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Abstract: Traditional urban design often overlooks the synchronisation of human and ecological
connectivities, typically favouring corridors for ecological continuity. Our study challenges this
convention by introducing a computational design approach, meta-connectivity, leveraging the
deep generative models performing cross-domain translation to integrate human–wildlife landscape
connectivity in urban morphology amidst the planetary urbanisation. Utilising chained Pix2Pix
models, our research illustrates a novel meta-connectivity design reasoning framework, combining
landscape connectivity modelling with conditional reasoning based on deep generative models.
This framework enables the adjustment of both human and wildlife landscape connectivities based
on their correlative patterns in one single design process, guiding the rematerialisation of urban
landscapes without the need for explicit prior ecological or urban data. Our empirical study in East
London demonstrated the framework’s efficacy in suggesting wildlife connectivity adjustments based
on human connectivity metrics. The results demonstrate the feasibility of creating an innovative
urban form in which the land cover guided by the connectivity gradients replaces the corridors
based on simple geometries. This research thus presents a methodology shift in urban design,
proposing a symbiotic approach to integrating disparate yet interrelated landscape connectivities
within urban contexts.

Keywords: urban design; deep generative models; cross-domain translation; landscape connectivity;
progressive reasoning; urban ecology

1. Introduction
1.1. Significance of Landscape Connectivity to Urban Ecology

Landscape connectivity [1] is a spatial metric referring to the degree to which the
landscape facilitates or impedes movement among resource patches. It encapsulates the
complex interplay between the landscape’s spatial attributes and its biological makeup,
shedding light on how it either facilitates or constrains organism movement and interac-
tion. Traditional spatial-planning methods often rely on corridors to maintain ecological
connectivity. These corridors are usually designed to connect protected areas or natural
habitats to promote species migration and gene flow [2,3].

However, such approaches may overlook the impact of human landscape connectivity,
including factors like urbanisation and transportation network development on ecological
connectivity. This oversight is evident in the existing literature, where human landscape
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connectivity is seldom assessed and rarely considered alongside wildlife landscape con-
nectivity within the same project. Ideologically and methodologically, humans are often
assumed to be external to local ecologies, positioned as counterparts to wildlife.

Our research seeks to bridge the divide between traditional ecology and human geog-
raphy by integrating wildlife landscape connectivity with human landscape connectivity
using deep learning algorithms capable of cross-domain translation [4]. This study, by
challenging conventional planning approaches that largely employ corridors, may foster
discussions on environmental justice [5,6]: the equitable distribution of ecological resources
and fair access to natural resources for different species and human populations. By merg-
ing both types of connectivity at an operational level, this research aims to explore a new
method of urban landscape planning. In this approach, new urban forms are anticipated to
emerge to accommodate the synergistic effects between local ecological networks and hu-
man activities, where conflicts between human activities and wildlife habitats are mediated
through the rematerialisation of urban structures [7].

Cross-Domain Translation and Conditional Design Reasoning

Cross-domain translation [4] is a process that involves the transference and mapping of
patterns or features from one domain to another. In such a process, knowledge learned from
one data distribution (source domain) is applied to a different but related data distribution
(target domain), transforming inputs from the source domain into equivalent outputs in
the target domain while preserving intrinsic properties and adapting to the target domain’s
features [8].

Pix2Pix, since its inception, has been extensively applied by architects for conditional
reasoning: it is used to test models trained on design conditions from the source domain to
generate new data belonging to the target domain. This form of reasoning offers a viable
path for problems where the relationship between two factors is inscrutable and hence
cannot be addressed through traditional deductive design reasoning. Examples include the
facade generation by Isola et al. [9], residential plan generation by Huang et al. [10], and
spatial-organisation studies by Yu et al. [11] Similar technologies have also expanded the
scope of cross-domain translation in design applications. The advent of CycleGAN [12]
made unpaired data translation feasible. Examples include the conversion between archi-
tectural sketches and photo-realistic renderings [13], and the transformation between bump
maps and hyperbolic images [14], demonstrating the translation between a set of concepts
based on a vast array of cases and another set. Nvidia’s GauGAN series [15–17] applied
cross-domain translation to digital sketchpads, converting real-time sketch inputs and text
inputs into corresponding photo-realistic images.

Furthermore, there have been efforts to utilise a series of domain-to-domain models in
sequence to address complex design problems composed of multiple problem layers. Each
problem layer is treated as a relevant combination of two domains for conditional reasoning. This
condition involves mapping a given design premise to the conclusive schema of the previous
layer. Chaillou employed a model called ArchiGAN [18] for sequential reasoning across multiple
domains to generate architectural plans, from building contours to interior details. Similarly, Chan
and Spaeth [19] attempted to create a transformative loop between two cGANs for architectural
sketches and images, mimicking the visual reasoning pattern of architects.

In summary, this technique has demonstrated its capability in integrating disparate
yet related concepts in the design process. However, there is a notable scarcity of empirical
works exploring its potential in synthesising different spatial metrics. This study will
build upon this foundation with the hypothesis that landscape connectivity pertaining to
different objects can be concurrently considered within the same design process, seeking a
symbiotic design approach.

1.2. The Meta-Connectivity Hypothesis

Studies like pattern theory and its applications [20,21] suggest that there are usually
conflicts between human spatial connectivity and wildlife spatial connectivity in an urban
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area. However, such conflicts are not comprehensive; they sometimes antagonise each
other and sometimes attract each other. In cities, it is common to witness crowded empty
spaces with plentiful pigeons and other small animals gathering, and countless cases show
that the movement of humans has driven out the colonisation of wildlife species. Such
conflicts must be addressed in a redesign process to identify the correct spatial pattern, but
the question remains: how can this be achieved?

