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Abstract: Greenscaping, a key sustainable practice, helps cities combat rising temperatures and
climate change. Urban parks, a pivotal greenscaping element, mitigate the urban heat island (UHI)
effect. In this study, we utilized high-resolution remote sensing imagery (GF-2 and Landsat 8, 9)
and in situ measurements to analyze the seasonal thermal regulation of different park types in
Zhengzhou, China. We calculated vegetation characteristic indices (VCIs) and landscape patterns
(LMs) and employed boosted regression tree models to explore their relative contributions to land
surface temperature (LST) across different seasons. Our findings revealed that urban parks lowered
temperatures by 0.65 ◦C, 1.41 ◦C, and 2.84 ◦C in spring, summer, and autumn, respectively, but raised
them by 1.92 ◦C in winter. Amusement parks, comprehensive parks, large parks, and water-themed
parks had significantly lower LSTs. The VCI significantly influenced LST in autumn, with trees
having a stronger cooling effect than shrubs. LMs showed a more prominent effect than VCIs on
LST during spring, summer, and winter. Parks with longer perimeters, larger and more dispersed
green patches, higher plant species richness, higher vegetation heights, and larger canopies were
associated with more efficient thermal reduction in an urban setting. The novelty of this study lies
in its detailed analysis of the seasonal thermal regulation effects of different types of urban parks,
providing new insights for more effective urban greenspace planning and management. Our findings
assist urban managers in mitigating the urban surface heat effect through more effective urban
greenspace planning, vegetation community design, and maintenance, thereby enhancing cities’
potential resilience to climate change.

Keywords: landscape metrics (LMs); land surface temperature (LST); urban ecology; urban parkland;
vegetation characteristic index (VCI); urban heat island (UHI); boosted regression trees

1. Introduction

According to United Nations projections, by 2050, urban areas will be home to 68%
of the world’s population [1]. Between 1990 and 2020, China’s population grew by 24.4%,
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with the urban population doubling and the rural population decreasing by 41.0%, in-
dicating a significant trend towards urbanization [2]. Rapid urbanization poses various
challenges to urban living spaces, including escalating concerns such as mental health
issues, environmental pollution, overcrowding, and noise pollution [3–5]. The UHI effect,
exemplifying the consequences of rapid urbanization on global climate change, is one of
the significant concerns [6]. The UHI effect represents the deterioration of urban thermal
conditions, leading to increased rates of heat-related illnesses and mortality among urban
residents, thereby affecting public health [7,8]. Research conducted in Shanghai highlights
a significant increase in heat-related mortality rates within urban areas compared to their
surrounding regions during the summer season [9]. A study [10] revealed a clear positive
correlation between maximum temperature and heat-related illnesses, noting that the heat
impact is nonlinear and can persist for up to 3 days. Given the pressing need to mitigate
the adverse effects of urban heat islands, this study aims to provide a more comprehensive
understanding of the key factors influencing LST in urban parks and to develop recom-
mendations for optimizing their cooling effects, thereby contributing valuable insights for
more sustainable urban planning.

Greenscaping, a landscape design program that deliberately utilizes green infrastruc-
ture, is widely acknowledged as an effective passive method for reducing heat effects [11,12].
Urban park green spaces typically help mitigate the negative impact of impervious sur-
faces on urban surface temperatures, playing a crucial role in improving urban climate
conditions [13,14]. Through shading and evapotranspiration by vegetation and water
bodies, green spaces in urban parks help lower temperatures and increase humidity in
the surrounding environment, serving as essential elements of the urban landscape. With
advancing urbanization and growing societal emphasis on the ecological environment,
the scarcity and importance of urban park green spaces have become more prominent.
However, during the early stages of urbanization in many cities, the inevitable reduction in
urban park areas occurs due to rapid population growth and the demand for residential
space, resulting in a spatial mismatch between green space supply and demand.

Research on LST highlights the significant roles of both landscape patterns [15,16],
which operate at a more macro level, and vegetation characteristic indices [17], which pro-
vide a more micro-level perspective, in mitigating the adverse effects of LST. A pronounced
nonlinear correlation between UHI effects and landscape morphological indices has been
observed in both intra-urban and extra-urban configurations [18]. Notably, the contribution
of intra-urban morphological factors appears to be more substantial [19]. Ref. [20] discov-
ered a connection between mortality rates and the density of urban structures during the
severe heat waves of 1994 and 2006.

Research on surface heat effects in China started relatively late but has grown quickly
since 2008. Previous research exhibits a clear geographical bias, primarily focusing on
economically developed metropolises and select coastal cities. The impact of a city’s geo-
graphical location [21] and climatic conditions [22,23] on UHI effects has been confirmed by
numerous studies. Investigations into the seasonality of the thermal environment in urban
park green spaces are confounded by influences from the geographical location and local hy-
drogeological settings, leading to mixed results across different studies. For example, Shen-
zhen, located in a subtropical marine monsoon climate zone, maintains an average summer
temperature of 29.66 ◦C, with a fluctuation range of 40.99–21.15 ◦C [24]. In contrast, Hanoi,
Vietnam, situated in a subtropical climate zone, experiences an average summer tempera-
ture of 40.38 ◦C [25]. However, there are certain commonalities and patterns in the spatial
and temporal distribution of surface thermal environments across various regions [26,27].
In this study, we focus on Zhengzhou, a representative inland city with pronounced UHI
effects, situated in a temperate continental monsoon climate. Zhengzhou’s flat terrain and
consistent climate minimize the influence of topographic [28,29] and climatic [30,31] vari-
ability on LST differences among parks. This reduction in external uncertainties enhances
the reliability and generalizability of our findings.
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While there are some studies investigating the impact of internal landscape variations
within urban parks on LST, such as [32–34], the majority of research still tends to catego-
rize parks as a single land use type, which may overlook the specific characteristics and
variations within individual parks. Our study aims to fill this gap by investigating how
different types of urban parks, with varied landscape structures and vegetation characteris-
tics, influence LST, providing a more detailed understanding of these effects. Furthermore,
we propose practical recommendations based on marginal effects analysis to optimize the
cooling effects of different types of urban parks. This study offers insights that can help im-
prove urban planning strategies to mitigate the UHI effect, thereby supporting sustainable
development. By concentrating on these underexplored aspects, our research provides a
theoretical basis for future ecological urban development and optimized park design.

