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Abstract: The desertification of the China–Mongolia–Russia Economic Corridor (CMREC), one of
the six major economic corridors in the Belt and Road Initiative, has posed a great challenge to the
ecological environment protection and sustainable economic development of the region. In this
work, two categories of feature space models based on point–point mode and point–line mode were
constructed. The optimal feature space model was used to establish the spatial–temporal change
patterns of desertification in the CMREC from 2001 to 2020, and then the dominant driving factors
were quantitatively determined. The conclusions demonstrated the following: (1) the monitoring
accuracy of the Albedo–MSAVI desertification model based on point–point mode was the highest, at
86.47%, followed by that of the TGSI–MSAVI model based on point–line mode, at 85.71%; (2) from
2001 to 2020, the spatial distribution of desertification in the China–Mongolia–Russia Economic
Corridor region showed a decreasing trend radiating outwards from the Inner Mongolia Plateau and
Gobi Desert; (3) the gravity center of desertification in Chinese parts in the CMREC migrated toward
the northeast, while the Mongolia and Russia parts migrated toward the southwest and southeast,
respectively; and (4) from 2001 to 2020, precipitation and land use change had the greatest impacts
on the evolution patterns of desertification in China and Mongolia, while topography and land use
contributed greatly to the change process of desertification in Russia. The research results could
provide data support for desertification control in the CMREC.

Keywords: desertification; MODIS; China–Mongolia–Russia Economic Corridor; spatial and temporal
evolution; change patterns

1. Introduction

Desertification is one of the most severe global ecological issues, with aridity and
extensive deserts being major ecological constraints. Land desertification results from
both natural factors and human activities, leading to environmental degradation and the
evolution of desert landscapes in areas that were previously non-desertified. Since the
20th century, intensified human activities and significant global climate change have made
desertification in semi-arid and arid regions increasingly pronounced [1]. This has led
to a decline in ecological quality and significantly impacted human survival and socio-
economic development [2]. The China–Mongolia–Russia Economic Corridor is located
between 35.8◦ N to 60◦ N and 87.9◦ E to 135.1◦ E, covering a total area of approximately
4.85 million square kilometers. The China–Mongolia–Russia Economic Corridor is the
first of the six major economic corridors planned and constructed under the Belt and
Road Initiative to be implemented. It aims to promote regional economic development

Land 2024, 13, 1431. https://doi.org/10.3390/land13091431 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land13091431
https://doi.org/10.3390/land13091431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://doi.org/10.3390/land13091431
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land13091431?type=check_update&version=1


Land 2024, 13, 1431 2 of 24

and connectivity through cooperation between China, Mongolia, and Russia. This eco-
nomic corridor encompasses various aspects, including infrastructure construction, trade
facilitation, and investment cooperation. Its natural geographical conditions are complex
and diverse. Monitoring the dynamic changes in land desertification and understanding
its patterns are crucial for both combating desertification and advancing socio-economic
development in the affected areas.

Traditional desertification monitoring primarily relies on field measurements, but data
collection is relatively challenging. As a result, this method provides high accuracy but
low efficiency, making it unsuitable for large-scale desertification monitoring. At present,
the combination of RS and GIS technology is effective for quickly obtaining large-scale
images, realizing rapid identification of desertification areas, and evaluating the degree
of desertification [1]. Many scholars have utilized a variety of desertification feature
parameters for the quantitative monitoring of land desertification, including the NDVI
(Normalized Difference Vegetation Index), MSAVI (Modified Soil–Adjusted Vegetation
Index), LST (Land Surface Temperature), TGSI (Topsoil Grain Size Index) and Albedo [3].
However, many scholars use remote sensing methods to monitor land desertification [4].
For example, extracting feature variables can effectively monitor desertification. The feature
space model could effectively overcome these shortcomings because it can consider the
relationships among different feature parameters. Zeng et al. (2007) [4] proposed an
Albedo–NDVI feature space model to quantitatively analyze and monitor desertification.
Pan et al. (2010) [5] utilized Landsat TM images to construct an NDVI–Albedo feature space
index model and quantitatively evaluated the degree of desertification in Zhangye oasis and
its surrounding areas. Based on MODIS data, Yue et al. (2019) [6] proposed a NDVI–Albedo
feature space model to analyze the spatial and temporal distribution characteristics and
laws of desertification and drought in Shaanxi Province. Gao et al. (2016) [7] constructed an
NDVI-T feature space model using MODIS satellite images to investigate the change laws of
desertification in the India–Pakistan region. By utilizing the Albedo–MSAVI feature space
derived from Landsat images, Zhou (2021) [8] developed a feature space monitoring model
to detect desertification in Naiman Banner. However, few studies have been conducted
based on a MODIS and feature space model to investigate large-scale desertification, which
could be used to examine the nonlinear relationships between the parameters. In addition,
the dominant driving factors of desertification in different periods and sub-regions of the
CMREC are still unclear and need to be explored in depth. Few studies on the ecological
environment and desertification of the China–Mongolia–Russia Economic Corridor have
been carried out thus far. Therefore, this study focuses on the spatiotemporal evolution and
driving mechanism analysis of desertification in the China–Mongolia–Russia Economic
Corridor from 2001 to 2020.

In view of the special ecological environment of the CMREC, this study inverted the
typical surface parameters of desertification based on MODIS data and constructed two
categories of feature space monitoring based on point–point and point–line modes. MODIS
data, characterized by a large number of bands and high temporal resolution, facilitate
efficient observation of complex surfaces and model construction. This study utilized the
optimal feature space model to analyze and discuss the spatial and temporal variation
patterns of desertification and its driving mechanisms from 2001 to 2020.

2. Materials and Methods
2.1. Overview of the Study Area

The China–Mongolia–Russia Economic Corridor (CMREC) is located in the eastern
part of the Eurasian continent and spans multiple regions of China, Mongolia, and Russia,
which is an important international channel connecting the Eurasian continent. The China–
Mongolia–Russia Economic Corridor (CMREC) is located between 35.8◦ N~60◦ N and
87.9◦ E~135.1◦ E, with a total area of approximately 4.85 million km2. The administrative
scope included 7 provinces and cities (autonomous regions) in China, 22 provinces and
cities in Mongolia, and 3 states, border areas, republics, and cities in Russia (Figure 1). Its ge-
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ographical environment is complex and diverse, fragile and sensitive. The terrain structure
of the study area is complex and diverse, with a relief of more than 4000 m. The geomorphic
units mainly included the Sayan Mountains, the Gobi Altai Mountains, the Lesser Khingan
Mountains, the Yinshan Mountains, the Mongolian Plateau, and the Northeast Plain. The
average annual precipitation is 50–1300 mm, mainly concentrated in July-September. The
average annual temperature ranges from −10 ◦C to 15 ◦C. The climate transitions from a
temperate monsoon climate in coastal regions to a temperate continental climate further
inland. The vegetation types were complex and diverse, including coniferous forest and
coniferous mixed forest.
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Figure 1. Overview of the study area.

2.2. Data Source and Preprocessing

The MODIS products from July to September (.hdf, h23v3, h23v4, h24v3, h24v4, h25v3,
h25v4, h25v5, h26v3, h26v4, h26v5, h27v4, h27v5) were provided by the LAADS DAAC data
center of NASA (https://ladsweb.modaps.eosdis.nasa.gov, accessed on 14 January 2024).
This is mainly because this period is the peak growing season for vegetation, during which
the thermal radiation characteristics of various surface covers show significant differences.
The enhancement of these differences provides favorable conditions for comparative studies
of different land cover types. Remote sensing data are obtained from NASA’s LAADS
DAAC data center, which provides MODIS products, including the MOD09A1 8-day
composite product and MOD13Q1. The data were stored in HDF format.

The land use data were derived from MOD12Q1 data products. The population
density data were derived from the global population data from 2000 to 2020 under the
WorldPop (https://hub.worldpop.org/, accessed on 15 January 2024) dataset Top-Down,
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with a spatial resolution of 1km and a projection coordinate of GCS_WGS_1984. For MODIS
data, we used ENVI’s Raster Management tool for resampling. For driver factors such
as precipitation and temperature, we used ArcGIS 10.7 tools to unify their resolution.
The sampling method employed was the nearest neighbor method, and the data were
resampled to a uniform resolution of 1 km. The GDP data (NetCDF) were from the
global GDP dataset produced by Kummu et al. (2015) [9]. The DEM is derived from
GEBCO (https://www.gebco.net/about_us/overview/, accessed on 15 January 2024),
and its coordinate was GCS_WGS_1984, with a spatial resolution of 15 arc seconds. The
slope data are then calculated from DEM data using ArcGIS 10.7. In the study, batch
splicing, projection conversion (converting all data sine curve projections to WGS84),
format conversion, and resampling of MODIS data products were completed using the
MRT tool.

In the study, a batch processing script using MRT tools was employed to perform
batch stitching, projection transformation (converting all data from sinusoidal projection
to WGS84), format conversion, and resampling (using the nearest neighbor method to
resample the data to 1 km) of MODIS data products. Based on the vector boundaries of
the China–Mongolia–Russia Economic Corridor, ArcGIS 10.7 was used to perform batch
clipping of the data. To reduce the interference of water bodies and buildings in the
desertification monitoring research, ArcGIS 10.7 software was utilized to remove water
bodies and built-up areas from the remote sensing images.

2.3. Methods
2.3.1. Principle of Feature Space

Taking Albedo–NDVI as an example (Figure 2), NDVI could indicate the spatial
distribution of surface vegetation density, the growth status of surface vegetation and/or
the information on vegetation coverage. The more serious the desertification, the sparser
the distribution of vegetation, and the lower the NDVI value [10]. Therefore, NDVI could
be applied to indicate the degree of desertification. Albedo was an important parameter
to determine the amount of radiation absorbed by the underlying surface. The change in
Albedo value would be affected by soil moisture and vegetation cover. The boundary A–D
edge in Figure 2 represents a high albedo, which represents the albedo corresponding to
the vegetation coverage under drought conditions. B–C is the lowest albedo, representing
the water-rich area. As surface water decreases, the surface roughness decreases, and the
surface albedo (Albedo) also increases [11]. The four points of A, B, C, and D represent
four extreme value states. The closed area defined by the four points includes various
land cover types except clouds and water bodies, reflecting a certain distribution pattern.
Specifically, point B has the least vegetation and the most severe desertification, while point
D exhibits the least desertification.
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2.3.2. Gravity Center Model

In physics, the gravity center is a point where the forces reach phase equilibrium in all
directions [12]. Beyond physics, the gravity center has also been widely used in various
fields [10], including production, land use, daily life, and more. The formula is as follows:

x =

n
∑

i=1
zixi

n
∑

i=1
zi

y =

n
∑

i=1
ziyi

n
∑

i=1
zi

(1)

where (x, y) is the gravity center coordinate, zi is the attribute value of the i-th plane space
unit, and (xi, yi) is the coordinate value of the i-th plane space unit.

The gravity center migration direction can be used to characterize the area with more
serious desertification, and the migration distance of the gravity center can reveal the
dispersion degree of the distribution of the gravity center of desertification. The calculation
equation is as follows [12]:

θ = atc tan
(

yt+m−yt
xt+m−xt

)
d =

√
(yt+m − yt)

2 + (xt+m − xt)
2

(2)

where θ is the migration angle of the desertification gravity center; d is the migration
distance of the desertification gravity center; yt+m and yt represent the ordinate of the
gravity center at t + m and t, respectively; and xt+m and xt represent the abscissa of the
gravity center when t + m and t, respectively.

2.3.3. Transfer Matrix

A transfer matrix is used to reflect the transfer process between different degrees of
desertification [13]. The calculation formula is as follows:

Si,j =

S11 . . . S1n
...

. . .
...

Sn1 · · · Snn

 (3)

where S represents different degrees of transfer area (km2); n represents different degrees of
desertification; i and j represent the degree of desertification in the initial and final periods,
respectively; and Snn represents the area change (km2) in the desertification degree from
the initial period to the final period.

2.3.4. Geodetector

Geographic detectors, as an emerging geographic analysis tool, focus on identifying,
quantifying, and analyzing the spatial heterogeneity of geographic phenomena. A geode-
tector can be used to determine the contribution rate of a factor to desertification [14]. The
correlation degree is measured by a q value ranging from 0 to 1. The calculation formula is
as follows:

q= 1 −

L
∑

h=1
Nhσh

2

Nσ2 = 1 − SSW
SST

(4)

SSW =
L

∑
h=1

Nhσh
2 (5)
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SST =Nσ2 (6)

where h = 1, . . ., L is the classification of variable Y or factor X; Nh and N are the layer h
and the number of units in the whole region, respectively; σh

2 represents the variance of Y
values for class h; σ2 denotes the variance of Y values for the entire region; SSW is the sum
of intra-layer variance; and SST is the total variance of the whole region.

2.3.5. Typical Feature Parameters of Desertification

During the process of desertification, vegetation coverage, surface albedo, and land
surface temperature undergo significant changes. Therefore, based on the MODIS datasets,
this study selected the land surface temperature (LST, MOD11A1), vegetation index (NDVI
(MOD13Q1) and MSAVI), topsoil particle size index (TGSI), and surface albedo (Albedo) to
propose the desertification feature space monitoring model [15]. The calculation formulas
are as follows:

MSAVI = ((2NIR + 1 −
√
(2NIR + 1)2 − 8(NIR − RED))/2 (7)

TGSI = (RED − BLUE)/(RED + BLUE + GREEN) (8)

Albedo = 0.356BLUE + 0.13RED + 0.085SWIRI + 0.072SWIR2 − 0.0018 (9)

In the above formula, NIR is the near-infrared band, RED is the red band, BLUE is the
blue band, GREEN is the green band, and SWIR1 and SWIR2 are short-wave infrared 1 and
short-wave infrared 2, respectively.

To eliminate the influence of dimensional differences, the feature parameters of dif-
ferent units or orders of magnitude should be compared, weighted, and normalized. The
normalized calculation formula is as follows:

Nor =
A − Amin

Amax − Amin
(10)

In the formula, Nor is the normalized various specialized parameters. A is the charac-
teristic parameter, Amax is the maximum value of each characteristic parameter, and Amin is
the minimum value of each characteristic parameter.

3. Results
3.1. Construction of the Desertification Feature Space Model
3.1.1. Feature Variable Inversion

The feature variables were extracted and normalized, and the extracted results were
inverted to obtain the inversion result maps for the five feature variables, as shown in
Figure 3.
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3.1.2. Feature Space

In different geographic locations, due to the complexity and diversity of topography
and landforms, a single index has limitations in detecting desertification. This study uses
a two-dimensional feature space, utilizing a two-dimensional scatter plot tool with two
typical feature parameters as the X and Y axes. Based on the five feature parameters
mentioned, nine feature spaces are constructed. Feature selection is exemplified for the
year 2020, as shown in Figure 4.
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3.1.3. Desertification Monitoring Index

To analyze the differentiation patterns of various desertification degrees in feature
space, this study constructs two models: the point–point model and the point–line model.

For the point–point mode, MSAVI–Albedo is taken as an example (Figure 5). In the
Albedo–MSAVI feature space, the point groups are divided into five categories and com-
bined with Google Earth images and actual field observation samples, the desertification
status of the actual space is compared and analyzed to study the corresponding relationship
between different degrees of desertification and point groups.

Significant differences existed in the spatial distribution of corresponding point groups
with different degrees of desertification. The farther the distance from point O (1, 0), the
more serious the degree of desertification. The degree of desertification is divided into
non-desertification, mild desertification, moderate desertification, severe desertification,
and extremely severe desertification, as shown in Figure 6.

According to the distance formula between two points, the desertification detection
index model was constructed. The formula is as follows:

L =

√
(MSAVI − 1)2+Albedo2 (11)
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Figure 7. Point–line mode distribution of different degrees of desertification. (a) Non-desertification;
(b) mild desertification; (c) moderate desertification; (d) severe desertification; and (e) extremely
severe desertification.

According to the distance from any point P to the soil line L, different desertification
degrees could be determined. The shorter the distance from point P to line L, the more
serious the corresponding desertification degree. The farther the distance, the lighter the de-
sertification degree. According to this, the point group was divided into five degrees—non-
desertification, mild desertification, moderate desertification, severe desertification, and
extremely severe desertification—as shown in Figure 8.
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Figure 8. Point–line feature space monitoring model.

Based on the distance formula from point to line, the distance formula from point to
soil line L is constructed:

TGSI = αMSAVI + β (12)

DL =
|TGSI − αMSAVI − β|√

1+α2
(13)

In the equation, α, β is the parameter of the soil line regression equation and DL is the
distance from the point to the soil line.

Fit the soil first. By testing correlations, you can understand how well different feature
parameters fit in feature space construction, as shown in Figure 9, with the equation
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y = −0.3299x + 0.8482. The coefficients α and β are −0.3299 and 0.8428, and TGSI and
MSAVI showed a significant negative correlation with R2 = 0.9898.
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3.1.4. Accuracy Verification

In order to determine the optimal model to distinguish the degree of desertification, a
total of 221 verification points were chosen. Combined with Google Earth real images and
field observed samples, the error matrix was constructed, and then the Kappa coefficient
(KC) was calculated. As shown in Tables 1 and 2, based on the point–point mode, the
MSAVI–Albedo feature space monitoring index model had the highest accuracy with
86.47%, and the KC was 0.825. The monitoring accuracy of the MSAVI–LST feature space
model was the second largest, 79.87%, and the KC was 0.72. Based on the point–line mode,
the MSAVI–TGSI feature space monitoring index model had the highest accuracy of 85.71%,
and the KC was 0.815, followed by the TGSI–Albedo feature space monitoring model, with
an accuracy of 74.65% and a KC of 0.669.

Table 1. Error matrix (using MSAVI–Albedo as an example).