The present study formulates a novel theory of meta-connectivity, serving as a hypoth-
esis, which integratively considers two pivotal variables: the spatial connectivity of both
humans and wildlife: two entities traditionally analysed in isolation. This theoretical frame-
work elucidates a causal correlation between the spatial interconnectedness of humans and
their wildlife counterparts. Hence, it facilitates the application of conditional reasoning
to predict emerging spatial connectivity patterns within wildlife populations. Building
upon this concept of causal reasoning, conditional generative models are considered the
optimal technical approach where the status of human spatial connectivity can lead to a
corresponding and predictable state of wildlife spatial connectivity, and vice versa.

2. Material and Methods
2.1. The Meta-Connectivity Framework

Existing research indicate a discrepancy between human and wildlife landscape con-
nectivity, which can manifest as mutual aversion or attraction. This concept is resonated
in the pattern analyses by Batty [22] and Lystra [23], who demonstrate that each form
of connectivity can be conceptualised as a distinct ‘image.’ The differences and conflicts
between these forms of connectivity can be characterised by specific feature distributions
and analysed using computer vision techniques.

Inspired by such a methodology, we propose an innovative, image-based approach
within our study, wherein we introduce deep generative models to perceptual signal
processing and content generation into a computational meta-connectivity reasoning frame-
work (Figure 1). The aim of the framework is to employ deep generative models trained
with valid reference data to simultaneously fine-tune the state of landscape connectivity
for both humans and wildlife species through the effect of cross-domain translation, and
based on this, to renovate the local landscape materiality.
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2.2. Study Area

The project focuses on a one-kilometre square site in Limehouse, East London, de-
fined by the geolocations (51◦30′21.7′′ N, 0◦01′48.9′′ W), (51◦30′54.0′′ N, 0◦01′48.9′′ W),
(51◦30′21.7′′ N, 0◦00′56.9′′ W), and (51◦30′54.0′′ N, 0◦00′56.9′′ W). The site’s climate is classi-
fied as Cfb (marine or oceanic) according to the Köppen–Geiger Climate Classification [24].
The National Biodiversity Index (NBI) values range from 0.400 to 0.500. Figure 2 depicts an
overview of the current land use conditions of the site.
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To mitigate the potential bias associated with geopolitically defined study areas, the
resistance mapping was extended 10 km into the peripheral regions surrounding the study
area to increase the spatial coverage. This approach [25] enhances the understanding of the
study region’s biological connectivity. Extending the map beyond traditional boundaries
ensures more comprehensive representation and bolsters result reliability.

2.3. Data Collection

Connectivity modelling relies heavily on the choice of datasets. This study employs
two distinct datasets, the National Biodiversity Index (NBI), with data sampled in 2021, and
eBird data, last updated in 2022. These datasets capture detailed aspects of terrestrial and
avian biodiversity, respectively, to ensure the validity of this research. This approach is also
anticipated to uncover the importance of data subjectivity and the resulting variations in
outcomes it may cause. It will aid in providing comprehensive insights into the connectivity
of various species and demonstrate how deep generative models can be effectively trained
using strategically curated ‘valid knowledge’.

2.3.1. Landscape Connectivity on NBI Data

NBI quantifies species diversity within a specified area. As delineated by the American
Museum of Natural History, the Biodiversity Index is determined by dividing the number of
species by the total individuals across all species in the area [26]. It is essential to recognise
that ‘area’ embodies varied spatial dimensions, from countries (National Biodiversity
Index) to cities (City Biodiversity Index) [27,28]. For this analysis, the NBI data reflect
estimations of richness and endemism across four terrestrial vertebrates and vascular
plants. Index values span from 0.000 to 1.000, with elevated values indicating heightened
biodiversity [29]. To train the Pix2Pix models, 120 examples were chosen from the Cfb
region [27], where London is situated. The selection process ensured that each example
presented higher NBI values to the study site, ensuring the model learned knowledge that
suggest superior biodiversity.
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2.3.2. Landscape Connectivity on eBird Data

Alternatively, this study utilises a connectivity dataset focused on bird species, which
is dominated by the eBird metric. A total of 120 exceptional examples have been selectively
sampled from this dataset in the Cfb area, which are of the same scale (1 km × 1 km) as
the site. The eBird database [30] is a collaborative effort managed by the Cornell Lab of
Ornithology and is based on human observations from experts in various fields worldwide.
The team works to increase data volumes and enhance the quality of the quantitative data.
The eBird data capture the occurrence and contextual information of bird sightings and is
visually represented as scatter plots.

2.4. Modelling Landscape Connectivity

Modelling landscape connectivity in ecological contexts involves several approaches,
with circuit theory being paramount [31–34]. Tools like Circuitscape blend graph theory
with electrical circuit theory to measure habitat connectivity, requiring a resistance surface
as an essential input. This surface is a pixelated representation reflecting the movement
cost through the landscape. Appropriate resistance values can be determined from models
examining the link between resistance values and species habitats [35–37].

Our wildlife movement resistance settings utilised studies on large- and medium-sized
mammals [25], Lynxes [38–40], Wolverines [37], and Mooses [41]. Existing studies [42,43]
suggest that bird spatial connectivity is significantly influenced by terrestrial conditions;
land features are widely used to establish landscape connectivity models. Therefore, the
same settings were applied to model the landscape connectivity of the sites selected based
on NBI and eBird metrics, respectively. The credibility of these settings was verified by
expert consultations and by comparing simulation results with the observed data (Table 1).

Table 1. Table for notations.

Symbol Implication

LCh Human landscape connectivity LCh =
n
∑

j=1

n
∑

k=1

Vjk

Rhjik
LCh’ Human landscape connectivity of the site

LCw Wildlife landscape connectivity LCw =
n
∑

j=1

n
∑

k=1

Vjk

Rwjik
LCw’ Wildlife landscape connectivity of the site

Cm Overall connectivity metric Cm =
Nu

∑
i=1

Ci/Nu

Vk Kernel connectivity vitality

weight(V) =
0, if V ∈ Vi

1, if V ∈ Ve and 0 < V < 128
1.5, if V ∈ Ve and 128 ≤ V ≤ 255

Vk = (Σweight(V) for all V in grid)/N

Notes. Vjk represents the voltage from raster grid node j to k, and Rhjik and Rwjik signify the effective human
resistance and wildlife resistance traversing on landscape material I from raster grid node j to k, respectively.

For urban-scale simulations, solely incorporating land use attributes can lead to
inaccuracies [41]. To improve this, we integrated land use, roads, rivers, and specific
building layouts, optimising resistance calculations for animal movement. Two factors
were merged into a raster map using ArcGIS weight overlay function, assigning equal
weights of 0.5, ensuring the data’s scientific integrity.

Utilising circuit theory, we quantified human movement as resistance values, building
on Howey’s [44] model of human spatial movement. We integrated the attraction of points
of interest (POIs) to orientation–destination in the gravity model with humans’ tendency to
move specific distances from their start [45,46]. We hypothesise that dense POI clusters both
attract and repel individuals during commutes. Thus, in the circuit method, we consider
the POI cluster as the starting point and an area of high resistance based on activity radius
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distribution (Table 2). Utilising ArcGIS 10.2, we reclassified the raster per resistance settings,
integrating local- and city-scale layers for human and animal mobility. Rivers were deemed
impassable for humans. Converted resistance maps to ASCII rasters and computed mobility
probabilities with Circuitscape 4.0 [47], visualised through QGIS 2.18.

Table 2. Resistance settings for landscape connectivity modelling on wildlife and human factors.

Factor (Wildlife) Sub-Factor Resistance
Value (Ours)

Resistance
Value [25]

Resistance
Value [40] Resistance Value [41]

Local scale Buildings
With buildings blocking 1000 / / 500 (maximum 500)

Without buildings
blocking 100 / / 100 (minimum 100)

City scale

Land use

Urban 1000 1000 1000 500
Industrial 1000 / 1000 500

Water 100 100 1000 100
Quarries 100 90 1000 250

Crops 60 60 60 400–500
Grassland 40 30–40 40 100–500

Forest 10 1–20 10 100

Roads

<1000 vehicles/day 80 80 80 /
1000–5000 vehicles/day 100 100 100 /

5000–10,000 vehicles/day 300 300 300 /
10,000–20,000
vehicles/day 700 700 700 /

>20,000 vehicles/day 800 800 800 /
Distance to road: 0.4 km / / / 250
Distance to road: 0.8 km / / / 500

Rivers

Large river (>30 m width) 120 120 120 /
Medium river
(<30 m width) 40 40 40 /

Distance to stream:
0.8 km–3.21 km / / / 100–300

Distance to stream:
3.21 km–9.65 km / / / 300–500

Factor (human) Sub-factor Resistance
value (ours)

Local scale Buildings
With buildings blocking 1000

Without buildings
blocking 100

City scale

Kernel density of POI
aggregation (Search

radius)

0–25 m 1000
25–50 m 500
50–100 m 200

100–200 m 100
200–300 m 60
300–800 m 40

>800 m 10

Roads

<1000 vehicles/day 80
1000–5000 vehicles/day 100

5000–10,000 vehicles/day 300
10,000–20,000
vehicles/day 700

>20,000 vehicles/day 800

Rivers
Large river (>30 m width) 1000

Medium river
(<30 m width) 1000

Notes: higher values = higher resistance.

Table 2 shows resistance value settings based on the different static environments
(animal preference) and social activity dynamics (human preference) [25,38–41,48–53].

2.5. Analytical Metrics of Dataset Processing

Three distinct metrics are employed in the process of dataset profiling: (1) the overall
connectivity metric (Cm), (2) the kernel connectivity vitality (Vk), (3) and the histogram
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of oriented gradients (HOG). They, respectively, visualised the spatial features of human
landscape connectivity (LCh) and wildlife landscape connectivity (LCw), as well as their
spatial distribution, for assessment during the research process.

First, the overall connectivity metric (Cm) is vital in understanding the comprehensive
landscape connectivity across the entire sample territory. Although it might not fully depict
the local ecological quality, it provides theoretical insights into the same. Second, the kernel
connectivity vitality (Vk) allows for the investigation of specific locations of observed
wildlife, portrayed through a scatter plot representation. This method utilises raw data
from eBird, represented by scatter points marked on a map, enriching the analysis of both
the NBI and eBird datasets. Third, the histogram of oriented gradients (HOG) is employed
to discern variations in spatial connectivity features engendered by the proposed urban
landscape. The HOG calculation [54] adopts a nested kernel method, encompassing two
different kernel levels, namely, the blocks and the interspersed cells (Table A1).

2.6. Dataset Observations
2.6.1. Testing Site

The site is bordered by open spaces, including parks and waterways, with a canal
on its western side connecting to the Thames River. Typical riparian parks along the
riverbanks act as ecological corridors (Figure 3a). The site’s central area features east–west
ecological corridors aligned with transportation infrastructure, prominently depicted in
the HOG image.
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Figure 3. (a) The current wildlife landscape connectivity (LCw) mapping and (b) the HOG analysis
output of the current connectivity of the site (the coloured area) and the surrounding. A large number
of linear features, particularly in the east–west orientation, were detected due to the extensive use of
corridors in the area.

As illustrated in the HOG image (Figure 3b), several ecological hotspots with high
spatial connectivity surrounding the site are not effectively connected by the planned
ecological corridors. The site’s central area exhibits pronounced linearity. There is minimal
transition in the spatial connectivity gradient in the horizontal (east–west) direction, while
the two sides of the edge (north–south) exhibit extremely strong gradient transitions. In
other directions, the degree of gradient change remains underdeveloped, except for the
horizontal direction. These phenomena suggest that the corridor’s geometry is prominently
presented, and the space along the north–south direction contains distinct markers that
segregate natural areas from non-natural ones. In addition, these strong edge effects raise
questions about the role of corridor connectivity in linking ecological nodes within the
region. The connectivity between many nodes, such as Mile End Park and other nodes,
does not exhibit significant recognisable transitions.
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The present overall connectivity (Cm) of the location is 118.039 for humans and
111.123 for wildlife. The variance in its HOG is 0.007. As of 23 June 2022, there are no
eBird observation records on the site. Based on this fact, its kernel vitality Vk is tentatively
calculated as approaching 0.000.

2.6.2. Data Evaluation

Compared to the NBI group, the HOG values of the images in the eBird group exhibit
greater overall dispersion (Table 3) (Figures 4 and 5). Moreover, individual instances
within this group manifest distinct spatial variations in connectivity and orientation. The
correlation between HOG variance and Vk (wildlife) is minimal, suggesting they are
largely independent. This means that anisotropy changes in landscape connectivity do
not significantly influence bird observation frequencies at specific locations. However, a
discernible moderate positive correlation exists between Cm and Vk. Notably, a moderate
negative correlation between HOG variance and Cm suggests that areas with heightened
connectivity exhibit more consistent spatial anisotropy changes, largely uninfluenced by
dominant directional spatial elements, such as corridors.

Table 3. Evaluation of the datasets.

Analytical Metrics NBI Dataset eBird Dataset

Mean Maximum Minimum Mean Maximum Minimum

Overall landscape
connectivity for
wildlife (LCw)

109.951 173.689 42.839 122.215 190.031 42.839

Overall landscape
connectivity for
human (LCh)

106.373 173.587 55.464 114.699 190.013 54.574

kernel vitality (Vk) 19.741 47.520 3.150 25.949 65.240 15.460
Histogram of oriented

gradients (HOG) 0.006 0.010 0.003 0.007 0.013 0.003
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2.6.3. Metric Biases

The NBI index, solely based on species numbers, overlooks the size of natural areas
and habitat authenticity. Consequently, there can be counterintuitive results. For instance,
despite their vast semi-natural expanses and renowned ecological conservation [55,56],
Scandinavian countries rank lower on the index.

3. Architecture of Reasoning System
3.1. Conditional Generative Model: Pix2Pix

In light of the meta-connectivity challenge undertaken by this research, a conditional
generative adversarial network (cGAN) algorithm is required to provide an ‘even field’ [57]
to simultaneously address diverse landscape connectivities. It accomplishes this through a
cross-domain translation approach, treating human landscape connectivity and wildlife
landscape connectivity as a pair of causally linked problem domains to enable causal
reasoning, given design conditions such as a specified human landscape connectivity.

In this research, we utilise Pix2Pix models to undertake such tasks. Pix2pix is the
cGAN architecture usually trained by paired image data for conditional image-to-image
translation that has demonstrated its competency in this regard and was hence widely
adopted. It employs a generator for image creation and a discriminator to ensure the
result matches the desired condition. A Pix2Pix model is trained using an adversarial loss
function, which consists of two parts: the loss for the discriminator, Lossdiscriminator, and the
loss for the generator, Lossgenerator.

The loss for the discriminator, Lossdiscriminator, is defined as (1):

Lossdiscriminator = −(E [log(D (x, y))] +E [log(1 − D (x, G (x)))]) (1)
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where x is the input image from domain X, y is the corresponding target image in domain
Y, G (x) is the output image generated by the generator, and D (x, y) represents the dis-
criminator’s output when given the input image and target image. The expectation E is
taken over the distribution of the training data.

The loss for the generator, Lossgenerator, is defined as (2):

Lossgenerator = −E [log(D (x, G (x)))] (2)

where G (x) is the output image generated by the generator and D (x, G (x)) represents
the discriminator’s output when given the input image and generated image.

The overall loss function, Loss f unction, is the sum of the losses for the discriminator
and generator:

Loss f unction= Lossdiscriminator+Lossgenerator

The generator and discriminator are trained alternately, with the generator trying to
minimise the overall Loss f unction and the discriminator trying to maximise it. The training
process continues until the generator produces outputs that are indistinguishable from real
images according to the discriminator (Figure 6).
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3.2. Progressive Reasoning

In the meta-connectivity hypothesis, designs spanning multiple domains (here, hu-
man landscape connectivity, wildlife landscape connectivity, and materiality) surpass the
capabilities of a standard conditional generative adversarial network (cGAN) model. This
is due to its intrinsic limitation of reasoning across only two domains [58]. To address this,
the progressive reasoning approach, which employs a series of concatenated cGAN models
to incrementally solve a complex problem, is invented to address the issue. The approach
effectively enhances connectionist design cognition by dividing manifold reasoning pro-
cesses into two-domain tasks tackled by individual cGANs. It has gained prominence in
architectural research post-2017, with projects like ArchiGAN and Glitch-Arch employing
it for causal reasoning across correlated domains using representational data [18,59].

In ArchiGAN [18], for example, a chain of three cGANs advances from a site outline
through domains, including figure-ground and program-based plan segmentation, cul-
minating in the generation of a building plan. While the relationship between the site
outline and building plan is implicit and not directly observable, progressive reasoning
bridges these domains. In our project, we adopt a dual Pix2Pix model structure for correla-
tion analysis across domains including human landscape connectivity, wildlife landscape
connectivity, and materiality. Our aim was to rematerialise the landscape based on those
varied conductivities.
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3.3. Training Pix2Pix Models

Informed by the Anthropocene theory, this project acknowledges the importance of
human spatial connectivity in design solutions. The design process must account for the
existing urban fabric and its inherent social dynamics. The ultimate aim of this reasoning
task is to predict the materiality of the landscape through machine learning, ensuring
desired landscape connectivity for both humans and wildlife.

To achieve this, the objective is to create a landscape image that reflects the desired
human–wildlife connectivity and maximises human landscape connectivity. This paper
explores the use of conditional generative adversarial networks (cGANs) to facilitate this,
utilising a tandem of two Pix2Pix models that translate between connectivity and latent
materiality. The first Pix2Pix model is trained on the human landscape connectivity (LCh)
and wildlife landscape connectivity (LCw) datasets, forming the implicit knowledge of
the relationship between human and wildlife spatial affordance at a location. With this
knowledge, the model can suggest a landscape connectivity condition for local wildlife
(LCw’) based on the given human landscape connectivity. The second Pix2Pix model,
trained on LCw and satellite images, then generates a materiality suggestion informed by
LCw’. Both models are trained for 1000 epochs (Figure 7).
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Both the Pix2Pix models adopt TensorFlow 2.9 framework and were trained for
1000 epochs; the hyperparameters were carefully tuned for high-quality output (Table 4).

Table 4. List of parameters settings of the Pix2Pix models. Two models share the same settings.

Hyperparameter Settings

Deep learning platform TensorFlow 2.9 and Keras
Buffer size 400
Batch size 1

Image I/O shape Width, depth, channel = (256, 256, 3)
Data augmentation Resizing, random rotation, normalisation

Generator optimizer Adam
Discriminator optimizer Adam

Lambda 100
Learning rate of generator 0.0002

Learning rate of discriminator 0.0002
Epoch 1000
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4. Results

In the quest to understand the relationship between input and target images, this
study employs the Pix2Pix deep learning model. Leveraging the causal relationship be-
tween input and target images, this study decodes the patterns and interdependencies
governing the spatial connectivity between humans and wildlife and use them to create a
new urban landscape.

4.1. Summary of Results
4.1.1. General Observations

The territories exhibiting the highest degree of connectivity (indicated in bright yellow)
remain largely unchanged, while those with moderate connectivity (indicated in orange)
permeate the building blocks and segment the building territories. The spatial segregation
between human and nonhuman territories is significantly blurred.

For wildlife landscape connectivity LCw, we studied both NBI and eBird groups. The
NBI group’s urban fabric, especially its road network, portrays a regular pattern, with broad
streets influenced by the underlying data’s anisotropy variance. The river sections show
low wildlife connectivity, and a green space proposal will replace the riverbank to increase
LCw values. This redesign subtly alters roads and building structures. In contrast, the eBird
group reveals high connectivity near Chrisp Street Market and regions around A1203. This
group’s landscape incorporates a pronounced ecological patchwork, where an urban green
belt obscures road grids, suggesting diminished vehicular movement. This greenery lacks
definitive boundaries, and building structures are more intertwined with natural elements.
Both groups advocate for high LCw landscapes around riverbanks and Westferry Station,
while mid-range LCw dominates architectural zones. Unique building geometries and
porous edges facilitate ecological diversity. Bartlett Park’s size reduction is recommended,
with its southern section undergoing a community-integrated texture transformation. The
results culminate in an urban space where the demarcation between human and wildlife
territories is blurred. This blending permits diverse architectural solutions, fostering
equitable access to natural zones and suggesting versatile land usage. Overall, rigid
wildlife corridors transition into porous, wildlife-friendly structures, seamlessly integrating
nature into urban design.

The proposed materiality map, independent of the semantic information from the
satellite image, offers a space for creative interpretations. For example, the white and
light grey pixels typically representing building roofs are shown to encompass regions
blending human-oriented areas with elements that challenge the conventional building
grid, fostering coexistence with wildlife. Many human territories, including streets and
buildings, are proposed to undergo diverse reconfigurations (Figure 8L1).
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Figure 8. The suggested design scheme of the trained models and their correlation with surrounding
areas: The left column (L1–L3) represents landscape connectivity for wildlife, while the right column
(R1–R3) displays maps illustrating landscape materiality. Horizontally, from top to bottom, are the
site’s current condition, outputs from the NBI dataset, and outputs from the eBird dataset.

The parametric adaptation approach enables a variety of architectural solutions to
be implemented. As illustrated in Figure 8, the rematerialised urban space blurs the
material–typological boundaries between human and wildlife territories, nearly to the
point of disappearing. This promotes multiple modes of access for humans to the ter-
ritories accommodating wildlife, implying the agility of land use and the potential for
innovative programming. The boundarylessness of the materiality scheme fosters the equal
accessibility of natural territories for the general public.

4.1.2. Variational Analysis: Guiding the Urban Design Process

In the second Pix2Pix model, the generated landscape materiality images are treated
as a matrix, where the colour values of each channel represent the materiality vectors. The
vectors serve as references for urban surface rematerialisation, not representing specific ma-
terials. The difference (distance) in pixel values between the original landscape materiality
maps and those from the Pix2Pix model is termed an anisotropy. This difference guides the
rematerialisation process and is used as a maxel field for deploying new material change
units, which include both materials and forms. Importantly, these units renovate without
discarding original local artifacts, respecting existing architectural conditions and aiming
to reshape local landscape connectivity.

Pixel-wise Cosine distance is measured between the suggested landscape image in
RGB mode and the satellite image, serving as materiality guidance for subsequent design
actions [60]. The distance for each reference sample is defined as follows:

Dcos(r, g, b) =
∑n

i=1(ri × gi × bi)√
Σn

i=1(ri)
2 ×

√
Σn

i=1(gi)
2 ×

√
Σn

i=1(bi)
2

(3)

The distance map guides the parametric model to regenerate the urban fabric based
on a parametric approach, adhering to the given landscape condition. Territory units are
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segmented using the k-means algorithm, accounting for materiality distances and human
landscape connectivity. The data features are represented by r, g, b pixel values. Using the
elbow method [61], we set k to 4 to categorise the territorial units on a high–low gradient,
though this can be adjusted for deeper analysis (Figure 9). In the generative system, each
cluster corresponds to a parametric prototype that refines the urban fabric by varying
space-sharing intensities.
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the site.

4.2. Reviewing Generated Outputs
4.2.1. General Observation

Throughout the entire design process, some common phenomena can be observed
across all outputs. As evidenced in the LCw’ created on both datasets, the territories with
the highest connectivity (bright yellow) remain relatively unchanged, whereas the moderate
connectivity (orange) permeates the building blocks and segments the building territories.
Furthermore, these territories form smaller, directional, or softer connectivity gradients.
The spatial segregation between human and nonhuman territories is significantly blurred.