2. Materials and Methods
2.1. Study Area

Zhengzhou City (E 112◦42′–114◦14′, N 34◦16′–34◦58′), with an area of 7567 km2, is one
of the 14 mega-cities in China and a representative city in the Central Plains region (Figure 1).
According to Chinese population statistics, Zhengzhou’s permanent population grew by
46% over the past 10 years, reaching 12.742 million. Zhengzhou resides within the warm
temperate continental monsoon climate zone, boasting an average annual temperature of
14.7 ◦C and precipitation averaging 632.4 mm annually, with the majority falling during
August. The urban terrain of Zhengzhou is predominantly flat, featuring a network
of 124 rivers that flow through the two major river basins of the Yellow River and the
Huai River (on the south side of the site). The vegetation is characteristic of the warm
temperate deciduous broad-leaved forest type, with common plant species including
Populus tomentosa, Salix matsudana, Koelreuteria paniculata, and Acer negundo. The soil in
Zhengzhou primarily consists of warm temperate deciduous broad-leaved forest, dry forest,
grassland, and brown soil, with the predominant soil types in the urban area being brown
soil and tidal soil.
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Figure 1. Location of Zhengzhou city, Henan, China. (a) Distribution of 123 selected parks in the
study area versus 805 sampling points, (b–f) Distribution of sample sites in selected parks, (b’–f’)
Selected parkland classification results.

2.2. Data and Methods

The experimental design of this study consists of four main stages (Figure 2). First,
data acquisition was conducted using high-resolution (0.5 m) GF-2 remote sensing images,
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30 m resolution Landsat 8 and 9 satellite imagery, and in situ measurements of vegetation
characteristics within the parks. In the second stage, data processing was carried out, where
the three datasets were utilized to calculate the LM, LST, and VCI for the 123 parks. The
third stage involved classifying the 123 parks to observe the spatial heterogeneity in LST
and the driving factors, including the LM and VCI. In the final stage, mathematical models
and machine learning regression techniques were employed to identify the key driving
factors for different parks across various seasons, and effective strategies were proposed to
mitigate UHI effect for each park type.

Figure 2. Flowchart of this study.

2.2.1. Parks Selection, Classification, and Field Survey

Based on criteria such as area, location, and level of development, 123 parks located
in the central urban area were selected. Utilizing ArcGIS 10.5 and high-resolution GF-2
satellite imagery with a resolution of 0.5 m, combined with on-site observations, the vector
boundaries of the 123 urban park green spaces were manually extracted (Figure 1).

The parks were categorized according to their size: small parks (<2 ha), medium-
sized parks (2–10 ha), and large parks (>10 ha). Furthermore, following the guidelines
outlined in the ‘Classification Standard for Urban Green Spaces’ (CJJ/T85-2017), which
considers factors such as the ratio of paved areas, types of vegetation, and methods of
vegetation maintenance, the parks were categorized into four distinct types: amusement
parks, community parks, comprehensive parks, and theme parks. Water bodies are one
of the most important landscape features affecting park LST and can provide significant
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cooling effects. Therefore, the parks were further categorized into water-themed parks and
dry parks based on the presence of water features.

The field sampling for this study was conducted from July to August 2021, encompass-
ing a total of 123 parks. A total of 805 plots were randomly selected using ArcGIS Pro 3.0.2,
with each sampling point centered in a 10-m radius circle for vegetation characteristics
surveys. For parks smaller than 2.5 hectares, only one plot was selected. For parks larger
than 2.5 hectares, an additional plot was selected for every additional 2.5 hectares. For
example, a park reaching 5 hectares had two plots, and a park reaching 7.5 hectares had
three plots, and so on, with a maximum of 25 plots per park. To ensure the accuracy of the
results, each plot was required to be at least 100 m apart from adjacent plots.

To minimize the impact of internal variability on the experimental results, the average
VCI from multiple plots within a single park was used to represent the entire park. This
approach helps to reduce the influence of internal differences on the outcomes. When
adjusting the sample point locations according to real-world conditions, high-resolution
satellite images from Google Earth were utilized for accuracy. The adjusted sample point
locations were recorded and cross-referenced with their latitude and longitude coordinates.
Field surveys were then conducted at these confirmed locations.

2.2.2. Inversion of LST

The study initially divided the year into four seasons using the solar term method com-
bined with local temperature data in Zhengzhou. March to May, June to August, September
to November, and December to February were categorized as spring, summer, autumn, and
winter, correspondingly. In this study, it was recognized that using single-time-point data
to infer LST is influenced by numerous factors and is subject to significant randomness,
making it unable to represent the LST characteristics over a specific period. Therefore, mul-
tiple sets of remote sensing imagery from 2019 to 2022 were selected, retaining 28 periods
(Table 1) with an overall cloud cover of less than 1%, for LST inversion.

Table 1. Remote sensing data description.

Satellite Sensor Date Satellite Sensor Date

Landsat 8 OLI_TIRS 12 November 2019 Landsat 8 OLI_TIRS 30 September 2021
Landsat 8 OLI_TIRS 31 January 2020 Landsat 8 OLI_TIRS 3 December 2021
Landsat 8 OLI_TIRS 16 February 2020 Landsat 8 OLI_TIRS 19 December 2021
Landsat 8 OLI_TIRS 19 March 2020 Landsat 9 OLI-2_TIRS-2 27 December 2021
Landsat 8 OLI_TIRS 4 April 2020 Landsat 9 OLI-2_TIRS-2 2 April 2022
Landsat 8 OLI_TIRS 22 May 2020 Landsat 8 OLI_TIRS 10 April 2022
Landsat 8 OLI_TIRS 26 August 2020 Landsat 9 OLI-2_TIRS-2 18 April 2022
Landsat 8 OLI_TIRS 11 September 2020 Landsat 9 OLI-2_TIRS-2 4 May 2022
Landsat 8 OLI_TIRS 29 October 2020 Landsat 9 OLI-2_TIRS-2 20 May 2022
Landsat 8 OLI_TIRS 16 December 2020 Landsat 9 OLI-2_TIRS-2 5 June 2022
Landsat 8 OLI_TIRS 1 January 2021 Landsat 8 OLI_TIRS 13 June 2022
Landsat 8 OLI_TIRS 17 January 2021 Landsat 8 OLI_TIRS 29 June 2022
Landsat 8 OLI_TIRS 2 February 2021 Landsat 9 OLI-2_TIRS-2 7 July 2022
Landsat 8 OLI_TIRS 22 March 2021 Landsat 8 OLI_TIRS 1 September 2022

The radiative transfer equation method is employed to estimate the atmospheric
thermal impact on LST by utilizing standard atmospheric profile data. Subsequently, this
component of thermal influence is subtracted from the total thermal radiation detected
by the thermal infrared sensor. This method enables a more accurate depiction of land
surface thermal radiation characteristics, yielding LST estimates with a precision of up to
0.6 ◦C [35]:

Lλ= [ε B(Ts) + (1 − ε) L ↓ ]τ + L ↑ (1)

In Equation (1), Lλ represents the thermal infrared radiance received by the satellite
sensor, ε denotes the land surface emissivity, B(Ts) represents the blackbody radiance
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(W·m−2·sr−1·µm−1) corresponding to the land surface temperature (Ts). τ represents the
atmospheric transmittance in the thermal infrared wavelength range, while L ↑ denotes
the upwelling radiance from the atmosphere, and L ↓ represents the downwelling radiance
reflected from the ground and reaching the sensor. ε is determined as below:

ε = 0.004Pv + 0.986 (2)

Pv =

(
NDVI − NDVIsoil

/
NDVIveg − NDVIsoil

)
(3)

In Equation (3), NDVIsoil and NDVIveg represent the values of NDVI when the land
surface consists of bare soil (Pv = 0) and when vegetation cover is 100%, respectively [36].
After calculating the surface emissivity, the actual LST can be computed using the inverse
function of the Planck equation, as shown in the following formula:

TS =
K2
/
ln
[

K1

B(TS)
+ 1
] (4)

where TS represents the actual LST in Kelvin (K). K1 = 774.8853 W·m−2·sr−1·µm−1 and
K2 = 1321.0789 W·m−2·sr−1·µm−1, which are pre-defined constants before satellite emission.

2.2.3. Impact Factors

Based on the findings of field research, 15 VCIs were selected as explanatory variables
for LST, comprising 6 indices associated with trees, 5 indices linked to shrubs, and 3 indices
correlated with biodiversity (Table 2).

Table 2. Surface thermal environmental drivers and abbreviations.

Variable Abbr. Units Description Formula

Tree Count TC individuals Total number of trees in sample
plots TC = ∑TSC

i=1 ni

Tree Species Count TSC individuals Total number of tree species in
sample plots -

Average Tree Crown
Width TCW m Mean width of tree crowns TCW = ∑TC

i=1 TCW i
TC

Average Tree Height TH m Mean height of trees in sample
plots TH = ∑TC

i=1 THi
TC

Average Tree Diameter
at Breast Height TDBH cm Average diameter of tree trunks at

1.3 m above ground TDBH = ∑TC
i=1 TDBHi

TC

Tree Crown Base
Height TCBH m Mean height from ground to

lowest branch of crown TCBH = ∑TC
i=1 TCBHi

TC

Shrub Count SC individuals Total number of shrubs in sample
plots SC = ∑SSC

i=1 ni

Shrub Species Count SSC individuals Total number of shrub species in
sample plots -

Average Shrub Canopy
Width SCW m Mean width of shrub canopies SCW = ∑SC

i=1 SCW i
SC

Average Shrub Height SH m Mean height of shrubs in sample
plots SH = ∑SC

i=1 SHi
SC

Average Shrub Stem
Diameter SSD cm Average diameter of shrub stems SSD = ∑SC

i=1 SSDi
SC
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Table 2. Cont.

Variable Abbr. Units Description Formula

Individual Count C individuals Total number of individuals in
sample plots C = TC + SC

Simpson Index D -
Probability that two randomly

selected individuals belong to the
same species

D = 1 − ∑N
i=1 (

ni
C )2

Shannon-Wiener Index H - Index accounting for species
abundance and evenness H = −∑N

i=1(Pi × ln(Pi))

Menhinick Index DM -
Measure of species richness

considering the number of species
and individuals

DM = N√
C

Mean Patch Size AREA_MN ha Average size of landscape patches AREA_MN = ∑
patch count
i=1 patch areai

patch count

Edge Density ED m/ha Total edge length in the landscape
per unit area (per hectare) ED =

total edge length
total landscape area

Interspersion and
Juxtaposition Index IJI % Dispersion and juxtaposition of

patch types (0: low, 100: high) I J I = actual adjacencies
max adjacencies × 100

Largest Patch Index LPI % Percentage of landscape occupied
by the largest patch LPI = largest patch area

total landscape area × 100

Patch Perimeter PERIM m Total boundary length of patches -

Vegetation Cover
Percentage PG % Percentage of landscape covered

by vegetation PG =
vegetation area

total landscape area × 100

Impervious Surface
Percentage PI % Percentage of landscape covered

by impervious surfaces PI = impervious area
total landscape area × 100

Water Body Percentage PW % Percentage of landscape covered
by water bodies PW =

water body area
total landscape area × 100

Shape Index SHAPE -
Complexity of patch shapes

relative to a standard shape (e.g.,
square)

SHAPE =
patch perimeter√

patch areai

Shannon Diversity
Index SHDI - Index considering species richness

and evenness across patches SHDI = −∑N
i=1(Pi × ln(Pi))

N represents the total number of species (both tree and shrub species) in the sample plots. ni represents the
number of individuals of the ith species. Pi represents the proportion of the ith species, calculated as Pi = ni/C.
TCW i represents the crown width of the ith tree. THi represents the height of the ith tree. TDBHi represents the
diameter at breast height of the ith tree. TCBHi represents the crown base height of the ith tree. SCW i represents
the canopy width of the ith shrub. SHi represents the height of the ith shrub. SSDi represents the stem diameter
of the ith shrub. patch count represents the total number of patches in the landscape. patch areai represents the
area of the ith patch in the landscape. patch perimeteri represents the perimeter of the ith patch in the landscape.
total landscape area represents the total area of the landscape being studied. actual adjacencies represents the
actual number of adjacent patch pairs. max adjacencies represents the maximum possible number of adjacent
patch pairs.

Simultaneously, 10 dependent landscape indices, capable of comprehensively describ-
ing landscape patterns, were utilized as explanatory variables for LST. Firstly, land cover
classification of the study area was conducted using high-resolution imagery from the GF-2
satellite. The background imagery was acquired on 25 May 2017, and 16 April 2018, with
a spatial resolution of 1 m × 1 m. Following preprocessing of the GF-2 remote sensing
images, an object-oriented approach was employed for map segmentation and classification.
Classification accuracy was assessed using a confusion matrix, yielding an overall accuracy
of 89.12% (refer to Figure 1b’–f’). Subsequently, the obtained results were inputted into
Fragstats 4.2 software for analysis of landscape pattern features, resulting in the derivation
of ten landscape indices.
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2.2.4. Correlation between LST and Driving Factors

Urban park LST, under different seasons and types, is treated as the dependent variable,
while the VCI and LM are considered independent variables to investigate the main driving
factors in urban parks. After classifying the urban parks in Zhengzhou and calculating LST
and influencing factors, one-way analysis of variance (p < 0.05) and independent samples
T-tests are used to validate significant differences in LST means and driving factors among
different types of parks during different seasons. Subsequently, a three-step process is
employed to study the impact of driving factors on the LST of urban parks:

First, data samples are examined using the 1.5 times the interquartile range method
to detect and discard outliers. Spearman correlation analysis (p < 0.05) is then employed
to examine the significant relationships between driving factors and LST across seasons
and park types. Second, boosted regression tree models are constructed in R 4.2.2 to
explore the relative contributions of driving factors on seasonal LST and its variation.
Bootstrap aggregating (bagging) fractions of 0.5 and 0.75 are used [27,37,38], and the
optimal parameter solution is obtained through iterations during tree model construction.
The final output model is validated through 10-fold cross-validation to investigate the
impact of various driving factors on LST across different seasons and park types. Third,
marginal effects illustrate how a single independent variable influences the prediction
outcome while holding other variables constant. In this study, partial dependence plots are
used to identify key variables affecting LST in different types of parks and to analyze their
specific impacts on LST. This approach explores the reasonable range of changes in driving
factors aimed at reducing surface temperature, providing a basis for decision-making in
urban park green space planning.

3. Results
3.1. Characteristics of Spatial and Temporal Variability of LST in Parks

During autumn, parks exhibit a greater temperature difference compared to urban
areas, with an average LST of 26.10 ◦C, which is 2.84 ◦C lower than that of the urban area
(Figure 3, Table 3). However, in winter, the LST shows a slight elevation within parks
compared to urban areas. During summer, the LST within parks varies between 31.32 ◦C
and 40.67 ◦C, averaging at 37.30 ◦C. Hotspots within park areas are predominantly situated
in the central urban region, showing a pattern of elevated LSTs towards the east and west,
and relatively cooler LSTs towards the north and south. In spring, park LSTs show a minor
elevation compared to autumn, averaging at 28.90 ◦C. Overall, park LSTs during this season
are 0.65 ◦C lower than the urban average.

Table 3. LST in four seasons in parks of the study area.

Season LST (◦C) Amusement
Parks

Community
Parks

Comprehensive
Parks

Theme
Parks

Small
Parks

Medium-
Sized
Parks

Large
Parks

Dry
Parks

Water-
Themed

Parks

Spring

Maximum 8.75 30.43 30.89 32.75 31.95 32.75 31.05 32.75 30.55
Minimum 26.9 24.87 25.34 27.07 27.92 24.87 25.34 24.87 25.34
Average 29.99 28.09 28.6 29.23 30.06 28.91 28.16 29.45 27.93
Standard
Deviation 1.11 1.44 1.25 1.57 0.96 1.41 1.31 1.31 1.22

Summer

Maximum 40.67 37.9 38.7 39.76 40.67 39.76 37.37 40.67 37.81
Minimum 35.35 32.74 31.32 33.92 34.95 32.74 31.32 32.23 31.32
Average 37.73 35.26 35.1 36.01 37.83 36.06 34.52 36.62 34.59
Standard
Deviation 1.37 1.5 1.73 1.61 1.31 1.4 1.43 1.75 1.44

Autumn

Maximum 28.65 27.45 27.6 28.49 28.65 28.49 27.15 28.65 27.31
Minimum 24.12 24.29 23.79 24.71 25.58 24.12 23.79 24.12 23.79
Average 26.93 25.75 25.77 26.18 27 26.18 25.46 26.51 25.37
Standard
Deviation 0.97 0.87 0.91 1.01 0.82 0.93 0.8 0.96 0.74
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Table 3. Cont.

Season LST (◦C) Amusement
Parks

Community
Parks

Comprehensive
Parks

Theme
Parks

Small
Parks

Medium-
Sized
Parks

Large
Parks

Dry
Parks

Water-
Themed

Parks

Winter

Maximum 7.86 8.42 8.75 8.14 7.84 8.06 8.75 8.75 8.37
Minimum 3.99 5.56 5.23 5.74 4.74 3.99 5.23 3.99 4.9
Average 6.5 6.82 6.86 7.09 6.58 6.68 7 6.84 6.69
Standard
Deviation 0.93 0.77 0.77 0.82 0.79 0.87 0.78 0.89 0.68Land 2024, 13, x FOR PEER REVIEW 9 of 25 
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The research also highlights substantial disparities in LST among various park types
during spring, summer, and autumn, though these distinctions are less pronounced during
winter. Except for winter, large parks and water parks exhibit lower LSTs, while amusement
parks, small parks, and dry parks have higher average temperatures compared to other
parks (Figure 4). In contrast, during winter, the distribution of LSTs among different types
of parks is completely reversed, with theme parks, large parks, and water-themed parks
having higher LSTs. During spring, amusement parks and theme parks have higher LSTs,
averaging 29.99 ◦C and 29.23 ◦C, respectively. In summer and autumn, the average LST
of amusement parks is 37.73 ◦C and 26.91 ◦C, respectively. Throughout spring, summer,
and autumn, there is a notable decline in LST as park area increases, and dry parks exhibit
significantly higher LST than water-themed parks. In winter, the LST of small parks
(6.58 ◦C) is lower than that of large parks (7.0 ◦C). These findings indicate that there are
statistically significant differences in LST among different types of parks during different
seasons, and various classification indicators have a significant influence on the LST of
parks during different seasons. These findings show statistically significant differences
in LST among park types across seasons, with various classification indicators strongly
influencing park LST during different seasons.
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Figure 4. Differences in LST categories among parks in different seasons. The letters a, b, and c
denote significant disparities identified via Fisher’s least significant difference test (p < 0.05) across
various park types during different seasons. (a–c), (d–f), (g–i), and (j–l) represent the LST distribution
of parks classified by different standards in spring, summer, autumn, and winter, respectively.
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3.2. Spatial Changes in Impact Factors

For the VCI, among various park types, amusement parks have notably smaller TSC,
TC, S, and H values compared to others, while their TDBH value significantly exceed
that of others, reaching 19.52 cm (Figure 5). Theme parks have significantly higher TH
compared to other parks, with a value of 5.77 m. When comparing parks of different sizes,
the values of H, TSC, and TC decrease gradually as the park area decreases, while D shows
the opposite trend. Large parks exhibit significantly higher SSC compared to other parks,
with an average of 18 species. Additionally, SC, DM, and S in large parks are significantly
larger than in small parks, while TDBH is significantly smaller than in small parks. This
indicates that large parks have a greater variety of plant species, and the distribution of
species is more even. In water-themed parks compared to dry parks, water-themed parks
have significantly higher values for TH, TSC, TC, TCBH, SSC, SC, DM, S, and H, while SSD
and D values are significantly lower in water-themed parks, measuring 11.73 cm and 0.13,
respectively. This suggests that water-themed parks generally have better conditions for
tree species in terms of various indicators, including species richness, quantity, and overall
status. Water-themed parks also tend to have higher numbers of species, greater species
richness, and more even distribution. Overall, the distribution of vegetation indices varies
among different parks, and comprehensive parks, large parks, and water-themed parks
demonstrate clear advantages in terms of species diversity, richness, and evenness.

For the LM, there is a relatively small variation in landscape fragmentation among
different park types, while significant differences exist in patch diversity and land cover
types (Figure 5). PI and AREA_MN show weak differences among parks, whereas other
landscape indices exhibit significant variations among different park types. Among parks
with different characteristics, the LPI of amusement parks is significantly higher compared
to other parks, while PERIM and SHDI show the opposite trend. In parks with different
sizes, PERIM increases with park area, and large parks have significantly higher SHDI
and lower ED. Small parks have significantly higher PG and LPI compared to large parks,
while PW and IJI show the opposite pattern. In water-themed parks and dry parks, PW, IJI,
PERIM, SHAPE, and SHDI are significantly higher in water-themed parks, while LPI and
PG show the opposite trend.

3.3. Corrections between LST and Impact Factors

To examine their correlation with LST in different seasons, all 25 factors were included
in the correlation analysis. Figure 6 displays the varying degrees of correlation between
LST and influencing factors across different seasons. Overall, the correlations between
the indicators and LST are stronger in spring, summer, and autumn compared to winter.
(Figure A1 illustrates the results of the correlation analysis between LST and influencing
factors for different types of parks under different seasons). From spring to autumn,
significant negative correlations were observed between LST and TC, TSC, SC, SSC, C, D, H,
PERIM, PW, SHAPE and SHDI. Notably, during summer, C, PERIM and SHAPE exhibited
the strongest correlations of −0.71, −0,75 and −0.78, respectively. Conversely, IJI and LPI
showed significant positive correlations with LST. Among them, PERIM and SHAPE had
the strongest correlation in autumn (both −0.65), while PERIM had the strongest correlation
in spring (−0.58), and AREA_MN had the strongest correlations in winter (0.24).

3.4. Relative Importance of Impact Factors

To address model overfitting, 5 VCI and 5 LM variables that have a significant impact
on LST were selected. These variables were incorporated into an enhanced regression tree
model for model construction, enabling us to further analyze their relative contributions to
LST under complex conditions. The results revealed that the VCI had a higher contribution
rate to LST during autumn, accounting for 50.33%, while the LM exhibited the highest
contribution rate in winter, with a value of 61.65% (see Figure 7).
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Based on the classification of park types, except for theme parks during winter, the
contribution of the LM is higher than that of the VCI (Figure 8). In amusement parks,
TCW, PERIM, and AREA_MN are the top three factors influencing LST in spring, summer,
and autumn, accounting for a combined average contribution of 59.14% to LST variations.
In winter, the dominant factor was SHAPE_MN, contributing 28.01%. In community
parks, PERIM is the predominant driver of LST variations, contributing 39.32%, 38.06%,
and 34.75% in summer, autumn, and spring, respectively, while AREA_MN becomes the
major contributor during winter, with a contribution rate of 51.33%. In comprehensive
parks, PERIM has the highest explanatory power for LST in spring, summer, and autumn,
accounting for 39.24%, 39.24%, and 37.84%, respectively, while SHAPE becomes the primary
factor in winter, contributing 20.04%. In theme parks, AREA_MN, ED, and SHAPE have
significant effects on LST from spring to autumn, contributing to a total contribution rate of
75.58%, 88.2%, and 71.84%, respectively, across different seasons.
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In terms of park size, in small parks, the factors contributing the most to LST in
winter are TH (27.59%) and IJI (17.2%), while in other seasons, the major factors are PERIM,
AREA_MN, ED, and DM (Figure 8). In medium parks, the significant contributors to
LST variation are TCW, DM, SHAPE, and ED, with the average total contributions to
park LST ranking as follows: spring (67.59%) > summer (62.83%) > autumn (57.33%) >
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winter (47.18%). In large parks, PERIM has the highest contribution in spring and autumn,
followed by TH, while in summer, ED explains 22.20% of the variation, followed by PERIM
at 19.01%. In winter, DM has the highest contribution (32.15%).

Comparing parks with and without water bodies, the LM has a stronger relative
contribution to LST in dry parks, while in water-themed parks, the total contribution of
the LM to LST is higher in summer compared to the VCI, but the opposite is observed
in other seasons (Figure 8). In water-themed parks, the significant factors contributing
to LST in spring, summer, and autumn are PERIM, AREA_MN, and ED, with the total
contributions ranking as summer (73.95%) > autumn (92%) > spring (44.21%). In winter,
the major contributors to LST in parks without water are DM, PERIM, and SHAPE, with
contributions of 18.51%, 18.09%, and 12.66%, respectively.

3.5. Marginal Effects

Most VCIs show consistent cooling effects on LST during spring, summer, and autumn,
with a stronger impact observed during summer and autumn (Figure 9). TCW has a positive
contribution to park LST throughout the year, with the contribution magnitude ranking as
autumn > spring > summer > winter. SSD shows a slightly decreasing and then increasing
trend in its contribution to LST in spring, summer, and autumn, with the strongest influence
observed in summer and a decreasing trend during winter, with a controlled magnitude of
0.2 ◦C. DM and H exhibit fluctuating contributions to LST, with a downward trend, but the
magnitude of fluctuations shows distinct seasonal differences. Except for winter, TSC and
TC have negative impacts on park LST, with stronger control magnitudes during summer
and autumn, at 0.75 ◦C and 1.6 ◦C, respectively. SSC shows a rising and then a stepwise
decline trend in its contribution to LST across the four seasons, with inflection points at
2.5, 5, 3.7, and 3. On the other hand, SH, SC, and D exhibit varying contributions to park
LST across different seasons, without clear changing trends. These results demonstrate that
by controlling the value of the VCI, within a certain range, beneficial effects on the surface
thermal environment can be achieved. Therefore, vegetation planting and maintenance can
be utilized to regulate LST to a certain extent.
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The marginal effects of the LM on LST exhibit seasonal variations. Throughout the
year, SHAPE shows a significant positive contribution to LST, while PW overall exhibits a
decreasing trend in its contribution, with the maximum cooling effect in spring (0.09 ◦C)
and the minimum in winter (0.03 ◦C). During spring, summer, and autumn, PI and ED
demonstrate a fluctuating upward trend in their control over park LST, with the strongest
influence observed during summer, whereas PERIM and AREA_MN exhibit the opposite
trend. In summer, as SHDI increases, LST shows a declining pattern, and when SHDI
reaches 1.05, its impact on LST remains relatively stable. LPI exhibits a decreasing and then
increasing trend during summer, with a turning point at LPI 60. In other seasons, as LPI
increases within the range of 30–90, LST rises. In summer, PG’s contribution to LST shows
an opposite pattern compared to other seasons, characterized by a decrease followed by
a rebound.

4. Discussion
4.1. Seasonal Variations in LST in Parks

Most of the related studies in Zhengzhou City have focused on correlating changes
in LST with urbanization level or gradients [39–41], investigating the drivers influencing
LST including different land cover types, the LM, human activities, and urban habitat
quality [42–44], or examining the interannual thermal effect change trends and predic-
tions [40,45,46]. However, there is relatively limited research specifically analyzing the
seasonal variations of thermal effects in parks and green spaces.

Our results indicate that the average LST in parks in Zhengzhou City is lower by
0.65–2.84 ◦C compared to the urban areas in all seasons, with the most significant heat
mitigation effect observed in autumn, reaching up to 5.15 ◦C. This cooling effect surpasses
the temperature reduction ranges observed in ten large parks in Beijing (0.11–3.22 ◦C) [47],
parks in Nanjing (0.6 ◦C), and the average temperature reduction in urban parks from
16 studies worldwide (0.94 ◦C) [48], while it is lower than the temperature reduction
observed in 21 parks in Ethiopia (3.93 ◦C) [49] and the average temperature reduction
in 30 parks in Beijing (3.55 ◦C) [50]. The maximum temperature reduction in our study
occurred in autumn, reaching 5.15 ◦C, which is less than the maximum temperature
reduction observed in a 0.24–hectare urban park in the capital of Portugal (9 ◦C) [51] and in
92 parks in Nagoya, Japan (7.26 ◦C) [52].

The seasonal analysis of urban park LST revealed that parks in Zhengzhou exhibit
the strongest alleviation effect on urban heat during autumn, followed by summer and
spring, while winter shows an increase in LST, which differs from similar research results.
Studies conducted in Japan and Changchun also suggest a more pronounced cooling effect
of park green spaces in summer [53,54]. Firstly, our findings align with previous research,
indicating that urban park green spaces are important urban landscapes for regulating the
thermal environment [14,55,56]. However, differences in average cooling intensity, maxi-
mum cooling effect, and seasonal variations among different cities are greatly influenced
by research measurement methods and time. A study on the spatiotemporal variations
of UHI intensity reveals that cities with similar climatic conditions may exhibit notable
disparities in UHI intensity. The scale of the population primarily influences the generation
of anthropogenic heat, although additional structural and climatic elements also influence
UHI variability [57]. Furthermore, the correlation between urban parks and surface ther-
mal conditions varies based on local climates, showcasing diverse ecological traits across
different climate regions [58]. In warmer climates, urban park green spaces exert a more
pronounced cooling influence on LST [51,59]. This seasonal difference is associated with
solar radiation, air humidity, and rainfall [60], which indirectly influence vegetation and
further impact LST through feedback mechanisms. Multiple studies have validated the
notable correlation between park cooling effects and the geographical, climatic, and topo-
graphic characteristics of surveyed parks [48,61]. The seasonal variation in solar altitude
leads to higher solar radiation during spring and summer, while the radiation is lowest in
winter. Unlike other seasons, the combined effects of heat sources and emissions in winter
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result in a weaker overall mitigation effect on LST throughout the year [62]. Additionally,
the presence of leaf litter in winter significantly increases radiation reflectance [63,64]. Prior
research has mainly focused on analyzing LST in individual large parks, and limitations
in satellite pixel resolution may omit or misidentify numerous small park green spaces as
impervious urban surfaces [65]. However, it is crucial not to overlook small-scale parks,
as urban park green spaces are highly dispersed, heterogeneous, and dynamic. Previous
studies have underscored the considerable cooling benefits that small parks can provide to
their surrounding areas [66,67]. Zhengzhou has 32 parks with an area less than 2 hectares,
exhibiting an average cooling magnitude of 0.30 ◦C.

4.2. Impact Factors Driving LST

As urban LST decreases, the certainty surrounding the driving factors of vegetation
indices on urban LST diminishes, and the overall driving process becomes more complex.
The spatiotemporal variations and mechanisms influencing LST also become more intricate,
consistent with Peng et al.‘s findings [24]. Our findings suggest that different VCI values
exert a notable negative impact on LST, and overall, trees exhibit a stronger cooling effect
on LST compared to shrubs. This aligns with prior studies, highlighting the significant
influence of tree–shrub configuration and composition on surface thermal effects in urban
parks, as confirmed in Cao et al.‘s study on parks in Nagoya, Japan [68]. The study reveals
that vegetation characteristics contribute significantly to LST during autumn, and the
correlation with LST is stronger during spring and autumn. The number of trees and
shrubs is closely related to the differences in LST in urban parks, with areas having a higher
vegetation quantity generally exhibiting lower LST [69].

The differences in vegetation types are also an important factor contributing to vari-
ations in regional LST research results. Refs. [70,71] found that coniferous trees, due to
their lower leaf density compared to broad-leaved trees, allow more solar radiation to
penetrate through the canopy, leading to a stronger cooling effect in areas with coniferous
vegetation compared to those with broad-leaved vegetation. Additionally, variations in
vegetation phenology among species, influenced by the climatic zone of the study area, also
contribute to the seasonal fluctuations of LST [72]. Furthermore, factors such as artificial
maintenance, irrigation, and rainfall can have a significant impact on the extent and range
of vegetation-induced LST reduction [73].

The LM of urban parks exhibits a greater driving effect on LST in most seasons
compared to the VCI. Numerous studies have shown a strong correlation between changes
in LST within urban areas and landscape composition and pattern [74,75]. Vegetation
and water bodies effectively lower LST, aligning with previous research, whereas non-
permeable surfaces have the opposite effect [39,41,46].

Specifically, vegetation and water bodies exhibit a notable cooling effect on LST during
summer and autumn, although this effect diminishes during winter. Additionally, water
bodies have a more substantial impact on LST compared to vegetation [58,60,76–78]. During
winter, with reduced solar radiation, the UHI effect is primarily caused by human activities
and pollution, resulting in a lesser influence of land cover types [79].

AREA_MN, PERIM, and LPI exhibit stronger negative influence on LST across all
seasons. AREA_MN and LPI, as measures of park patch fragmentation [80], suggest that
heightened landscape fragmentation worsens surface thermal conditions. [39] also found a
significant negative effect of AREA_MN on LST in spring in Zhengzhou, and the influence
of park perimeter and landscape fragmentation on LST has been confirmed in studies
conducted in many other cities [58,81–83]. Research findings suggest that a rise in shape
index correlates with a notable increase in LST, aligning with similar conclusions drawn
from studies conducted in Japan [68]. IJI, SHDI, and ED have a clear positive impact on
LST in all seasons, except for summer, when the impact is reversed. This suggests that
denser and more evenly distributed patches within the park, along with a higher degree of
fragmentation at the patch boundaries, result in higher LST, which is also corroborated by
other studies [19,84,85].
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4.3. Implications for Future Urban Planning and Management

Based on the findings of this study regarding UHI effect, various recommendations
and measures can be proposed for different parks:

In community parks, increasing species richness may help achieve the cooling thresh-
old. This could potentially be done by transplanting or preserving large trees on site to
enhance TDBH. Care and reduced pruning of shrubs might also be implemented to increase
the SH and alleviate the surface thermal environment. Additionally, since this type of park
usually has a low proportion of water bodies, incorporating small-scale water reservoirs or
introducing flowing water could enhance the proportion of water bodies. Due to PERIM’s
high contribution, merging scattered land parcels and increasing the park’s perimeter is
likely to be beneficial.

For theme parks, the relative importance of AREA_MN appears to be significantly
stronger than other indicators, so it may be advisable to appropriately increase the pro-
portion of individual patches. This could potentially be achieved by enlarging the area
of green spaces or specific architectural features to enhance the proportion of dominant
patches in the landscape. Regarding plant selection, various types of trees and shrubs might
be planted to enhance species diversity. Attention should be given to plant maintenance
practices that promote larger SCW and TH. Selecting tree species that naturally grow taller
or pruning existing trees to increase branch height could enhance the cooling effects of
urban parks.

In smaller parks, focusing on enhancing the overall coherence of the landscape and
minimizing patch fragmentation is advisable. Increasing the proportion of green spaces
appropriately might help achieve the maximum cooling threshold. In terms of vegetation,
selecting plant species with larger canopy sizes is recommended to maximize the cooling
effect on LST. When selecting trees for medium parks, it is generally recommended to
choose species with a height greater than 5 m and a branch height ranging from 2 to 2.5 m.
Increasing the diversity of shrub species and ensuring a minimum of three shrub species
per one hundred square meters can be important. In terms of landscape layout, efforts
should be made to reduce patch fragmentation. Increasing the proportion of water bodies
through the addition of features such as fountains, natural wetlands, or small depressions
acting as water reservoirs may help lower LST in medium parks while enhancing the
overall park landscape.

In dry parks, it is recommended to increase the density of trees to at least twenty trees
per one hundred square meters. Control measures should be implemented to limit SSC
to less than three per one hundred square meters, while still meeting the threshold for
increasing LST. In terms of landscape pattern, a water body proportion of approximately
10% might achieve maximum cooling intensity within the smallest area. Additionally,
enhancing the diversity of landscape patches and striving for an even distribution of
various patch types could help reduce the dominance of the largest patch and contribute to
mitigating LST.

4.4. Limitations and Suggestions

Firstly, this study utilized remote sensing data to quantitatively analyze seasonal LST,
recognizing that the thermal environment of the land surface is influenced by various
atmospheric physical factors to a certain extent. Therefore, future research should focus
on supplementing remote sensing thermal data with field meteorological survey data
to enhance research accuracy by incorporating multiple data sources. Secondly, in the
investigation of the VCI, due to constraints in time and cost, although this study defined
805 sample plots for park sampling, some data gaps exist compared to a comprehensive cen-
sus, meaning the sampling may not be fully comprehensive. Moreover, ground cover plants
were not considered in this study due to the complexity of mixed planting in urban parks,
which makes it difficult to survey these species accurately. Thirdly, beyond the intrinsic
characteristics of green spaces affecting park LST, the surrounding built environment also
plays a significant role. Factors such as location and adjacent building facades contribute
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to this influence. Future research would benefit from integrating these factors into the
research framework for a more comprehensive analysis of land surface temperature in
urban park green spaces. Additionally, the external environment surrounding urban parks,
such as topography [86], nearby landforms [87], and the built environment [88], may also
impact the parks’ cooling effects. These external factors can potentially influence or even
modulate the effectiveness of the cooling provided by urban green spaces. However, this
study did not consider the role of the external environment in shaping the parks’ thermal
regulation. This represents a limitation of our current analysis. Future research should
incorporate these external influences to better understand how urban parks’ cooling effects
are affected by their broader surroundings.

5. Conclusions

This study integrates remote sensing and vegetation survey data to examine how
the VCI and LM affect LST across various seasons and park types in Zhengzhou City.
The key findings are: (1) Seasonal variations exist in the cooling effect of green spaces
in Zhengzhou City. During autumn, summer, and winter, the average LST decreases by
2.89 ◦C, 1.41 ◦C, and 0.65 ◦C, respectively, compared to urban areas. However, in winter,
it increases by 1.92 ◦C. (2) Notable LST differences among various park types are evident
in spring, summer, and autumn. However, in winter, distinctions primarily occur within
park areas. Community parks, comprehensive parks, large parks, and water-themed parks
display more distinct temperature variations on the land surface. (3) The LM contributes
more to LST than the VCI in spring, summer, and winter, whereas in autumn, the opposite
is observed. (4) For all parks in the study area, parks with longer perimeters, larger patch
areas, more dispersed distribution, higher plant community richness, taller vegetation, and
larger crown width demonstrate better regulatory capabilities in mitigating the deterio-
ration of urban thermal environments. The innovation of this study lies in investigating
the differences in LST drivers across various types of urban parks, an area that has not
been fully explored in previous research, especially in inland cities like Zhengzhou. By
utilizing machine learning regression and partial dependence analysis, the study assesses
the contributions of different drivers in various park types and develops targeted strategies
to mitigate UHI effects in urban parks, ultimately enhancing the comfort and sustainability
of urban living environments.

Author Contributions: Conceptualization, Y.F. and K.Z.; methodology, S.G., Y.Z. and Y.F.; software,
Y.F.; validation, A.L., K.W., N.D. and R.H.; formal analysis, Y.F. and K.Z.; investigation, P.S., S.G.
and N.G.; resources, P.S. and X.X.; data curation, H.Y.W.; writing—original draft preparation, K.Z.
and Y.F.; writing—review and editing, Y.F. and S.G.; visualization, Y.F.; supervision, R.H.; project
administration, X.T. and L.F.; funding acquisition, S.G., B.W. and P.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 32460421 and 52208056; the Key Technology R&D Program of Henan Province, grant number
232102320190 and 242102320320; the Special Fund for Young Talents in Henan Agricultural University,
grant number 30500930 and 30501053; and the 2018 Henan Provincial Financial Land Re-search Project
(Yu Guo Tu Zi Fa [2018] No. 125-1).

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: Author Long Fan was employed by the company Henan Urban and Rural
Planning and Design Research Institute Co., Ltd. The remaining authors declare that the research
was conducted in the absence of any commercial or financial relationships that could be construed as
a potential conflict of interest.



Land 2024, 13, 1474 20 of 23

Appendix A

Land 2024, 13, x FOR PEER REVIEW 21 of 25 
 

Appendix A 

 
Figure A1. The correlation between each driving factor and LST in different park types and seasons. 

References 
1. UN. 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN.; United Nations: New York, NY, USA, 2018. 
2. Li, B.; Chen, C.; Hu, B. Governing Urbanization and the New Urbanization Plan in China. Environ. Urban. 2016, 28, 515–534. 

hĴps://doi.org/10.1177/0956247816647345. 
3. Ventriglio, A.; Torales, J.; Castaldelli-Maia, J.M.; Berardis, D.D.; Bhugra, D. Urbanization and Emerging Mental Health Issues. 

CNS Spectr. 2021, 26, 43–50. hĴps://doi.org/10.1017/S1092852920001236. 
4. Wu, J.; Xiang, W.-N.; Zhao, J. Urban Ecology in China: Historical Developments and Future Directions. Landsc. Urban Plan. 2014, 

125, 222–233. hĴps://doi.org/10.1016/j.landurbplan.2014.02.010. 
5. Liang, L.; Wang, Z.; Li, J. The Effect of Urbanization on Environmental Pollution in Rapidly Developing Urban Agglomerations. 

J. Clean. Prod. 2019, 237, 117649. hĴps://doi.org/10.1016/j.jclepro.2019.117649. 

Figure A1. The correlation between each driving factor and LST in different park types and seasons.

References
1. United Nations. 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN; United Nations: New York, NY,

USA, 2018.
2. Li, B.; Chen, C.; Hu, B. Governing Urbanization and the New Urbanization Plan in China. Environ. Urban. 2016, 28, 515–534.

[CrossRef]
3. