps in R. J. Stat. Softw. 2018, 84, 1–39. [Google Scholar] [CrossRef]
- Du, J.; Wang, S.H.; Ye, X.Y.; Diana, S.S.; Karen, K. GIS-KG: Building a large-scale hierarchical knowledge graph for geographic information science. Int. J. Geogr. Inf. Sci. 2022, 36, 873–897. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Cheng, X.; Li, Y.S.; Wang, F.; Liu, X.J.; Wu, W.P. Research on land and resources management and retrieval using knowledge graph. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1165–1175. [Google Scholar]
- Meng, L.; Wang, G. Framework for Knowledge Graph-driven Construction of Natural Resources Big Data Mining Model in Guangdong Province. Geomat. Spat. Inf. Technol. 2020, 43, 91–94. [Google Scholar]
- Ding, Y.; Xu, Z.; Zhu, Q.; Li, H.; Luo, Y.; Bao, Y.; Tang, L.; Zeng, S. Integrated data-model-knowledge representation for natural resource entities. Int. J. Digit. Earth 2022, 15, 653–678. [Google Scholar] [CrossRef]
- Han, F.; Deng, Y.R.; Liu, Q.Y.; Zhou, Y.Z.; Wang, J.; Huang, Y.J.; Zhang, Q.L.; Bian, J. Construction and application of the knowledge graph method in management of soil pollution in contaminated sites: A case study in South China. J. Environ. Manag. 2022, 319, 115685. [Google Scholar] [CrossRef]
- Li, H.T.; Wang, Y.; Zhang, S.H.; Song, Y.Q.; Qu, H.M. KG4Vis: A knowledge graph-based approach for visualization recommendation. IEEE Trans. Vis. Comput. Graph. 2021, 28, 195–205. [Google Scholar] [CrossRef]
- Li, L.Y.; Peng, C.J.; Guo, B.Q.; Nie, C.Y. Construction of Knowledge Map of Marine Map Visualization Method. J. Geomat. 2022, 47, 77–80. [Google Scholar]
- Niu, X.; Yang, J.; Yan, H. WeMap Recommendation by Fusion of Knowledge Graph and Collaborative Filtering. J. Ge Inf. Sci. 2024, 26, 967–977. [Google Scholar]
- Koteich, B.; Saux, É.; Laddada, W. Knowledge-Based Recommendation for On-Demand Mapping: Application to Nautical Charts. ISPRS Int. J. Geo-Inf. 2021, 10, 786. [Google Scholar] [CrossRef]
- Zhou, C.H.; Wang, H.; Wang, C.S.; Hou, Z.Q.; Zheng, Z.M.; Shen, S.Z.; Cheng, Q.M.; Feng, Z.Q.; Wang, X.B.; Lv, H.R.; et al. Geoscience knowledge graph in the big data era. Sci. China Earth Sc. 2021, 64, 1105–1114. [Google Scholar] [CrossRef]
- Ti, P.; Hou, X.; Li, Z.L.; Chen, Y.B.; Guo, R.Z. Construction of Pan-Map Representation Mechanism Based on Visualization Dimension System. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 2015–2025. [Google Scholar]
- Sun, Z.; Vashishth, S.; Sanyal, S.; Talukdar, P.; Yang, Y. A Re-evaluation of Knowledge Graph Completion Methods. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 5516–5522. [Google Scholar]
- Zheng, K.; Xie, M.H.; Zhang, J.B.; Xie, J.; Xia, S.H. A knowledge representation model based on the geographic spatiotemporal process. Int. J. Geogr. Inf. Sci. 2022, 36, 674–691. [Google Scholar] [CrossRef]
- Xiong, W.; Hoang, T.; Wang, W.Y. DeepPath: A reinforcement learning method for knowledge graph reasoning. arXiv 2017, arXiv:1707.06690. [Google Scholar]
- Wang, S.; Zhang, X.; Ye, P.; Du, M.; Lu, Y.; Xue, H. Geographic knowledge graph (GeoKG): A formalized geographic knowledge representation. ISPRS Int. J. Geo inf. 2019, 8, 184. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, X.; Wu, Y.P.; Zhou, W.T.; Zhang, J.H.; Zhang, T.S. Knowledge graph and knowledge reasoning: A systematic review. J. Elect. Sci. Tech. 2022, 20, 100159. [Google Scholar] [CrossRef]
- Xu, J.; Kim, S.; Song, M.; Jeong, M.B.; Kim, D.H.; Kang, J.; Rousseau, J.F.; Li, X.; Xu, W.J.; Torvik, V.; et al. Building a PubMed knowledge graph. Sci. Data 2020, 7, 205. [Google Scholar] [CrossRef]
Experimental Group | Data Type | Original Visualization Form in Top 5 of Recommendation List Ratio/(%) | Original Visualization Form in Positions 6–10 of Recommendation List Ratio/(%) | Overlap Rate of Recommendation Results with Original Visualization Form/(%) |
---|---|---|---|---|
1 | Point | 100 | 0 | 100 |
2 | Line | 70 | 20 | 90 |
3 | Area | 80 | 20 | 100 |
4 | Volume | 90 | 10 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Shi, Z.; Li, Y.; Han, D.; Li, M.; Zhao, Z. Land Use Thematic Maps Recommendation Based on Pan-Map Visualization Dimension Theory. Land 2024, 13, 1389. https://doi.org/10.3390/land13091389
Chen Y, Shi Z, Li Y, Han D, Li M, Zhao Z. Land Use Thematic Maps Recommendation Based on Pan-Map Visualization Dimension Theory. Land. 2024; 13(9):1389. https://doi.org/10.3390/land13091389
Chicago/Turabian StyleChen, Yebin, Zhicheng Shi, Yaxing Li, Dezhi Han, Minmin Li, and Zhigang Zhao. 2024. "Land Use Thematic Maps Recommendation Based on Pan-Map Visualization Dimension Theory" Land 13, no. 9: 1389. https://doi.org/10.3390/land13091389
APA StyleChen, Y., Shi, Z., Li, Y., Han, D., Li, M., & Zhao, Z. (2024). Land Use Thematic Maps Recommendation Based on Pan-Map Visualization Dimension Theory. Land, 13(9), 1389. https://doi.org/10.3390/land13091389