The suggested materiality map is detached from the semantic information from the
source, the satellite image of the site. An interpretation space is thus created to allow
creative interpretations. For example, most of the white and light grey pixels in the satellite
image represent the building roofs and other hard surfaces, whereas they turn out the
cloudy territories holding several human-interested areas and the granulated spray blended
with the green elements to deconstruct the building grids which were intended to exclude
wildlife. We also find that a large number of human territories, including streets and
building surfaces, are commonly recommended for reconfiguration in varying proportions
into irregular patterns of materiality blending (Figure 8R2,R3).
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4.2.2. Searching the Best Fit of the Targeted Landscape Connectivity Model

The inherent variability in neural networks primarily stems from the random initial-
isation of their plentiful parameters. This, combined with the fitting process in machine
learning, results in a scenario where training multiple identical neural network models with
the same dataset and hyperparameter configuration will invariably lead to the generated
outputs that are never exactly the same (with the probability of repetition so low as to be
negligible). Consequently, multiple training in parallel can provide variation and selection,
which is advantageous for decision making. Under this hypothesis the present study
conducted four separate training sessions for the Pix2Pix model, respectively, using both
the NBI and eBird datasets (Figure 10). Each output suggests a unique LCw’ condition.
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According to the analysis in the data processing, it is known that HOG variance V and
overall landscape connectivity Cm are correlated at an observable degree. Subsequently,
this study employs linear regression on these two variables separately for the NBI and eBird
groups’ LCw’ prediction images. The regression model represents the ‘good ecological
connected landscape’ model presented by the datasets. By observing the absolute value
of the distance between the regression model predicted HOG variance and the measured
HOG variance for each LCw’ candidate. The one with the smallest distance is considered
the best match.
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In the NBI group, the most congruent value to the linear regression model prediction
is found in NBI_LCw’_0.png, with a mere discrepancy of 0.0000594910. Meanwhile, in
the eBird group, eBird_LCw’_3.png exhibits the closest resemblance to the predicted V
value, presenting a deviation of 0.0005037503 (Table 5). Consequently, these two images
are selected as LCw’, serving as the conditional images for the second Pix2Pix model, to
conduct landscape materiality inference (Figures 11 and 12).

Table 5. The data for and results of calculating the distances between the predicted HOG variance
values and the measured HOG variance values, on both NBI and eBird LCw’ candidates.

LCW’ Candidate ID Predicted HOG
Variance

Measured HOG
Variance Distance (Absolute)

NBI_LCw’_0.png 0.0059754900 0.004851629 0.0000594910
NBI _LCw’_1.png 0.0057605545 0.005343917 0.0014930026
NBI _LCw’_2.png 0.0059387909 0.004267552 0.0005948741
NBI _LCw’_3.png 0.0058972843 0.006034981 0.0010456553

eBird_LCw’_0.png 0.0058958727 0.0050879717 0.0008079010
eBird_LCw’_1.png 0.0059156528 0.0053285174 0.0005871354
eBird_LCw’_2.png 0.0058830485 0.0046036155 0.0012794330
eBird_LCw’_3.png 0.0057947158 0.0052909655 0.0005037503

Notes: These values are rounded to the 10th decimal place after the decimal point, employing the method
of rounding off to the nearest whole number. NBI_LCw’_0.png and eBird_LCw’_3.png are selected to be the
conditional image for the following LCw-materiality reasoning process.
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Figure 11. A listing of all the LCw’ candidates with corresponding Cm values for NBI (upper row)
and eBird (lower row) groups. NBI_LCw’_0.png and eBird_LCw’_3.png are selected due to their
proximity to their mappings within the ‘good ecological connected landscape’ model.

Table 5 shows the data for and results of calculating the distances between the pre-
dicted HOG variance values and the measured HOG variance values, on both NBI and eBird
LCw’ candidates. These values are rounded to the 10th decimal place after the decimal point,
employing the method of rounding off to the nearest whole number. NBI_LCw’_0.png
and eBird_LCw’_3.png are selected to be the conditional image for the following LCw-
materiality reasoning process.
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5. Discussion
5.1. Main Findings
5.1.1. Redefining Urban Nature with Meta-Connected Morphology

The findings illustrate a shift towards a non-standardised urban spatial form, char-
acterised by rich porosity and detailed intricacies. Within this evolved framework, com-
plex and nuanced transitions occur between natural elements and human habitations.
Such novel spatial forms differentiate the results from the existing urban spatial mor-
phology. Urban nature, along with its defining mechanisms, is redefined within the new
urban landscape.

Matias Del Campo has previously noted the dematerialisation effect inherent in con-
nectionist generative models during mapping [57]. In contrast, our study harnesses this
effect, seeking to enact rematerialisation of the site by identifying the materiality state
corresponding to the target landscape state. The urban space, when reconfigured, nearly
erases the material–typological boundaries between human and wildlife territories, leading
to an almost seamless blend. This lack of demarcation encourages diverse ways for humans
to access spaces that wildlife inhabits, signifying both the adaptability in land use and the
prospect of creative programming. With minimised divisions in the materiality scheme,
it ensures that natural territories are accessible equitably to all, thereby accentuating the
boundarylessness of the reconstituted urban environment.

In the proposed framework, natural elements are not addressed as objects but more as
mappings of different ideologies in a plural space. The morphology and spatial order are not
products, yet the creative mechanism driven by the agency of machine intelligence during
the learn-to-create process explores the form of urban nature. Within the neural networks
shared by humans and nonhumans, authorship, usership, and ownership become even
more sophisticated. Questions arise regarding who and what participated in the creation of
the design, the extent of each party’s contribution, and whether the spatial paradigm is fair
to everyone or merely shifts the benefit to another group of stakeholders.

The results engender reflections on traditional, rational design, and planning of urban
landscapes as detailed below:



Land 2024, 13, 1397 18 of 24

The scope of the framework does not allow for effective anticipation of interactions
between each species at a specific location during the colonisation process. Despite these
limitations, the findings offer a novel political strategy and design approach for reintroduc-
ing wildlife populations instead of relying on damaged green networks.

