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Abstract: This study analyses the dynamics of green infrastructure (GI) in the cities of Bujumbura,
Kinshasa, and Lubumbashi. A remote sensing approach, combined with landscape ecology metrics,
characterized this analysis, which was based on three Landsat images acquired in 2000, 2013, and
2022 for each city. Spatial pattern indices reveal that GI was suppressed in Bujumbura and Kinshasa,
in contrast to Lubumbashi, which exhibited fragmentation. Furthermore, the values of stability,
aggregation, and fractal dimension metrics suggest that Bujumbura experienced rather intense
dynamics and a reduction in the continuity of its GI, while Kinshasa showed weaker dynamics and
tendencies towards patch aggregation during the study period. In contrast, Lubumbashi exhibited
strong dynamics and aggregation of its GI within a context of significant anthropization. The
evolution of the Normalized Difference Vegetation Index demonstrates a sawtooth pattern in the
evolution of tall vegetation patches in Bujumbura, compared to a gradual decrease in Kinshasa and
Lubumbashi. It is recommended that urban growth in these cities should be carefully planned to
ensure the integration of sufficient GI.

Keywords: spatial analysis; remote sensing; fragmentation; green infrastructure

1. Introduction

With its urban population increasing from 27 million to 567 million between 1950 and
2015, Africa is currently the world’s most rapidly urbanizing region [1]. The urban popu-
lation of sub-Saharan Africa is the fastest-growing of all developing regions, followed by
South and Central Asia [2]. This accelerating urbanization presents several environmental
challenges, especially in Africa, thereby contributing to the development of urban ecology.

In this region, wars, natural population growth, and mass migration from rural areas
to cities remain significant trends, leading to the expansion of ever-larger cities that are
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often adequately equipped to accommodate new inhabitants [3]. The spatial expansion
of the town of Kampala in Uganda, where the urbanized area has increased fivefold from
71 km2 in 1989 to 386 km2 in 2010, is a striking example [4]. In Mozambique and South
Sudan, high levels of urbanization have also occurred as a consequence of civil wars [5,6].
These new urban residents often move into underprivileged, informal neighborhoods that
are unhealthy and lack basic infrastructure and services within the context of unplanned
urban growth that has prevailed in sub-Saharan cities since the 1950s [4,7].

This lack of planning generally leads to the formation of social ghettos, the reinforce-
ment of social inequalities, and the visual degradation of landscapes [8]. Green elements
and formations in urbanized environments (such as urban trees, green belts, and other
peri-urban forests) are becoming increasingly important for sustainable development [4]
due to their multifunctionality [9]. Consequently, understanding the ecological functioning
of urban ecosystems, particularly in tropical regions, has become a crucial area of research.

Although urban green infrastructure (GI) and its ecosystem services [10] are often
conceptualized from a predominantly Western perspective of cities and their social, eco-
nomic, and environmental challenges [11], studies of urban GI in sub-Saharan cities and
their ecological functions have already been conducted [12]. Examples include the compar-
ison of the GI of the towns of Bahir Dar and Hawassa [13] and the cities of Bamako and
Sikasso [14], as well as the characterization of fruit tree diversity in the cities of Lubum-
bashi and Kolwezi [15]. However, isolated studies of individual cities do not always allow
pertinent comparisons that would enable the development of large-scale regional or even
supranational policies due to the application of different methodological approaches and
non-standardized data sets.

Despite these methodological issues and the differing ecological, social, and economic
contexts, comparative analyses of GI that extend beyond regional and sub-regional scales
are valuable for formulating general conclusions that are not confined to a particular
city [16,17]. In this context, a comparison of the GI of five different urban areas, including
Cape Town, Durban, and Johannesburg in South Africa, and Birmingham and London
in the UK, was undertaken [17]. This study examined how GI concepts were integrated
into the decision-making processes of these cities. The pivotal role of GI in urban planning
was confirmed by [18] for southern and eastern Africa. Similarly, [17] emphasizes the need
for local governments to incorporate GI in development and climate adaptation strategies.
Thus, comparative studies are justified to better understand and theorize the dynamics of
tropical cities and the role of GI within them.

This study compares the GI of the cities of Bujumbura, Kinshasa, and Lubumbashi.
Although these three cities have distinct socio-economic, demographic, morphological, and
political contexts, they share certain commonalities. Firstly, they were all founded during
the colonial era and are characterized by rapid demographic growth, reinforced by rural
exodus and migrations due to political instability [19]. Additionally, their development
is marked by increasing anthropogenic pressure on GI, resulting from a lack of urban
planning [20], and by considerable population densities, estimated in 2023 at 11,686, 1730,
and 3764 inhabitants per square kilometer for Bujumbura, Kinshasa and Lubumbashi,
respectively. These cities were also selected because of the availability of studies on their
ecosystems, which can be illustrated by several examples. For Bujumbura, data on floristic
diversity and ecosystem services are available [21]. The typology, spatial structure, plant
composition, management practices, state of maintenance, and ecosystem services of GI in
the city of Kinshasa have already been analyzed [22]. For Lubumbashi, studies concerning
the spatial pattern of GI along the urban-rural gradient [23], the perception by local experts
of GI and their ecosystem services [24,25], and the diversity of street-lining trees [26] are
available. In addition, peri-urban areas have been intensively described with regard to their
tree and shrub vegetation [27]. Despite these individual studies, no comparative study has
yet been conducted to identify commonalities between the GI of these three cities.

The aim of this study is to provide a spatio-temporal analysis of the GI of the cities
of Bujumbura, Kinshasa, and Lubumbashi from 2000 to 2022, using remote sensing and
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spatial pattern indices. The central hypothesis posits that while the GI in each of these three
cities is undergoing a unique dynamic, it is also characterized by common trends such as
the regression of vegetation, an increasing prevalence of herbaceous vegetation, a rise in the
level of anthropization, and a decrease in the spatial continuity of the GI. This hypothesis
is subdivided into three sub-hypotheses: (i) the GI in all three cities exhibits significant
instability and a regressive surface trend, particularly in favor of built-up areas, (ii) the GI
of all cities shows an increasing level of anthropization and a decreasing level of spatial
continuity over time, (iii) each city demonstrates a specific dynamic in the composition of
the GI in terms of low (herbaceous) and high (tree) vegetation that is specific to it, yet with
a common trend towards the dominance of lower biomass in GI.

2. Materials and Methods
2.1. Study Area

This study was conducted in three cities: Bujumbura, Kinshasa, and Lubumbashi
(Figure 1). The city of Bujumbura was founded in 1897 on the shores of Lake Tanganyika by
the Germans on a site called Kajaga. It is situated in the western part of the Republic of Bu-
rundi, between 3◦30′ and 3◦51′ S and 29◦31′ and 29◦42′ E. Bujumbura covers 10,462 hectares
and comprises three communes (Table 1), which are subdivided into 13 administrative
entities. These entities are set up as urban areas. The city-province of Kinshasa, founded in
1881 by explorer and journalist Henry Morton Stanley on the southern bank of the Pool
Malebo, is located in the western part of the Democratic Republic of Congo, between 4◦ and
5◦ S and 15◦–16◦ E, and covers an area of 9965 km2. Since 1968, it has been administratively
subdivided into 24 communes (Table 1). For this study, the rural commune of Maluku was
excluded from the analyses, not only because of its size (it alone covers an area of 82.8%
of the entire city of Kinshasa) but also because of the lack of cloud-free multi-temporal
images [28]. The city of Lubumbashi and its outskirts are located in the province of Haut-
Katanga in the southeastern part of the Democratic Republic of Congo. It covers an area
of almost 747 km2 and is located between 11◦27′ and 11◦47′ S and 27◦19′ and −27◦40′ E,
and it comprises 7 communes. The town was created in 1910 following the discovery and
development of large copper deposits by the Haut-Katanga Mining Union (HKMU) and is
the capital of Haut-Katanga province (Table 1).

Table 1. Characteristics of the cities of Bujumbura, Kinshasa, and Lubumbashi.

Bujumbura Kinshasa Lubumbashi

Year of creation 1897 1881 1910

Location Between 3◦30′ and 3◦51′ S and
29◦31′ and 29◦42′ E

Between 4◦ and 5◦ S and 15◦

and 16◦ E
Between 11◦27′ and 11◦47′ S
and 27◦19′ and −27◦40′ E

Area 10,462 hectares 9965 km2 747 km2

Number of communes 3 24 7
Population 1,225,142 residents 170,329,463 residents 2,812,000 residents

2.2. Selection of Satellite Images

The cities of Bujumbura, Kinshasa, and Lubumbashi were each isolated by three
30 m resolution Landsat images acquired and processed on the Google Earth Engine
(GEE) geospatial platform. The median images were obtained by selecting the median
values of each pixel during the dry season from June to August. Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) sensors were
used to obtain images from 2000, 2013, and 2022, respectively. The choice of years and
intervals was guided by three primary factors. Firstly, the city of Bujumbura underwent
urbanization without planning and management tools between 2000 and 2015. It was only
from 2015 to 2023 that an urban master plan was developed, outlining a vision for the
city up to 2045. Secondly, for the cities of Kinshasa and Lubumbashi, the period from
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2000 to 2010 was largely influenced by the liberalization of the mining sector (2002), the
first electoral cycle (2006), infrastructure modernization, and the global financial crisis
(2008). The period from 2010 to 2022 included further electoral cycles (2011 and 2018),
provincial restructuring (2015), and a change in political regime (2019) [29]. Thirdly, the city
of Kinshasa is characterized by persistent heavy cloud cover, which limits the availability
of satellite imagery. This constraint led us to consider only three specific dates, which we
believe are sufficient to understand the phenomenon of urbanization in the cities studied,
considering the availability of imagery for these periods. We used surface reflectance data
from the Level 2 Collection 2 Tier 1 datasets, collected over a time step of 13 and 9 years,
depending on availability, quality, and study objectives. The image acquisition period
corresponds to the dry season when cloud cover is low [30]. The training points collected
on the GEE platform were supplemented by ground truth points collected jointly in the
3 cities in July 2022. For each class, a total of 20 GPS coordinates were collected, yielding
a maximum of 180 GPS points. Additionally, the results for our final year (2022) were
compared with those provided by the ESRI_Global-LULC_10m_TS project in for the three
cities. The consistency in trends across the results provided reassurance of the credibility of
our findings. ArcGIS 10.8.1 software was then used to produce land-use maps.
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2.3. Image Pre-Processing, Processing and Classification

The pre-processing involved applying a cloud mask applied to each data set to create
a synthetic image with an acceptable cloud cover [31]. The mask used the “QA_PIXEL”
band and the Fmask (Function of mask) algorithm to remove clouds and cloud shadows,
thereby generating cloud-free composites [32,33].

A false-color composition was created by combining the near-infrared, red, and green
bands, with the first two channels being used to discriminate vegetation [34]. Three relevant
land cover classes were selected according to the study’s objectives and the composition of
each landscape: vegetation (forests, savannahs, fields, fallow lands, and green spaces), built-
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up and bare soil (built-up and bare soil complexes, including mines) and other (sewage
and decantation plants, flooded areas, ponds, swamps). For each of these land cover
classes, sample polygons representing the training zones (ROIs) were collected on the
same platform (GEE) using Google Earth images of finer resolution (1 m) and completed
with ground truth GPS points. A classification based on the “Random Forest” supervised
classification algorithm was then performed using the training model obtained from the
selected ROIs [35]. Classifications were validated based on the overall accuracy and the
Kappa coefficient derived from six confusion matrices [36]. Kappa values below 50%,
between 50 and 75%, and above 75% indicate poor, acceptable, and excellent classification,
respectively [37]. For each land cover, at least 30% of the total points were used for this
assessment.

2.4. Calculation of Spatial Pattern Indices and Detection of Landscape Dynamics

Pattern metrics for each land use class were calculated using the “landscape metrics”
and “Landscape tools” packages in R studio 4.2.2. The selected indices provide information
on landscape fragmentation [38]. The number of patches belonging to a given class j

(
nj
)
.

This index offers insight into the fragmentation of a class. A high number of patches in a
class may be due to its fragmentation [39]. The total area (atj) occupied by the class j (in
km2) was calculated according to Equation (1) where aij is the area of ith patch of class j:

atj = ∑
nj
i=1 aij (1)

The index of the largest patch of class j or dominance Dj(a) was calculated using the
area of the largest patch (amax,j):

Dj(a) =
amax,j

atj
× 100 (2)

with 0 < Dj(a) ≤ 100. The higher the dominance value, the less fragmented the class.
The average area aj of the patches of class j was calculated as follows:

aj =
atj

nj
(3)

The aggregation index indicates the frequency with which pairs of patches of the same
class are adjacent [40]. Its value is equal to 0 for maximally disaggregated classes and 100
for maximally aggregated classes [41]:[

gii
max − gii

]
× (100) (4)

where gii is the number of similar adjacencies based on the single count method and
max − gii is the maximum number of similar adjacencies per class for this class.

The fractal dimension index, which assesses the relationship between the landscape
transformation process and the geometry of the resulting patches, is calculated as follows
according to [42]:

log P =
D

2 log (A) + log(K)
(5)

where p represents the perimeter, A the class area, and D the fractal dimension. A log-log
surface-perimeter plot for a set of patches, therefore, generates D (slope) and K (intercept).
This technique is based on the analysis of patches of different sizes at a given scale as a
“surrogate” for a change of scale [43].

To quantify the dynamics of conversion between land-use classes over the periods
considered in the study, two transition matrices were created for each city. The transition
matrix, obtained by juxtaposing the land-use maps, provides information on the conversion
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between land uses (row and column proportions) on the one hand and the stability of
land use classes (diagonal) on the other [38]. The stability index was calculated to de-
termine the conversions between the different land-use classes. This index is defined as
the ratio of the sum of the diagonal values and the sum of the off-diagonal values of the
transition matrix [38]. The underlying spatial transformation processes responsible for the
observed changes were identified using the decision tree proposed by [44]. The distinction
between fragmentation and dissection was made using the predefined area decrease value
t = 0.75 [45]. Values less than or equal to 0.75 indicate fragmentation, while values greater
than 0.75 suggest dissection [45].

The aggregation index (AI), which illustrates the spatial organization of patches
corresponding to land use types, was also calculated. A high AI value indicates adjacent
units and, therefore, aggregated patches [46].

The other index calculated is the fractal dimension index (DF), which indicates that the
patches have complex shapes and more tortuous contours when it is higher (approaching
2) and when it is lower (close to 1); this indicates a more regular shape of the patches and
smoother contours (anthropogenic) [43].

2.5. Vegetation Index

A variety of vegetation indices have been developed for the purpose of monitoring
vegetation distribution and phenology [47,48]. The Normalized Difference Vegetation
Index (NDVI) is defined as the normalized difference of spectral reflectance measurements
acquired in the “Near Infrared (NIR)” and “Red (RED)” wavelength zones [47–49].

NDVI =
(NIR − RED)

(NIR + RED)
(6)

The theoretical value of NDVI varies between −1 and 1. Values below 0.1 are indicative
of bodies of water and bare soil, while higher values are associated with high photosynthetic
activity, which is typical of shrublands, temperate forests, rainforests, and agricultural
land [50]. In practice, an open water surface (ocean, lake, etc.) will exhibit NDVI values
close to 0, bare soil will have values of 0.1 to 0.2, while dense vegetation will have values of
0.5 to 0.8 [50].

3. Results
3.1. Satellite Data Analysis: Classification and Mapping (2000 to 2022)

The overall accuracy of supervised classification of Landsat images covering the areas
of Bujumbura, Kinshasa, and Lubumbashi ranges between 89% and 99%, with Kappa
values between 69% and 97% (Table 2). These values indicate that the discrimination
between different land-use classes is statistically reliable [51].

Table 2. Accuracy of supervised classifications of Landsat images from 2000, 2013, and 2022 based on
the Random Forest algorithm.

Year

Bujumbura Kinshasa Lubumbashi

Overall
Accuracy Kappa Overall

Accuracy Kappa Overall
Accuracy Kappa

2000 0.89 0.69 0.95 0.86 0.95 0.92
2013 0.93 0.79 0.97 0.88 0.96 0.94
2022 0.97 0.91 0.99 0.94 0.98 0.97

A visual analysis of the land-use maps reveals significant spatial changes in the
landscape of Bujumbura and Lubumbashi between 2000, 2013, and 2022. These changes
are evidenced by a regression of the “vegetation” class and the “other” class, which have
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been replaced by the “built-up” class. In contrast, the city of Kinshasa exhibited minimal
change (Figure 2).
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3.2. Changes in Land Use between 2000 and 2022

Table 3 illustrates the percentage changes between the various land use classes between
the years 2000 and 2022 in the cities of Bujumbura, Kinshasa, and Lubumbashi. In the cities
of Bujumbura and Lubumbashi, the period studied (2000–2022) was characterized by a
transition in which the GI, which constituted the landscape matrix in 2000, was replaced by
built-up areas, which became the dominant matrix in 2022. During the period under review,
the landscape of Kinshasa underwent no significant modifications, and its GI remained the
dominant matrix in 2022 (Table 3).
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Table 3. The following transition matrix describes the changes in land use in the cities of Bujumbura
(Burundi), Kinshasa, and Lubumbashi (DRC) between the periods 2000–2013 and 2013–2022 in
percentages of area (%). The column and row totals correspond to the land-use classes for the
initial and subsequent study periods, respectively. The values in bold represent the proportion of
the urban footprint that has not undergone transformation between the two specified time points.
The remaining values within the matrix provide insight into the nature of the observed changes in
land use.

Bujumbura
Year 2013

Vegetation Buildings and
Bare Ground Other Total

Year 2000

Vegetation 9.78 47.51 0.36 57.65
Buildings and
bare ground 30.42 5.01 0.05 35.48

Other 4.38 1.90 0.59 6.87
Total 44.58 54.42 1.00 100

Year 2022

Year 2013

Vegetation 18.17 26.36 0.06 44.58
Buildings and
bare ground 1.69 52.17 0.56 54.42

Other 0.04 0.37 0.58 1.00
Total 19.90 78.90 1.20 100

Kinshasa Year 2013

Year 2000

Vegetation 58.31 6.70 0.46 65.47
Buildings and
bare ground 11.17 21.94 0.03 33.14

Other 1.12 0.06 0.21 0.39
Total 70.60 28.70 0.70 100

Year 2022

Year 2013

Vegetation 60.78 8.28 1.54 70.60
Buildings and
bare ground 3.86 24.80 0.04 28.70

Other 0.28 0.02 0.40 0.71
Total 64.92 33.10 1.99 100

Lubumbashi Year 2013

Year 2000

Vegetation 30.85 17.75 21.65 70.25
Buildings and
bare ground 1.13 12.75 275 16.63

Other 3.46 4.67 4.99 13.12
Total 35.44 35.17 29.39 100

Year 2022

Year 2013

Vegetation 18.91 7.55 8.98 35.44
Buildings and
bare ground 1.89 30.92 2.36 35.17

Other 5.46 15.50 8.43 29.39
Total 26.26 53.97 19.77 100

For the city of Bujumbura, the period from 2000 to 2013 was marked by a 47.52%
increase in built-up and bare soil at the expense of vegetation. The same period was
characterized by the conversion of 30.42% of built-up and bare ground and 4.38% of the
“other” class to vegetation. At the same time, areas in the “other” class decreased by 1.9%
in favor of built-up and bare ground. Between 2013 and 2022, built-up and bare ground
expanded by 26.36% at the expense of vegetation. At the same time, 1.69% of built-up and
bare ground was converted to vegetation.
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The period between 2000 and 2013 was characterized by a significant increase in built-
up and bare soil areas in the city of Bujumbura, with a 47.52% expansion at the expense
of vegetation. The same period was characterized by the conversion of 30.42% of built-up
and bare ground, as well as 4.38% of the “other” category, to vegetation. Concurrently,
the “other” category experienced a 1.9% reduction in area with an increase in built-up and
bare ground. Between 2013 and 2022, built-up and bare ground expanded by 26.36% at
the expense of vegetation. Concurrently, 1.69% of built-up and bare ground was converted
to vegetation.

Regarding the city of Lubumbashi, between the years 2000 and 2013, 1.08% of build-
ings and bare soil and 3.44% of other areas were converted to accommodate vegetation.
Conversely, 17.9% of built-up and bare ground and 21.65% of the “other” category ex-
panded at the expense of vegetation. Concurrently, the “other” category exhibited an
increase of 7.75% at the expense of built-up and bare ground. The period between years
2013 and 2022 is characterized by the conversion of 1.88% of built-up and bare ground,
5.48% of other to vegetation, and 15.5% of the “other” class to built-up and bare ground.
During the same period, 7.54% of the built-up area and soil and 8.97% of the “other” class
were converted to vegetation. Concurrently, 2.36% of the “other” class was converted to
bare ground and buildings.

The preceding data illustrate a notable decline in GI and an accompanying surge in the
surface area of built-up and bare soil within the urban cores of Bujumbura and Lubumbashi
between the years 2000 and 2022. In the case of Kinshasa, there was a slight decrease in
GI but no increase in the surface area of built-up and bare soil. However, there was an
increase in the “other” class. A sequence of progression/regression of vegetated surfaces
was recorded.

Table 4 illustrates the stability index values for land use classes in the cities of Bujum-
bura, Kinshasa, and Lubumbashi between the years 2000 and 2022. This index exhibits
high values in landscapes that have undergone minimal dynamic change.

Table 4. Stability index for the vegetation, built-up, and bare soil classes as well as the “other” class
for the cities of Bujumbura (Burundi), Kinshasa, and Lubumbashi (DRC) over the period 2000 to 2022.

Bujumbura Kinshasa Lubumbashi

2000–2013

Vegetation 0.12 3.00 0.70
Buildings and
bare ground 0.06 1.22 0.41

Other 0.09 0.13 0.13

2013–2022

Vegetation 0.65 4.35 0.79
Buildings and
bare ground 1.80 2.03 1.13

Other 0.56 0.21 0.26

Over the period 2000–2013, the vegetation stability index for Kinshasa is 25 times that
of Bujumbura and 4 times that of Lubumbashi. Over the same period, the value of the
stability index for buildings and bare soil in Kinshasa was 20 times that of Bujumbura and
3 times that of Lubumbashi. Furthermore, the stability index for the “other” category is
identical for the cities of Kinshasa and Lubumbashi and is 1.5 times that of Bujumbura.

From 2013 to 2022, the vegetation stability index for Kinshasa was sevenfold that of
Bujumbura and 5.5 times that of Lubumbashi. Over the same period, the stability index
for buildings and bare soil in Kinshasa was found to be twofold that of Bujumbura and
Lubumbashi. Conversely, the stability index for the “other” class in Bujumbura was three
times that of Kinshasa and Lubumbashi.

From the aforementioned data, it can be observed that vegetation, buildings, and bare
soil in the city of Kinshasa exhibited minimal change over the period 2000–2022. In contrast,
the “other” class demonstrated robust growth in all cities (Table 4).
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3.3. Dynamics of the Spatial Structure of Vegetation

In Bujumbura, between 2000 and 2013, the characteristic spatial transformation process
of vegetation was the dissection of patches, particularly as the increase in the number of
patches was accompanied by a decrease in total area, with a t-value greater than 0.75.

From 2013 to 2022, the characteristic spatial transformation process of vegetation
was identified as suppression, which was observed concurrently with a reduction in the
number of patches and total area. Between 2000 and 2022, the values assigned to vegetation
dominance increased, indicating the presence of undeveloped vegetation areas on the city’s
periphery that had not yet been developed. The Aggregation Index (AI), which reflects the
spatial organization of patches, showed a 6.96% decline over the study period. The fractal
dimension (FD) approached a value of 1, suggesting a reduction in spatial continuity and
an increase in anthropization over time.

Between the years 2000 and 2013, the vegetation in the city of Kinshasa exhibited a
distinctive pattern characterized by patch aggregation. This was evidenced by a significant
increase in the total area of vegetation, which was the result of a simultaneous decrease
in the number of patches. From 2013 to 2022, the process of spatial transformation of
vegetation was suppressed due to a decrease in both the total area and the number of
patches. Over the period 2000 to 2022, the values of vegetated area dominance exhibited a
slight decline. The aggregation index demonstrated an increase of 1.72% over the period
2000 to 2022, and the fractal dimension reached 1.04. This indicates a high level of vegetation
dominance, which is indicative of a slight increase in spatial continuity and a notable rise
in anthropization over time.

In Lubumbashi, the dominant spatial transformation process of vegetation between
2000 and 2013 was suppression, characterized by a simultaneous decrease in both the total
area and the number of patches. From 2013 to 2022, the characteristic spatial transformation
of vegetation was dissection, with a concomitant increase in the number of patches despite
a decrease in total patch area. Between 2000 and 2022, the value of vegetation dominance
declined, indicating its gradual disappearance due to anthropogenic influence. The AI
demonstrated an increase of 7.77% over the study period. The FD is close to 1, which
suggests an increasing level of spatial continuity and anthropization over time (Table 5).

Table 5. Spatial structure indices were calculated in 2000, 2013, and 2022 of the vegetation class
for the cities of Bujumbura (Burundi), Kinshasa, and Lubumbashi (DRC). These indices enable the
identification of the underlying spatial transformation processes that have resulted in the observed
changes. The data were derived from the supervised classification of Landsat images using the
Random Forest algorithm. n: number of patches, at: total area (ha), aj: average area, D: dominance
index of the largest patch (%), FD: fractal dimension, AI: aggregation index.

City Year n at D ¯
aj AI FD

Bujumbura
2000 1246 6032.39 1.55 1.45 92.47 1.04
2013 1349 4665.01 5.15 1.79 91.99 1.04
2022 1007 2081.94 3.36 1.62 86.03 1.04

Kinshasa
2000 7704 652,209.25 57.47 15.36 92.80 1.04
2013 4623 703,429.35 63.49 27.61 95.50 1.04
2022 6685 646,828.15 56.57 17.56 94.40 1.04

Lubumbashi
2000 6925 55,453.28 47.12 8.00 85.46 1.04
2013 5386 28,034.65 10.77 5.20 83.30 1.04
2022 11,173 20,904.10 15.96 1.87 92.10 1.04
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Figure 3 shows the evolution of the spatial structure indices calculated for the vegeta-
tion class of the cities of Bujumbura, Kinshasa, and Lubumbashi for the years 2000, 2013,
and 2022.
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3.4. The Normalized Difference Vegetation Index (NDVI)

The maps generated after calculating the Normalized Difference Vegetation Index
(NDVI) for the years 2000, 2013, and 2022 show that the values range from −0.22 to 0.85 for
Bujumbura, from −0.21 to 0.92 for Kinshasa (DRC) and from −0.50 to 0.83 for Lubumbashi
(DRC) (Figure 4).

Figure 5 illustrates the proportions of GI areas across the NDVI intervals identified
for each city under study during the specified time periods of 2000, 2013, and 2022. The
evolution of tall vegetation in Bujumbura shows a sawtooth pattern, whereas in Kinshasa
and Lubumbashi, there is a gradual decline.
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Figure 5. Proportions of GI areas over NDVI intervals were found for the cities of Bujumbura,
Kinshasa, and Lubumbashi for the years 2000, 2013, and 2022.

4. Discussion
4.1. Methodological Approach

While Landsat images are not optimal for examining urbanized landscapes, where
a single pixel may encompass disparate land uses, they have nonetheless enabled the
fulfillment of the study’s objective through the consolidation of land use classes. It is
also noteworthy that these images are frequently employed for the mapping of urban
landscapes in sub-Saharan Africa [20]. Moreover, any approach to classifying satellite
images must be based on knowledge of the reality of field observations, which helps to
mitigate the degree of confusion between thematically similar pixels [52]. Based on in situ
knowledge acquired during field missions, old maps, Google Earth images, and processing
on the GEE platform, Kappa values are among the classifications deemed acceptable and
excellent in this study [38]. Furthermore, the indices selected in this study, including
the number and area of patches, are considered optimal compromises for characterizing
landscape configuration [52]. The utilization of the R language and its extensions (packages)
was informed by the fact that, since its inception in 1995, it has currently one of the most
prevalent programming languages, particularly within the field of ecology. Additionally, it
is a language exclusively designed for statistical programming [53]. This methodology has
been employed in other countries and contexts. In Rwanda, for instance, the methodology
was employed to quantify the physical degradation of forests and to monitor forest cover
change and fragmentation [54]. Furthermore, it has been employed for the spatial analysis
of urban surface heat islands in four rapidly developing African cities (Ethiopia, Kenya,
Nigeria, and Zambia) [55].

4.2. Spatial Structure Indices

Several indices have been put forth with the aim of quantifying and measuring land-
scape structure [56,57]. The calculation of spatial structure indices serves to elucidate
the spatial configuration of class patches within the landscape [46]. It is thus possible to
calculate a wide range of indices, although this may result in redundant measurements [46].
In this study, we used indices derived directly from fragmentation. In general, ecology and
landscape ecology, in particular, habitat fragmentation, has emerged as a pivotal theme
in conservation research [58]. Indeed, fragmentation results in a reduction in total area
and an increase in the number of patches [39]. Furthermore, we considered the dominance
of the largest patch in the class, as fragmentation implies fragmentation and, therefore, a
decrease in patch size towards smaller patches of similar size [59]. The mean area value was
employed as an indicator of spatial integrity [55]. The shape index was not considered in
this study. Indeed, the quantification of shape is a challenging endeavor, as it can give rise
to multiple interpretations [60]. Furthermore, it is linked to degrees of artificialization [61].
It is also associated with landscape heterogeneity [62]. It can be observed that the value of
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the shape index is inversely proportional to the degree of elongation or irregularity of the
shapes of the patches [63]. In contrast, the fractal dimension index was employed. A higher
index value (approaching 2) indicates more complex shapes and contours that are more tor-
tuous and natural. Conversely, a low index value (close to 1) suggests a more regular shape
and contours that are smoother and anthropogenic [43]. These indices have been used in
various contexts to analyze the degree of anthropization of urban or forest landscapes, such
as the characterization of dense forest islands in the Monts Kouffé classified forest with the
aim of highlighting their spatio-temporal dynamics [59] as well as the quantification of the
degenerating condition of the land cover due to anthropogenic activities in Katanga [64].
They were also employed to assess the anthropogenic impact on the dynamics of landscape
units, including the quality of ecosystem services in the Kinshasa conurbation [22]. The
aggregation index (AI) was also calculated in this study. This index illustrates the spatial
organization of patches corresponding to land use types. A high AI value indicates the
presence of adjacent units and, consequently, aggregated patches [46]. This index has been
employed in other contexts, including the monitoring of landscape anthropization in the
Babagulu forest region (DRC) [65] and the assessment of links between landscape elements,
their reciprocal influences, and the main transformations observed over time and space for
the rational and sustainable management of the Zè commune in Benin [46]. Additionally,
this study utilized the stability index, which enables the evaluation of the permanence of
the initial landscape [38] in diachronic studies. All these indices were used to test the first
two sub-hypotheses of our research.

4.3. Standardized Differential Vegetation Index and Green Infrastructure Composition Dynamics

Spectral vegetation indices are among the most widely used satellite data products for
assessments of vegetation cover, change, and processes [49]. The Normalized Difference
Vegetation Index (NDVI) provides estimated values of forest “green intensity” based on the
analysis of satellite data. The approach is based on the premise that NDVI is an indicator of
plant health insofar as a degradation of an ecosystem’s vegetation or a decrease in green
intensity would result in a decrease in the NDVI value [50]. Consequently, NDVI values
have been employed in a multitude of contexts, including the assessment of vegetation
cover variability across Algeria [47], the observation of forest degradation in Mexico [66],
the monitoring of climatic variability in the Nakambé watershed in Burkina Faso [67] and
the establishment of the link between vegetation NDVI, temperature, and precipitation,
in the upper catchments of the Yellow River in China [68]. In this study, the NDVI was
calculated to facilitate a comparison of the health of GI in the cities of Bujumbura, Kinshasa,
and Lubumbashi and to test our last sub-hypothesis. The NDVI values observed for the
cities under investigation exhibited a range between −1 and 1, indicating that the GI of
these cities is not solely comprised of vegetation at high and low levels but also includes
other elements such as water bodies and soils devoid of water [50]. Indeed, Bujumbura’s
GI comprises a variety of elements, including artificial forests [69], GI adjacent to roads,
playgrounds, green squares, and agricultural areas. Additionally, it encompasses bare soil,
a consequence of land subdivision for new residential developments, particularly in the
southern periphery of the city. Furthermore, since the 2020s, the rising waters of Lake
Tanganyika have resulted in the formation of swamps in the western part of the coastal city
situated on its shores. In addition to the GI that dates back to the pre-independence period,
the city of Kinshasa also encompasses private GI, residential GI, swampy areas, and erosion
expansion at the edge of watercourses [22]. Bare soils resulting from urbanization and slash-
and-burn agriculture [22] are also noted. In addition to GI accompanying roads in the urban
part and buffer zones, fields, abandoned areas, and informal spaces in peri-urban areas [22],
the city of Lubumbashi also features bare surfaces resulting from mining, especially on
the outskirts of the city. This presence can be attributed to the destruction of vegetation
cover near mining sites, probably due to the developments carried out to establish mining
sites [27]. The proportions of the surface areas of the various GI categories on the NDVI
intervals demonstrate variability between cities over the period studied (2000–2023). This
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variability is evidenced by a sawtooth trend in tall vegetation for the city of Bujumbura
and a gradual decrease for the cities of Kinshasa and Lubumbashi.

4.4. Urbanization and Loss of Natural Cover in the Cities of Bujumbura, Kinshasa and Lubumbashi

Urban vegetation plays an instrumental role in the provision of diverse ecosystem
services, including the purification of air and water, the regulation of microclimate, and
the treatment of waste [70]. Moreover, its presence offers people aesthetic pleasures,
recreational opportunities, and physical and psychological well-being [71]. It is regrettable
that the current rate of urbanization in developing countries [72] is accompanied by the
elimination of GI and their replacement by anthropogenic land uses [73,74]. Cities such
as Bujumbura in Burundi, Kinshasa, and Lubumbashi in the Democratic Republic of the
Congo illustrate this phenomenon. Indeed, Bujumbura’s urbanization is characterized
by the conversion of agricultural land for the construction of new neighborhoods [75].
Furthermore, the expansion of the city is marked by the gradual destruction of GI and
other natural ecosystems to make way for new housing and other physical infrastructure,
including roads and monuments. Additionally, the vegetation in buffer zones along rivers
and Lake Tanganyika has been cleared to accommodate residential development [69].
The urban growth of Kinshasa occurs through the aggregation of built-up areas, which
has a detrimental impact on green zones, including residual GI and market gardens [76].
This results in two distinct patterns of urban growth: extreme densification of certain
central districts and low-density peripheral extensions [76]. The city of Lubumbashi has
experienced a similar expansionary trajectory, with the built-up area extending towards the
peri-urban zone, where plot prices are relatively affordable compared to the city center [23].
The regression of GI in all communes has been caused by the combination of strong
demographic pressure and the absence of a program to preserve them [24,26]. Our results
illustrate the regression and fragmentation of urban vegetation as a result of urbanization.
The phenomenon of urban vegetation regression in the wake of rapid and uncontrolled
urban spatial growth has also been observed in other African cities, including Abuja in
Nigeria [77], Kampala in Uganda [4], and in central Togo [78]. The removal of GI from the
city of Bujumbura can be attributed to the emergence of subdivisions, particularly on the
outskirts of the city, which have given rise to new neighborhoods. The increasing evolution
of built-up and bare soil is thought to have contributed to the disappearance of GI in the
city of Kinshasa. This is believed to have originated in the destruction of GI to satisfy the
wood energy needs of artisanal pastry businesses and “nganda ntaba” (various corners
where kebabs, chicken legs, and grilled goat meat are sold) on the one hand, and their use
for various constructions on the other [79]. Additionally, the high consumption of wood
energy by restaurants, brickmakers, bakeries, and blacksmiths is a contributing factor [79].
Regarding to the fragmentation of GI in the city of Lubumbashi, this is attributable to a
combination of factors, including the city’s rapid urbanization and the expansion of energy
production [80]. Additionally, the fragmentation is a consequence of the patchwork nature
of the city’s GI, which comprises GI alongside roads in the urban area and buffer zones,
fields, abandoned areas, and informal spaces in the peri-urban zones [23]. The urban
expansion of the cities of Lubumbashi and Kinshasa and the resulting quest for wood
energy are threatening the protected areas around these cities. In the city of Bujumbura,
specifically, peri-urban agriculture is under threat.

4.5. Implications in Public Policy

In African cities, GI is still considered by the population and certain authorities in
charge of urban planning secondary spaces that are merely decorative or spaces that are
free of all occupation and passage [81]. In reality, however, it needs to be preserved and
developed, hence the need for scientific assistance in the conservation and development
of GI. Our results highlighted the decline in GI in the cities studied and a decrease in tall
vegetation, all in the context of increasing anthropization. Indeed, for all the cities studied,
urbanization is the primary cause of the reduction in their GI following the installation of
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new houses or other infrastructures such as monuments, the densification of neighborhoods,
and peripheral extensions. This situation should attract the attention of municipal planners
and decision-makers and involve a range of policies along the urbanization gradient [82].
These policies concern the legal security of GI and its integration into land use planning, as
well as the planning of their management, maintenance, and control [83]. Law enforcement,
transparency, reliability, and the absence of corruption are crucial elements for sustainable
urbanization that incorporate the conservation of vegetated ecosystems and economic
development in the city [2,84]. The demolition of infrastructure or other facilities built on GI
should also be considered. In the (peri)urban area, avenue trees should be planted along the
main roads running through it and should, above all, be included in the urban development
plan for new neighborhoods. The new occupants of these neighborhoods should be made
aware of planting trees on secondary roads running through their neighborhoods along
their plots, in addition to landscaping them. Priority should be given to preserving and
increasing the connectivity of the GI of the cities studied [85] and, above all, to encouraging
the creation of GI for buildings and roads. All these cities should adopt a master plan for
the sustainable integration of GI into the urban fabric as a matter of urgency. The authorities
responsible for urban planning should devote part of the municipal budget to the creation
of green infrastructure in the peri-urban and rural parts of cities.

5. Conclusions

The present study conducted a comparative analysis of the GI of the cities of Bujum-
bura, Kinshasa, and Lubumbashi. The spatial structure indices revealed that Bujumbura
and Kinshasa’s GI is characterized by the suppression of patches, whereas Lubumbashi
exhibits fragmentation. The mean area of the GI slightly increased in Bujumbura and
Kinshasa but decreased significantly in Lubumbashi. Dominance values rose in Bujumbura,
while they declined in Kinshasa and Lubumbashi. The stability index indicated weak
dynamics in Kinshasa, contrasting with more active changes in Bujumbura and Lubum-
bashi. The aggregation index suggested a decline in patch continuity in Bujumbura, while
Kinshasa and Lubumbashi showed increased patch aggregation. The fractal dimension
index highlighted the human impact on the GI of all three cities. These findings substantiate
our hypothesis that the GI of these three cities exhibits a distinctive dynamic. However,
the NDVI values showed a sawtooth evolution of tall vegetation in Bujumbura, with a
gradual decrease in Kinshasa and Lubumbashi. The findings emphasize the need for urban
planning to ensure adequate, multifunctional, and interconnected GI, which is vital not only
for urban biodiversity but also for the sustainability of ecosystem services. Greening cities
is essential for their social, environmental, and economic benefits, making the preservation
and enhancement of natural capital imperative.

Author Contributions: Conceptualization, H.K. and J.B.; methodology, H.K.; N.C.C.; H.K.M.; W.S.;
K.R.S.; Y.U.S. and J.B.; software, H.K.; D.M.; N.C.C.; H.K.M. and W.S.; validation, H.K.; Y.U.S.; K.R.S.
and J.B.; formal analysis, H.K.; W.S.; N.C.C. and H.K.M.; investigation, H.K.; H.K.M.; N.C.C. and
K.R.S.; resources, H.K.; H.K.M.; N.C.C. and K.R.S.; writing—original draft preparation, H.K.; writing—
review and editing, H.K.; N.C.C.; D.M.; L.M.P.; W.S.; K.R.S.; Y.U.S.; T.M. and J.B.; visualization, H.K.
and J.B.; supervision, H.K.; Y.U.S.; K.R.S.; T.M. and J.B.; Project administration, H.K.; T.M. and J.B.;
funding acquisition, J.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Académie de Recherche et d’Enseignement Supérieur-
Commission de la Coopération au Développement (ARES-CCD, PSRCI-UB programme, UB R 4).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: We would like to thank all the co-authors for providing the information that
made this comparative study possible.

Conflicts of Interest: The authors declare no conflicts of interest.



Land 2024, 13, 1467 17 of 20

References
1. OECD/CSAO. Cahiers de l’Afrique de l’Ouest: Dynamiques de l’Urbanisation Africaine 2020: Africapolis, Une Nouvelle Géographie

Urbaine; OECD: Paris, France, 2020; ISBN 9789264349025.
2. Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The Dimensions of Global Urban Expansion: Estimates and Projections for All

Countries, 2000-2050. Prog. Plann. 2011, 75, 53–107. [CrossRef]
3. Sanyal, S. The End of Population Growth; Deutsche Bank AG: Hong Kong, China, 2011; pp. 1–13.
4. Vermeiren, K.; Van Rompaey, A.; Loopmans, M.; Serwajja, E.; Mukwaya, P. Urban Growth of Kampala, Uganda: Pattern Analysis

and Scenario Development. Landsc. Urban Plan. 2012, 106, 199–206. [CrossRef]
5. Vivet, J. Déplacés de Guerre et Dynamiques Territoriales Postconflit Au Mozambique. Hérodote 2015, 158, 160. [CrossRef]
6. Lavergne, M. De La Cuvette Du Haut-Nil Aux Faubourgs de Khartoum: Les Déplacés Du Sud-Soudan. Déplacés et Réfugiés, La

Mobilité Sous La Contrainte. Ed. l’IRD 1999, 109–136.
7. Schäffler, A.; Swilling, M. Valuing Green Infrastructure in an Urban Environment under Pressure - The Johannesburg Case. Ecol.

Econ. 2013, 86, 246–257. [CrossRef]
8. Bogaert, J.; Vranken, I.; Andre, M. Biocultural Landscapes. Biocultural Landsc. 2014. [CrossRef]
9. Madureira, H.; Cormier, L. La Complexité de l’ Application Du Concept d’ Infrastructure Verte à l’ Échelle Locale: Exemples

de Paris et Porto. In Urbanités Biodiversité. Entre Villes Fertiles Campagnes Urbaines, Quelle Place Pour La Biodiversité? HAL Open
Science: Lyon, France, 2017.

10. Zhou, X.; Wanghe, K.; Jiang, H.; Ahmad, S.; Zhang, D. Construction of Green Infrastructure Networks Based on the Temporal and
Spatial Variation Characteristics of Multiple Ecosystem Services in a City on the Tibetan Plateau: A Case Study in Xining, China.
Ecol. Indic. 2024, 163, 112139. [CrossRef]

11. Osseni, A.A.; Mouhamadou, T.; Tohoain, B.A.C.; Sinsin, B. SIG et Gestion Des Espaces Verts Dans La Ville de Porto-Novo Au
Benin. Tropicultura 2015, 332, 146–156.

12. du Toit, M.J.; Cilliers, S.S.; Dallimer, M.; Goddard, M.; Guenat, S.; Cornelius, S.F. Urban Green Infrastructure and Ecosystem
Services in Sub-Saharan Africa. Landsc. Urban Plan. 2018, 180, 249–261. [CrossRef]

13. Gashu, K.; Egziabher, T.G. Spatiotemporal Trends of Urban Land Use / Land Cover and Green Infrastructure Change in Two
Ethiopian Cities: Bahir Dar and Hawassa. Environ. Syst. Res. 2018. [CrossRef]

14. Fomba, M.; Osunde, Z.D.; Traoré, S.S.; Okhimamhe, A.; Kleemann, J.; Fürst, C. Urban Green Spaces in Bamako and Sikasso, Mali_
Land Use Changes and Perceptions. Land 2024, 13, 59. [CrossRef]

15. Useni, Y.S.; Malaisse, F.; Yona, J.M.; Mwamba, T.M.; Bogaert, J. Diversity, Use and Management of Household-Located Fruit Trees
in Two Rapidly Developing Towns in Southeastern D.R. Congo. Urban For. Urban Green. 2021, 63, 127220. [CrossRef]

16. Turner, S.C.; Turner, R.N. Capital Cities: A Special Case in Urban Development. Ann. Reg. Sci. 2011, 46, 19–35. [CrossRef]
17. Washbourne, C. Environmental Policy Narratives and Urban Green Infrastructure: Reflections from Five Major Cities in South

Africa and the UK. Environ. Sci. Pol. 2022, 129, 96–106. [CrossRef]
18. Delgado-Capel, M.; Cariñanos, P. Towards a Standard Framework to Identify Green Infrastructure Key Elements in Dense

Mediterranean Cities. Forests 2020, 11, 1246. [CrossRef]
19. Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [CrossRef]
20. Messina Ndzomo, J.P.; Sambieni, K.R.; Mbevo Fendoung, P.; Mate Mweru, J.P.; Bogaert, J.; Halleux, J.M. La Croissance De

L’Urbanisation Morphologique À Kinshasa Entre 1979 Et 2015: Analyse Densimétrique Et De La Fragmentation Du Bâti. BSGLg
2019, 73, 85–103. [CrossRef]

21. Bigirimana, J. Urban Plant Diversity Patterns, Processes and Conservation Value in Sub-Saharan Africa: Case of Bujumbura in
Burundi. Ph.D. Thesis, Université libre de Bruxelles, Brussels, Belgium, 2012.

22. Mavunda, C.A.; Kanda, M.; Folega, F.; Egbelou, V.; Bosela, B.; Drazo, N.A.; Yoka, J.; Dourma, M. Dynamique Spatio-Temporelle
Des Changements d ’ Occupation Du Sol Sous Incidence Anthropique Dans La Ville de Kinshasa ( RDC ) de 2001 à 2021.
Geo-Eco-Trop 2022, 46, 137–148.

23. Useni, Y.S. Analyse Spatio-Temporelle Des Dynamiques d’anthropisation Paysagère Le Long Du Gradient Urbain-Rural de La
Ville de Lubumbashi (Haut-Katanga, République Démocratique Du Congo). Ph.D. Thesis, Université de Lubumbashi République
Dé-mocratique du Congo, Lubumbashi, Democratic Republic of the Congo, 2017.

24. Maréchal, J.; Useni, S.Y.; Bogaert, J.; Munyemba, K.F.; Mahy, G. La Perception par des Experts Locaux des Espaces Verts et de
Leurs Services Écosystémiques Dans Une Ville Tropicale En Expansion: Le Cas de Lubumbashi. In Anthropisation des Paysages
Katangais; Bogaert, J., Colinet, G., Mahy, G., Eds.; Presse Universitaire de Liège: Gembloux, Belgium, 2018; pp. 59–69.

25. Mashagiro, G.Q.; Mujinya, B.B.; Colinet, G.; Mahy, G. Vegetation Degradation Alters Soil Physicochemical Properties and
Potentially Affects Ecosystem Services in Green Spaces of a Tropical Megacity (Lubumbashi, DR Congo). Geoderma Reg. 2024, 37.
[CrossRef]

26. Useni Sikuzani, Y.; Mpibwe Kalenga, A.; Yona Mleci, J.; N’Tambwe Nghonda, D.; Malaisse, F.; Bogaert, J. Assessment of Street Tree
Diversity, Structure and Protection in Planned and Unplanned Neighborhoods of Lubumbashi City (DR Congo). Sustainability
2022, 14, 3830. [CrossRef]

27. Useni Sikuzani, Y.; Boisson, S.; Cabala Kaleba, S.; Nkuku Khonde, C.; Malaisse, F.; Halleux, J.-M.; Bogaert, J.; Munyemba
Kankumbi, F. Dynamique de l’ Occupation Du Sol Autour Des Sites Miniers: Analyse à Long Terme de La Structure Spatiale à
Lubumbashi. Biotechnol. Agron. Soc. Env. 2019, 24, 14–27.

https://doi.org/10.1016/j.progress.2011.04.001
https://doi.org/10.1016/j.landurbplan.2012.03.006
https://doi.org/10.3917/her.158.0160
https://doi.org/10.1016/j.ecolecon.2012.05.008
https://doi.org/10.1007/978-94-017-8941-7
https://doi.org/10.1016/j.ecolind.2024.112139
https://doi.org/10.1016/j.landurbplan.2018.06.001
https://doi.org/10.1186/s40068-018-0111-3
https://doi.org/10.3390/land13010059
https://doi.org/10.1016/j.ufug.2021.127220
https://doi.org/10.1007/s00168-009-0321-8
https://doi.org/10.1016/j.envsci.2021.12.016
https://doi.org/10.3390/f11121246
https://doi.org/10.1146/annurev.es.20.110189.001131
https://doi.org/10.25518/0770-7576.5937
https://doi.org/10.1016/j.geodrs.2024.e00810
https://doi.org/10.3390/su14073830


Land 2024, 13, 1467 18 of 20

28. Biona, B. Classification Des Series Temporelles Landsat-8 Pour La Cartographie Du Gradient De Vegetation Dans Le Nord De La
Republique Du Congo. Sci. Tech. 2017, 16, 1815–4433.

29. Useni, Y.S.; Mukenza, M.; Mpanza, M.M.; Malaisse, F.; Bogaert, J. Investigating of Spatial Urban Growth Pattern and Associ-ated
Landscape Dynamics in Congolese Mining Cities Bordering Zambia from 1990 to 2023. Resources 2024, 13, 107. [CrossRef]

30. Salmon, M.; Ozer, A.; Pissart, A. Les Images Satellitaires Prises En Période de Sécheresse, Outil Utile Pour La Cartographie
Géologique de La Belgique. Bull. la Société Géographique Liège 2007, 49, 67–74.

31. Soucy-Gonthier, N.; Marceau, D.; Delage, M.; Cogliastro, A.; Domon, G.; Bouchard, A. Détection de l’évolution des Superficies
Forestières en Montérégie Entre Juin 1999 et Août 2002 à Partir d’images Satellitaires LandSat-TM; Université de Montréal: Montreal,
QC, Canada, 2003.

32. Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial Analysis of Land Use Change in the
Savannah River Basin Using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [CrossRef]

33. Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118,
83–94. [CrossRef]

34. Bonn, F.; Rochon, G. Précis de Télédétection. Principes et Méthodes; Presses de l’Université du Québec: Québec, QC, Canada, 1992.
35. Floreano, I.X.; de Moraes, L.A.F. Land Use/Land Cover (LULC) Analysis (2009–2019) with Google Earth Engine and 2030

Prediction Using Markov-CA in the Rondônia State, Brazil. Environ. Monit. Assess. 2021, 193, 239. [CrossRef] [PubMed]
36. Girard, M.C.; Girard, C.M. Traitement Des Données de Télédétection, 2nd ed.; Dunod: Paris, France, 2010.
37. Mama, V.J.; Oloukoi, J. Évaluation de La Précision Des Traitements Analogiques Des Images Satellitaires Dans l’étude de La

Dynamique de l’occupation Du Sol. Télédétection 2003, 3, 429–441.
38. Bogaert, J.; Vranken, I.; Andre, M. Anthropogenic Effects in Landscapes: Historical Context and Spatial Pattern. In Biocultural

Landscapes: Diversity, Functions and Values; Springer: Berlin, Germany, 2014; pp. 89–112. [CrossRef]
39. Davidson, C. Issues in Measuring Landscape Fragmentation. Wildl. Soc. Bull. 1998, 32–37.
40. He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An Aggregation Index (AI) to Quantify Spatial Patterns of Landscapes. Landsc. Ecol. 2000,

15, 591–601. [CrossRef]
41. Hesselbarth, M.H.K.; Scianini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscaperemetrics: An Open-Source R Tool to Calculae

Landscape Ma-trics. Ecography 2019, 42, 1648–1657. [CrossRef]
42. Diallo, H.; Bamba, I.; Barima, Y.S.S.; Visser, M.; Ballo, A.; Mama, A.; Vranken, I.; Maiga, M.; Bogaert, J. Effets Combinés Du Climat

et Des Pressions Anthropiques Sur La Dynamique Évolutive de La Dégradation d’une Aire Protégée Du Mali (La Réserve de
Fi-na, Boucle Du Baoulé). Sci. Chang. Plan. 2011, 22, 97–107.

43. Krummel, J.R.; Gardner, R.H.; Sugihara, G.; O’neill, R.V.; Coleman, P.R. Landscape Patterns in a Disturbed Environment. Oikos
1987, 321–324. [CrossRef]

44. Bogaert, J.; Ceulemans, R.; Salvador-Van Eysenrode, D. Decision Tree Algorithm for Detection of Spatial Processes in Landscape
Transformation. Environ. Manag. 2004, 33, 62–73. [CrossRef]

45. de Haulleville, T.; Rakotondrasoa, O.L.; Rakoto Ratsimba, H.; Bastin, J.F.; Brostaux, Y.; Verheggen, F.J.; Rajoelison, G.L.; Malaisse,
F.; Poncelet, M.; Haubruge, É.; et al. Fourteen Years of Anthropization Dynamics in the Uapaca Bojeri Baill. Forest of Madagascar.
Landsc. Ecol. Eng. 2018, 14, 135–146. [CrossRef]

46. Tente, O.; Oloukoi, J.; Toko, I.; Tente, O.; Oloukoi, J.; Toko, I. Dynamique Spatiale et Structure Du Paysage Dans La Commune de
Zè, Bénin. In OSFACO Conference: Satellite Images for Sustainable Land Management in Africa; CBFP: Washington, DC, USA, 2019.

47. Razagui, A.; Bachari, N.E.I. Spatio-Temporal Analysis of NDVI Vegetation Index Calculated from NOAA and MSG Satellite
Images. J. Renew. Energ. 2014, 17, 497–506.

48. Vani, V.; Mandla, V.R. Comparative Study of NDVI and SAVI Vegetation Indices in Anantapur District Semi-Arid Areas. Int. J.
Civ. Eng. Technol. 2017, 8, 559–566.

49. Huete, A.; Didan, K.; Van Leeuwen, W.; Miura, T.; Glenn, E. Land Remote Sensing and Global Environmental Change: NASA’s Earth
Observing System and the Science of ASTER and MODIS; Springer: Berlin/Heidelberg, Germany, 2011; p. 894. [CrossRef]

50. Meneses-Tovar, C.L. L’indice Différentiel Normalisé de Végétation Comme Indicateur de La Dégradation. Unasylva 2011, 62,
39–46.

51. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data Data for Categorical of Observer
Agreement The Measurement. Biometrics 1977, 33, 159–174. [CrossRef]

52. Foody, G.M. Assessing the Accuracy of Land Cover Change with Imperfect Ground Rerefence Data. Remote Sens. Envirn. 2010,
144, 2271–2285. [CrossRef]

53. Hesselbarth, M.H.K.; Nowosad, J.; Signer, J.; Graham, L.J. Open-Source Tools in R for Landscape Ecology. Curr. Landsc. Ecol. Rep.
2021, 6, 97–111. [CrossRef]

54. Kayiranga, A.; Kurban, A.; Ndayisaba, F.; Nahayo, L.; Karamage, F.; Ablekim, A.; Li, H.; Ilniyaz, O. Monitoring Forest Cover
Change and Fragmentation Using Remote Sensing and Landscape Metrics in Nyungwe-Kibira Park. J. Geosci. Environ. Prot. 2016,
4, 13–33. [CrossRef]

55. Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial Analysis of Surface Urban Heat Islands in Four Rapidly
Growing African Cities. Remote Sens. 2019, 11, 1645. [CrossRef]

56. Forman, R.T. T Some General Principles of Landscape and Regional Ecology. Landsc. Ecol. 1995, 10, 133–142. [CrossRef]
57. Burel, F.; Baudry, J. Ecologie Du Paysage. Concepts, Méthodes et Applications; Tec & Doc.: Paris, France, 2003.

https://doi.org/10.3390/resources13080107
https://doi.org/10.1016/j.jag.2017.12.006
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1007/s10661-021-09016-y
https://www.ncbi.nlm.nih.gov/pubmed/33783626
https://doi.org/10.1007/978-94-017-8941-7_8
https://doi.org/10.1023/A:1008102521322
https://doi.org/10.1111/ecog.04617
https://doi.org/10.2307/3565520
https://doi.org/10.1007/s00267-003-0027-0
https://doi.org/10.1007/s11355-017-0340-z
https://doi.org/10.1007/978-1-4419-6749-7
https://doi.org/10.2307/2529310
https://doi.org/10.1016/j.rse.2010.05.003
https://doi.org/10.1007/s40823-021-00067-y
https://doi.org/10.4236/gep.2016.411003
https://doi.org/10.3390/rs11141645
https://doi.org/10.1007/BF00133027


Land 2024, 13, 1467 19 of 20

58. Haila, Y. A Conceptual Genealogy of Fragmentation Research: From Island Biogeography to Landscape Ecology. Ecol. Appl. 2002,
12, 321–334. [CrossRef]

59. Mouhamadou, I.; Imorou, I.; Mèdaho, A.; Sinsin, B. Perceptions Locales Des Déterminants de La Fragmentation Des Îlots de
Forêts Denses Dans La Région Des Monts Kouffé Au Bénin. J. Appl. Biosci. 2013, 66, 5049. [CrossRef]

60. Ducrot, D. Méthodes d’analyses et d’interprétation d’images de Télédétection Multisource. Extraction de Caractéristiques Du Paysage; INP:
Toulouse, France, 2005.

61. Mouhamadou, I.T.; Touré, F.; Imorou, I.T.; Sinsin, B. Indices de Structures Spatiales Des Îlots de Forêts Denses Dans La Région
Des Monts Kouffé. VertigO 2012, 12, 1–17. [CrossRef]

62. Delcros, P. Ecologie Du Paysage et Dynamique Végétale Post-Culturale; CEMAGREF: Fresnes, France, 1994; p. 13. ISBN 2853623823.
63. Bogaert, J.; Rousseau, R.; Van Hecke, P.; Impens, I. Alternative Area-Perimeter Ratios for Measurement of 2D Shape Compactness

of Habitats. Appl. Math. Comput. 2000, 111, 71–85. [CrossRef]
64. Dupin, L.; Nkono, C.; Burlet, C.; Muhashi, F.; Vanbrabant, Y. Land Cover Fragmentation Using Multi-Temporal Remote Sensing

on Major Mine Sites in Southern Katanga (Democratic Republic of Congo). Adv. Remote Sens. 2013, 02, 127–139. [CrossRef]
65. Kabuanga, J.M.; Adipalina Guguya, B.; Ngenda Okito, E.; Maestripieri, N.; Saqalli, M.; Rossi, V.; Iyongo Waya Mongo, L. Suivi de

l’anthropisation Du Paysage Dans La Région Forestière de Babagulu, République Démocratique Du Congo. VertigO 2020, 20,
1–27. [CrossRef]

66. Romero-Sanchez, M.E.; Ponce-Hernandez, R. Assessing and Monitoring Forest Degradation in a Deciduous Tropical Forest in
Mexico via Remote Sensing Indicators. Forests 2017, 8, 302. [CrossRef]

67. Diello, P.; Mahe, G.; Paturel, J.-E.; Dezetter, A.; Delclaux, F.; Servat, E.; Ouattara, F. Relations Indices de Végétation–Pluie Au
Burkina Faso: Cas Du Bassin Versant Du Nakambé. Hydrol. Sci. J. 2005, 50, 221. [CrossRef]

68. Hao, F.; Zhang, X.; Ouyang, W.; Skidmore, A.K.; Toxopeus, A.G. Vegetation NDVI Linked to Temperature and Precipitation in the
Upper Catchments of Yellow River. Environ. Model. Assess. 2012, 17, 389–398. [CrossRef]

69. Bangirinama, F.; Nzitwanayo, B.; Hakizimana, P. Utilisation Du Charbon de Bois Comme Principale Source d’énergie de La
Population Urbaine: Un Sérieux Problème Pour La Conservation Du Couvert Forestier Au Burundi. Bois Forets des Trop. 2016, 8,
45–53. [CrossRef]

70. Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [CrossRef]
71. Lotfi, M.; Christiane, W.; Pietro Francesca, D.; Wissal, S. Les Services Écosystémiques Urbains, Vers Une Multifonctionnalité Des

Espaces Verts Publics: Revue de Littérature. Environ. Urbain/Urban Environ. 2017, 11.
72. Attoumani, A.; Victor, R.; Randriamampandry, C. La Croissance de La Ville d’Antananarivo et Ses Conséquences. Madamines

2019, 1, 1–25.
73. Kong, F.; Nakagoshi, N. Spatial-Temporal Gradient Analysis of Urban Green Spaces in Jinan, China. Landsc. Urb. Plan. 2006, 78,

147–164. [CrossRef]
74. Mcdonald, R.I.; Forman, R.T.T.; Kareiva, P. Open Space Loss and Land Inequality in United States’ Cities, 1990–2000. PLoS ONE

2010, 5, e9509. [CrossRef]
75. Toyi, O. Politiques Publiques Urbaines de l’Habitat Dans la Ville de Bujumbura de 1962 a 2009. Ph.D. Thesis, Université de Pau et

des Pays de l’Adour, Pau, France, 2012.
76. Mangenda, H.H.; Tshibuabua, F.M.; Bokako, C.E.; Dihoka, F.; Kandala, D. Urban Growth and Environmental Degradation in the

Municipality of Kalamu, Kinshasa. Hal 2023. Available online: https://hal.science/hal-04151946 (accessed on 22 July 2024).
77. Ujoh, F.; Dlama, K.I.; Oluseyi, I.O. Urban Expansion and Vegetal Cover Loss in and around Nigeria’ s Federal Capital City. J. Ecol.

Nat. Environ. 2011, 3, 1–10.
78. Koumoi, Z.; Alassane, A.; Djangbedja, M.; Boukpessi, T.; Kouya, A.-E. Dynamique Spatio-Temporelle de l’occupation Du Sol

Dans Le Centre-Togo. AHOHO-Rev. Géographie LARDYMES 2013, 7, 163–172.
79. Tungi, J.; Luzolo, T.; Ngembo, E.N.; Masivi, C.L.; Landu, E.L.; Kibwila, M.N. Pression Exercée Par Les Entreprises Pâtissières

Artisanales et Nganda Ntaba Sur La Végétation Arborée Urbaine et Périurbaine à Kinshasa En République Démocratique Du
Congo. Int. J. Innov. Sci. Res. 2022, 62, 25–39.

80. Twite, G.; Balume, S. Utilisation Énergétique à l ’ Échelle Urbaine En République Démocratique Du Congo: État de Lieux, Défis et
Perspectives Energy Use at the Urban Scale in the Democratic Republic of Congo: State of Affairs, Challenges and Perspectives; ISTE Ltd.:
London, UK, 2000; pp. 1–19.

81. Arnaud, Y.P.; Célestin, A.Y. Problematique de la Gestion Durable de la Foret Periurbaine de l’Anguededou (Abidjan, Cote D’Ivoire
). Rev. Sci. Tchad 2016, 36, 40–50.

82. Kabisch, N. Ecosystem Service Implementation and Governance Challenges in Urban Green Space Planning-The Case of Berlin,
Germany. Land Use Policy 2015, 42, 557–567. [CrossRef]

83. Larson, K.L.; Nelson, K.C.; Samples, S.R.; Hall, S.J.; Bettez, N.; Cavender-Bares, J.; Groffman, P.M.; Grove, M.; Heffernan, J.B.;
Hobbie, S.E.; et al. Ecosystem Services in Managing Residential Landscapes: Priorities, Value Dimensions, and Cross-Regional
Patterns. Urban Ecosyst. 2016, 19, 95–113. [CrossRef]

https://doi.org/10.1890/1051-0761(2002)012[0321:acgofr]2.0.co;2
https://doi.org/10.4314/jab.v66i0.95002
https://doi.org/10.4000/vertigo.13059
https://doi.org/10.1016/S0096-3003(99)00075-2
https://doi.org/10.4236/ars.2013.22017
https://doi.org/10.4000/vertigo.28347
https://doi.org/10.3390/f8090302
https://doi.org/10.1623/hysj.50.2.207.61797
https://doi.org/10.1007/s10666-011-9297-8
https://doi.org/10.19182/bft2016.328.a31301
https://doi.org/10.1016/S0921-8009(99)00013-0
https://doi.org/10.1016/j.landurbplan.2005.07.006
https://doi.org/10.1371/journal.pone.0009509
https://hal.science/hal-04151946
https://doi.org/10.1016/j.landusepol.2014.09.005
https://doi.org/10.1007/s11252-015-0477-1


Land 2024, 13, 1467 20 of 20

84. Cohen, B. Urban Growth in Developing Countries: A Review of Current Trends and a Caution Regarding Existing Forecasts.
World Dev. 2004, 32, 23–51. [CrossRef]

85. Angelone, S.; Holderegger, R. Population Genetics Suggests Effectiveness of Habitat Connectivity Measures for the European
Tree Frog in Switzerland. J. Appl. Ecol. 2009, 46, 879–887. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.worlddev.2003.04.008
https://doi.org/10.1111/j.1365-2664.2009.01670.x

	Introduction 
	Materials and Methods 
	Study Area 
	Selection of Satellite Images 
	Image Pre-Processing, Processing and Classification 
	Calculation of Spatial Pattern Indices and Detection of Landscape Dynamics 
	Vegetation Index 

	Results 
	Satellite Data Analysis: Classification and Mapping (2000 to 2022) 
	Changes in Land Use between 2000 and 2022 
	Dynamics of the Spatial Structure of Vegetation 
	The Normalized Difference Vegetation Index (NDVI) 

	Discussion 
	Methodological Approach 
	Spatial Structure Indices 
	Standardized Differential Vegetation Index and Green Infrastructure Composition Dynamics 
	Urbanization and Loss of Natural Cover in the Cities of Bujumbura, Kinshasa and Lubumbashi 
	Implications in Public Policy 

	Conclusions 
	References