Error Matrix Non-
Desertification

Mild
Desertification

Moderate
Desertification

Severe
Desertification

Extremely
Severe

Desertification
Total

Non-desertification 62 2 2 1 1 68
Mild desertification 2 38 1 1 1 43

Moderate desertification 1 0 33 1 1 36
Severe desertification 1 1 2 32 1 37

Extremely severe
desertification 1 1 2 2 31 37

Total 67 42 40 37 35 221

Table 2. Comparison of the accuracy of different models and their Kappa coefficients.

Model Type Model Composition Model Accuracy Kappa Coefficient

Point–point

NDVI–Albedo 61.26% 0.508
NDVI–LST 58.53% 0.446
NDVI–TGSI 55.76% 0.425
MSAVI–LST 79.87% 0.720

MASVI–Albedo 86.47% 0.825

Point–line

LST–Albedo 72.35% 0.642
MSAVI–TGSI 85.71% 0.815

LST–TGSI 73.27% 0.651
TGSI–Albedo 74.65% 0.669
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To investigate the monitoring accuracy of different models for various degrees of
desertification, an error matrix is used for further analysis of each model’s performance
across different levels of desertification, as shown in Table 3. The MSAVI–LST feature space
had the highest monitoring accuracy for non-desertification, which was 93.2%, followed
by the MSAVI–Albedo with 92.5%. The MSAVI–Albedo feature space had the highest
monitoring accuracy for mild desertification and extremely severe desertification, with
90.5% and 88.6%, respectively. The MSAVI–TGSI feature space had the highest monitoring
accuracy for moderate desertification and severe desertification, which were 90.1% and
88.4%, respectively.

Table 3. Monitoring accuracy results for different levels of desertification severity.

Accuracy Non-
Desertification

Mild
Desertification

Moderate
Desertification

Severe
Desertification

Extremely Severe
Desertification

MSAVI–Albedo 92.5% 90.5% 82.5% 86.5% 88.6%
MSAVI–TGSI 85.6% 86.9% 90.1% 88.4% 84.1%
MSAVI–LST 93.2% 81.1% 79.3% 80.6% 85.2%

TGSI–Albedo 85.1% 80.3% 76.4% 78.3% 80.2%
LST–TGSI 75.4% 73.2% 80.8% 69.4% 78.3%

LST–Albedo 63.2% 78.1% 65.4% 76.8% 81.2%
NDVI–Albedo 60.5% 68.2% 65.6% 70.3% 57.4%

NDVI–LST 61.3% 67.3% 66.4% 59.3% 58.2%
NDVI–TGSI 59.3% 58.6% 60.5% 70.6% 55.3%

The above analysis showed that the MSAVI–Albedo feature space monitoring index
model based on point–point mode had better applicability in desertification monitoring in
CMREC. China and Russia extend into a variety of different climate conditions beyond the
analyzed region; thus, this assumption is marginally reasonable.

3.2. Spatial and Temporal Evolution Pattern of Desertification
3.2.1. Spatial Distribution Pattern of Desertification in the China–Mongolia–Russia
Economic Corridor

In order to analyze the spatial distribution characteristics of different degrees of deser-
tification, the average desertification index during 2001–2020 was divided into five degrees
based on the natural breakpoint method and field observed samples, namely the non-
desertification area (<0.25), mild desertification area (0.25–0.53), moderate desertification
area (0.53–0.84), severe desertification area (0.84–1.16), and extremely severe desertification
area (>1.16) (Figure 10). Figure 11 shows that the area proportions of extremely severe and
severe desertification zones were the smallest at approximately 13.9%. Among them, the
zone of extremely severe desertification was mainly concentrated in the Inner Mongolia
Plateau and Gobi Desert area, and the zone of severe desertification was mainly concen-
trated in the border area between the Inner Mongolia Plateau and Gobi Desert. The area
proportion of the non-desertification area was the largest at approximately 37.9%, mainly
concentrated in the Northeast China Plain, Greater Khingan Mountains, and Russia. Inner
Mongolia and the Gobi Desert had the largest severe desertification areas, which spread
outward, and the degree of desertification showed a decreasing trend.
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3.2.2. Temporal Variation in Desertification in the CMREC during 2001–2020

As shown in Figure 12, desertification in Mongolia is the most pronounced, which
may be attributed to the region’s topography and climate. In 2007, the maximum value was
0.93, while that of 2019 was the smallest of 0.73, showing an overall decreasing trend. The
desertification index of China was the second largest. Overall, the change in desertification
degree was relatively stable, with a maximum value of 0.63 in 2019 and a minimum value
of 0.47 in 2012. Desertification levels in Russia fluctuated significantly, peaking at 0.37 in
2003 and reaching a low of 0.19 in 2019. Overall, the trend is relatively stable, with a slight
increase from 2001 to 2020.
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3.2.3. Variation in Gravity Center in Different Sub-Regions

The gravity center migration trajectory of desertification at a 4-year time scale in
different regions was further explored (Figure 13).

As shown in Figure 13a, the desertification gravity center in China exhibited a trend
of southeast–southwest–northeast change from 2001 to 2020. During 2013–2016 and
2017–2020, the migration distance to the northeast was the farthest, 148.354 km. This
indicates that the change in the degree of desertification in the northeast during 2017–2020
was significantly more severe compared to other times. On the whole, the gravity center
of desertification in China showed a law of migration to the northeast, indicating that the
exacerbating rate and degree of desertification in the northeast was higher than that of the
southwest parts.

As Figure 13b shows, the desertification gravity center in Mongolia exhibited a trend of
southwest–southeast–northeast–northwest between 2001 and 2020. The migration distance
first increased and then decreased. The maximum migration distance to the southwest
appeared between 2005–2008 and 2009–2012, which was 30.010 km, indicating that the
degree of desertification in the southwest during 2009–2012 was more significant compared
to that in other directions. The minimum gravity center migration distance was 4.684
km between 2001–2004 and 2005–2008, indicating that the degree of desertification in the
southeast direction was slighter than that in other directions during 2005–2008. The gravity
center of desertification in Mongolia mitigated toward the southwest, indicating that the
exacerbation rate and degree of desertification in the southwest parts was higher than that
of northeastern regions.

Figure 13c shows that the desertification gravity center in Russia had a strong regu-
larity, exhibiting a trend of southeast migration from 2009 to 2020. The overall analysis
showed a northeast–northwest–southeast change trend from 2001 to 2020. The migration
distance first increased, then increased, and then decreased. Among them, the maximum
migration distance to the southeast was 65.833 km from 2009–2012 to 2013–2016, indicating
that the desertification degree in the southeast direction from 2013 to 2016 was much greater
than that in other directions. From 2005–2008 to 2009–2012, the gravity center migration
distance was the smallest, which was 12.644 km, indicating that the degree of desertification
in the southeast direction during 2009–2012 was much smaller than that in other directions.
The desertification gravity center in Russia mitigated toward the southeast, indicating that
the exacerbating rate and desertification degree in the southeast parts was higher than that
of the northwest parts.
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3.2.4. Area Change among Different Degrees of Desertification during 2001–2020

To analyze the changes in desertification degree during different time periods, the
study period was divided into two historical periods, namely 2001–2010 and 2011–2020,
respectively, and the area changes in different periods were statistically analyzed using a
Sankey diagram, as shown in Figures 14 and 15.
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Figures 14a and 15a show that during 2001–2010, the transfer zone from non-
desertification to mild desertification accounted for the area’s largest proportion, approxi-
mately 15.79%, which was scattered in the Mongolian Plateau, Gobi Desert, northwest of
Irkutsk Oblast, the central region of the Buryat, and the northeast of Heilongjiang Province.
The transfer zone from mild desertification to non-desertification had the second largest
area proportion of 15.26%, mainly concentrated in the Greater Khingan Mountains, Mon-
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golia, Russia, and other regions. The transfer zone from non-desertification to extremely
severe desertification, with an area proportion of 4.63%, was mainly distributed in the north-
eastern part of Irkutsk. The area of intensified desertification accounted for 49.76%, while
that of improved desertification accounted for 50.24%, indicating that the desertification in
China, Mongolia, and Russia was slightly improved from 2000 to 2010.
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As shown in Figures 14b and 15b, from 2011 to 2020, the transfer zone from extremely
severe desertification to severe desertification accounted for the largest area proportion of
approximately 28.25%, which was mostly located in the northeast of Inner Mongolia and the
Gobi Desert of Mongolia. The transfer zone from non-desertification to mild desertification
had the second largest area proportion of approximately 10.54%, which was mostly located
in the Northeast Plain, southern Russia, and northern Mongolia. The transfer zone from
severe desertification to moderate desertification accounted for approximately 8.9%, mainly
located in the border area of the Inner Mongolia Plateau and the Gobi Desert. Overall
analysis shows that areas with increased desertification account for 35.98%, while areas
with reduced desertification make up 64.02%. This indicates notable improvement in
desertification levels in the China–Mongolia–Russia region from 2011 to 2020.

3.3. Dominant Influencing Factors of Desertification in Different Historical Periods
3.3.1. Single Factor

In different regions and different historical periods, there are some differences in the
factors affecting desertification, which could be effectively distinguished using a geodetec-
tor. In this study, seven factors, including climate factors (temperature and precipitation),
social factors (population density, GDP, and land use change), and terrain factors (altitude
and slope), were selected to analyze the driving mechanism of desertification (Figure 16).

Figure 16a showed that in 2001, 2010, and 2020, precipitation was the dominant factor
affecting desertification in China, with q values of 0.82, 0.74, and 0.65, respectively, indicating
that precipitation had the strongest impact on desertification in China, followed by land use,
with q values of 0.56, 0.49 and 0.49, respectively. The weakest impacts on desertification were
GDP and population density, with q values of 0.03, 0.008, and 0.02, respectively.

Figure 16b shows that in 2001, 2010, and 2020, the dominant factor affecting deserti-
fication in Mongolia was precipitation, with q values of 0.68, 0.69, and 0.63, respectively,
indicating that precipitation had the greatest impact on desertification in Mongolia, fol-
lowed by temperature, with q values of 0.58, 0.59, and 0.55, respectively, indicating that
during 2001–2010, temperature had a greater impact on desertification in Mongolia. In
2020, land use had the greatest impact on desertification in Mongolia. The factor with
the weakest impact on desertification was population density, and its q value was 0.36,
indicating that human activities had the weakest impact on desertification in Mongolia.
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As shown in Figure 16c, in 2001, 2010, and 2020, the factors with the strongest impact
on desertification in Russia were land use, land use, and altitude, and the q values were
0.66, 0.42, and 0.50, respectively, indicating that, during 2001–2010, the transformation
between different land types has the greatest impact on desertification. In 2020, the terrain
had the strongest impact on desertification, followed by altitude, altitude, and land use,
with q values of 0.53, 0.41, and 0.41, respectively, indicating that during the period from
2001 to 2020, the terrain had the greatest impact on desertification in Russia, and land
use had the greatest impact on desertification in 2020. The factors with the weakest
impact on desertification are GDP, population density, and GDP, and the q values are 0.30,
0.29, and 0.29, respectively, indicating that human activities have the weakest impact on
desertification in Russia.

3.3.2. Interactive Factors

The interaction among different factors also affects changes in desertification levels.
During different historical periods and in various regions, there is a certain degree of
interaction among influencing factors. By using geographic detectors to explore interaction
factor q values, it is found that a higher q value indicates stronger interaction among
driving factors, whereas a lower q value indicates weaker interaction.

Figure 17a1–a3 showed that the interaction between most of the two factors in China
was two-factor enhancement. In 2001, 2010, and 2020, the dominant interactive factor was
precipitation ∩ temperature, with q values of 0.857, 0.761, and 0.719, respectively, indicating
that the interactions between temperature and precipitation had the greatest impacts on
desertification in China.
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Figure 17b1–b3 shows that the interaction between most factors in Mongolia was
characterized by two-factor enhancement. In 2001 and 2010, the dominant interactive factor
was precipitation ∩ altitude, while that of 2020 was temperature ∩ precipitation, with the
q values of 0.727, 0.740, and 0.680, respectively, indicating that the interactions between
climate and topography had the greatest impact on desertification in Mongolia.

As shown in Figure 17c1–c3, the interaction between most of the two factors in the
Russian region was nonlinearly enhanced. The dominant interactive factor in 2001, 2010,
and 2020 was altitude ∩ land use, and the q values were 0.767, 0.550, and 0.581, respectively,
indicating that the interaction between altitude and land use has the greatest impact on
desertification in Russia.

4. Discussion
4.1. Causes of Temporal and Spatial Variation Pattern of Desertification in the CMREC

The distribution of desertification severity in the China–Mongolia–Russia Economic
Corridor shows a certain regularity, with desertification decreasing outward from the Inner
Mongolia Plateau and Gobi Desert (Figure 10). Severe desertification is mainly found
in the Inner Mongolia Plateau and Gobi Desert regions, likely due to intensive grazing,
deforestation, and soil erosion [16]. The influence of the Loess Plateau in the south also
contributes to the formation of severe desertification areas [17]. The Gobi Desert has an
extreme continental climate. Due to the combined actions of the sun and wind, loose rock
masses such as surface sandstone were continuously weathered and eroded to form clastic
materials, which accumulated over time [18]. Due to the influence of topography, the region
has difficulty receiving water vapor from the Arctic Ocean and Pacific Ocean, resulting in
fragile and arid zones [19]. The mild desertification areas and non-desertification areas were
mainly distributed in the northeast of China and the northern part of Russia. Northeast
China had a temperate monsoon climate, which was affected by the warm and humid
airflow of the Pacific Ocean. The vegetation in the Greater Khingan Mountains was dense,
and the Russian region was sparsely populated. Human activities had minimal impact on
vegetation and were located in the desert zone, resulting in a lower degree of desertification
in the corresponding area [20].

During 2001–2020, the degree of desertification in the Inner Mongolia Plateau and
Gobi Desert showed a significant improvement trend, which may be related to the local
implementation of the policy of returning farmland to forests and grasslands and reducing
human overgrazing [21]. In 2022, Xinhua News Agency released relevant news that Inner
Mongolia adopted the governance strategy of ‘easy first and then difficult, from near too
far, zoning governance, and overall promotion’, realizing the historical transformation of
ecological security in the Inner Mongolia Autonomous Region [22]. In the northeastern
part of the Greater Khingan Mountains and the northwestern part of the Lesser Khingan
Mountains, the degree of desertification had deteriorated significantly. The local area had a
good degree of desertification in the early stage, and the vegetation coverage was dense.
The gradual deterioration of desertification may be related to the weak awareness of local
human desertification and the random cutting of vegetation [23]. At the same time, with
the improvement of living standards, urbanization has become increasingly prominent,
leading to greater land demand and further aggravating desertification [24].

In this study, the analysis did not incorporate land use distribution and vegetation
cover types. Future research could further explore the specific impact of the spatial dis-
tribution of vegetation change on desertification [25]. Based on the results, it is evident
that the northeastern part of the study area has been more sensitive in recent years, with
significant fluctuations in desertification expansion and reduction. Inadequate prevention
and control measures may exacerbate desertification in northeastern regions such as Hei-
longjiang. The southwestern desertification trend is secondary; thus, it is crucial to focus on
desertification in both northeastern and southwestern regions, implementing appropriate
control measures [24]. With economic development, attention should be paid to vegetation
restoration and protection, and land use should be planned rationally. Additionally, the
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government should strengthen protection efforts in sensitive areas to prevent uncontrolled
desertification [26].

4.2. Causes of the Changes in the Dominant Driving Factors of Desertification in the CMREC

During different historical periods, the dominant factor affecting desertification in
China and Mongolia was precipitation. The latitude of this region was high, and the Altai
Mountains and Hangai Mountains in the north block water vapor from the Arctic Ocean.
The Greater Khingan Mountains and Changbai Mountains in the east block water vapor
from the Pacific Ocean, directly affecting the soil moisture content. Less moisture reduces
soil viscosity, making the soil looser and resulting in higher desertification levels [27]. In
China, the impacts of the urbanization level on desertification were significant. Reason-
able urbanization could alleviate the desertification degree, such as the implementation
of reasonable wind and sand fixation policies in cities [28]. Unreasonable urbanization,
such as extensive land reclamation of wasteland and increased urbanization, may cause a
certain degree of damage to the original land and aggravated desertification [29]. Another
dominant factor affecting desertification in Mongolia was temperature. The increase in
temperature causes soil moisture evaporation and, thus, a decrease in soil water content,
leading to desertification [30]. However, the increase in temperature promotes the photo-
synthesis of vegetation and makes the plant grow better, thus weakening desertification [31].
The dominant influencing factor in Russia was land use, indicating that human activities
became the dominant factor in the desertification process. Another factor affecting the
desertification degree in Russia was altitude. The central Siberian Plateau has a higher ele-
vation. The higher the altitude, the lower the temperature, and the low temperature limits
the growth of vegetation, making the windbreak and sand-fixing ability weak, aggravating
the desertification degree [32].

5. Conclusions

In this study, two categories of feature space models based on point–point mode and
point–line mode were constructed using MODIS images. Utilizing the optimal feature
space model, the desertification change patterns in the CMREC from 2001 to 2020 were
explored, and then the dominant driving factors were quantitatively determined. The main
conclusions are as follows:

(1) The monitoring accuracy of the Albedo–MSAVI desertification model based on point–
point mode was the highest, at 86.47%, followed by that of the TGSI–MSAVI model
based on point–line mode, at 85.71%.

(2) The China–Mongolia–Russia Economic Corridor extends from the Inner Mongolian
Plateau and Gobi Desert outward. Desertification is most severe in Mongolia and
least severe in Russia, showing significant spatial heterogeneity.

(3) The gravity center of desertification in China migrated toward the northeast, while that
of Mongolia and Russia migrated toward the southwest and southeast, respectively.

(4) From 2001 to 2020, the degree of desertification in the CMREC showed an overall
improvement trend.

(5) Precipitation and land use have the greatest impact on desertification in China and
Mongolia, and altitude and land use have the greatest impacts on desertification
in Russia.
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