Points of interest might also be determined by constantly changing activities that do
not alter the urban fabric. In this regard, formal strategies, such as patching and additions,
are more favourable than utopian replacements.

The framework necessitates an expansion of the programming to accommodate
human–wildlife interactions and balance the desire for human–wildlife intimacy with
potential biosecurity risks.

5.1.2. Latent-Topia: The Meta-Connectivity Revealed by the Datasets

Figures 13 and 14 illustrate the joint latent spaces for wildlife landscape connectivity
and landscape materiality. These spaces merge generative images from NBI and eBird
groups, with data reduced to three dimensions using Principal Component Analysis (PCA).
These compact representations maintain the essential features of image samples, substitut-
ing the original multivariable representation with just three dimensions. Notably, despite
originating from different sources, datasets harmoniously coexist in this reduced format.
To accentuate distinctions between the groups, the PCA results are further refined using
t-Distributed Stochastic Neighbour Embedding (t-SNE), ensuring the local dataset struc-
ture remains intact. The resulting three-dimensional t-SNE data serve as coordinates for
mapping the image samples. Both PCA and t-SNE outputs represent different latent spaces.
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Figure 13. Joint latent space visualisation for NBI and eBird LCw data. Images with turquoise borders
are from the NBI dataset, while gold-bordered ones are from the eBird dataset. The two images
marked by red borders represent selected LCw’ maps from both datasets. Central cross-shaped icons
denote the centroids of the NBI and eBird populations.

Even though the NBI and eBird datasets are used to train distinct models, the centroids
of both groups are remarkably close in the joint latent space. The Pix2Pix model, based on
the given LCh (of the site) and two metrics, offers similar recommendations; the chosen
LCw’ latent space positions are strikingly similar. In the joint latent space of landscape
materiality, the centroids of both groups remain notably close, while the selected landscape
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materiality image candidates are slightly farther than the case of LCw’. This can be
interpreted as the second Pix2Pix inference process causing some degree of divergence in
the results. Despite having identical LCh and highly similar LCw, the landscape materiality
outputs of both groups exhibit increased variations in visual features.
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The similarity in the latent space data distribution between the NBI and eBird connec-
tivity data indicates that, under the conditions of this study, medium to large mammals and
birds share significant spatial connectivity characteristics defined by land factors. This find-
ing echoes existing research of landscape connectivity for birds [42,43] which acknowledges
that landscape features—such as vegetation cover and artificial barriers—significantly in-
fluence avian ecological connectivity and movement patterns. Consequently, this supports
the validity of considering these factors when setting resistance surfaces.

5.1.3. Methodological Subjectivity

The reference data collection is not based on specific morphological types but selected
universally by set criteria, independent of the design. This implies that certain traditional
architectural knowledge does not directly influence the design or schema construction. Yet,
this method can still produce schemata generating architectural insights for future designs.
The resulting forms do not fit any established spatial typology; instead, a new typology
emerges, reflecting the unique spatiotemporal context. This context is not merely a physical
entity but a network involving human actors.
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The utilisation of ‘condition data’ enables the design to respond to the human connec-
tivity state of the site. Additionally, the agency of data shifts the sovereignty of decision
making within the design process from human will to mediated cross-species negotiations.
In this sense, humans retain a measure of control, albeit in a less explicit manner.

5.2. Research Limitations

The efficacy of trained models largely depends on the quality of the reference data,
with attributes such as biodiversity significantly influencing the model’s training and
landscape proposal outcomes. Notably, the composition of wildlife was not adequately
considered in this study. Although deep learning models possess a degree of generalisation
after training, it is evident that the data do not fully reflect species diversity. This limitation
could potentially affect this study’s conclusions. However, assessing this impact is beyond
the scope of the current research and should be addressed in future studies.

On the other hand, connectivity mapping, which is based on resistance value de-
signs and geospatial data, can be biased and may not always mirror the actual ground
reality. The current framework, while addressing the broader scope, overlooks specific
species interactions during colonisation. This raises concerns about the model’s ability
to accurately represent the balance between species affinity and safety. Implementing
human–machine interventions for parametric adjustments can compromise accuracy. Ad-
ditionally, the model does not seamlessly integrate with neighbouring regions, leading to
potential discrepancies at the boundaries, a known issue referred to as the ‘boundary effect’
in image-based computations with standard deep generative models. Employing strategic
cross-scale solutions might address these boundary inconsistencies.

6. Conclusions

This study introduces the concept of meta-connectivity, a novel computational de-
sign approach that integrates human and wildlife landscape connectivity within urban
morphology. By employing deep generative models, specifically chained Pix2Pix models,
this research demonstrates the feasibility of creating urban landscapes where human and
ecological connectivities are harmoniously balanced. The proposed framework allows for
the simultaneous adjustment of human and wildlife connectivity, facilitating a symbiotic
relationship within urban environments.

The results highlight that the framework can dynamically adjust wildlife connectivity
based on human connectivity metrics, achieving a balanced urban ecosystem. This is
demonstrated by following findings:

1. Integration of Connectivity Metrics: This study successfully integrates human and
wildlife connectivity metrics within a single design process. This integration is crucial
for creating urban forms that support both human activities and ecological networks.
The empirical results from the East London case study validate that the framework
can effectively align human and wildlife connectivity, showcasing its practical ap-
plication. It should be acknowledged that the limitations of the data may result in
the findings providing only a limited representation of human–wildlife symbiotic
landscape connectivity in a city rather than a general, comprehensive integration.

2. Adaptive Design through Gradients: This research highlights the effectiveness of
using connectivity gradients rather than traditional corridor-based approaches. The
gradient-driven design allows for more flexible and adaptive urban planning, accom-
modating both human and wildlife needs in a dynamic urban environment. This
method was validated through the empirical study, where the framework demon-
strated its ability to adjust connectivity based on real-time data.

3. Latent Space Similarity in Connectivity Data: This study found that the latent space
data distribution between the NBI and eBird connectivity datasets shows a remarkable
similarity, indicating that medium to large mammals and birds exhibit comparable
spatial connectivity patterns influenced by land factors. This reinforces the frame-
work’s applicability in considering both types of wildlife.
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This study also notes secondary findings, such as enhanced ecological integrity and
equitable access to natural resources, which contribute to the overall understanding of
the framework’s impact. The urban landscape of the site is rematerialised under the
information of meta-connectivity, allowing for a reassessment of architectural rationality,
reflecting human responses to natural conditions, and prompting a re-examination of the
anthropocentric archetype in urban nature. The discretisation of natural areas breaks down
urban-scale connectivity elements into smaller components. The framework, outputting
parametric models, allows for large-scale customisation of individual landscape patches by
various social units from individuals to communities, driving a political ecological process
that integrates biodiversity into the creation of urban nature.

In summary, this study presents a paradigm shift in urban design by advocating for an
approach that integrates human and ecological networks. By employing deep generative
models, the meta-connectivity framework offers innovative solutions for creating balanced
urban ecosystems.
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Appendix A

Table A1. Analytical metrics of dataset processing.

Analytical Metrics Calculation Methods Processing Explanations

Overall landscape
connectivity (Cm) Cm = ∑Nu

i=1 Ci/Nu;

The overall landscape connectivity (Cm) can be
obtained through connectivity modelling and
can be considered as observational data for
implicit learning purposes. For one site, the
overall landscape connectivity is the mean of the
connectivity values of all territorial units (each is
represented by one image pixel) within a site.

Kernel vitality (Vk)

Weight (V) = 0, if V ∈ Vi
1, if V ∈ Ve and 0 < V < 128
1.5, if V ∈ Ve and
128 ≤ V ≤ 255
Vk = (Σweight(V) for all V in
grid)/N;

Scatter plots of eBird data corresponding to each
image sample were downloaded for the NBI and
eBird datasets, totalling 120 × 2 = 240 images.
These scatter plots enable the utilisation of
kernel methods and the measurement of
observed equivalences within each kernel to
interpret their vitality, denoted as Vk. (1) We first
divide each scatter plot of the samples into a
200 × 200 grid, where the value of each grid
represents a set, V. (2) Second, we classify the
values in V as Ve if they are greater than 0 and as
Vi if they are equal to 0. (3) Third, we highlight
the effect of the scatter plot and increase the
weight of the grids in V that are relatively close
to the peak value of 255 to 1.5. The weight of the
remaining valid grids is 1.0. For each value in Ve,
we count it as 1 if it is greater than 0 and less
than 192 and count it as 1.5 if it is greater than or
equal to 128 and less than or equal to 255.
(4) Then, we count each value in Vi as 0. (5)
Finally, we sum up all Vi values and all Ve
values and then divide the result by 200 × 200.
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Table A1. Cont.

Analytical Metrics Calculation Methods Processing Explanations

Histogram of oriented
gradients (HOG)
gradient computation

Gx = [[−1, 0, 1], [−2, 0, 2],
[−1, 0, 1]];
Gy = [[−1, −2, −1], [0, 0, 0],
[1, 2, 1]]

(1) Gradient computation: Calculate the
gradients of the image using the typical 3 × 3
Sobel filters [62] horizontally (Gx) and
vertically (Gy).

Histogram of oriented
gradients (HOG)
gradient magnitude
and orientation

M(x, y) = sqrt(Gx (x, y)2 + Gy

(x, y)2);
θ(x, y) = atan2(Gy (x, y),
Gx (x, y))

(2) Gradient magnitude and orientation: For
each pixel (x, y), compute the gradient
magnitude (M) and orientation (θ).

(3) Divide the image into cells: Split the image
into small spatial regions called cells, typically of
size 8 × 8 or 16 × 16 pixels. (4) Calculate the
histogram of oriented gradients for each cell: For
each cell, create a histogram of gradient
orientations, typically using 9 orientation bins.
Each pixel in the cell contributes to the
histogram based on its gradient magnitude and
orientation. (5) Normalise histograms of cells
within blocks: Group cells into larger regions
called blocks (e.g., 2 × 2 cells per block) and
normalise the histograms within each block. This
step helps in achieving illumination invariance.
(6) Concatenate the histograms of all blocks to
form the final HOG feature descriptor. In this
project, all HOG processes are implemented
using the following parameter settings: (16, 16)
for kernel size, (2, 2) for block size by cells,
orientation as 9, and multichannel as True
(taking RGB input). The parameter settings are
set according to the “skimage.feature.hog ()”
function of scikit-image. The variable settings
consider the required minimum size of the
information to be observed at the scale of the
field and the observability of the HOG image
output on the A4 (297 mm × 210 mm) layout.

Notes: (1) where Ci epresents the connectivity value of one specific territorial unit, and Nu is the number of
territorial units on one site, which in this case is 665,536 (2562). In order to effectively observe the distribution of
spatial connectivity on each site, the spatial connectivity value area is divided into 32 value intervals, each interval
representing 8 (256/32) units is mapped in a 256 gradient in the brightness channel. (2) V represents the value in
each grid cell of a 200 × 200 grid system derived from the scatter plot of samples. Each of these grid cells carries
a discrete value, which together form the set V. N denotes the total count of grid cells in the aforementioned
200 × 200 grid system, in this case, N = 40,000. Vi is the subset of V representing grid cells where the scatter plot
values are zero. Ve forms the subset of V which includes all grid cell values that are greater than 0. The values in
Ve are the non-zero grid cells on the scatter plot. W (Vi) represents the weights corresponding to the values in
Vi while W (Ve) denotes the weights corresponding to the values in Ve. These weights are assigned as per the
magnitude of the cell values. For grid cells in the range of 128 to 255, the corresponding W (Ve) is assigned as 1.5,
reflecting their relative higher significance. For other cells in Ve (i.e., those with a value greater than 0 and less
than 128), the corresponding W (Ve) is set to 1.
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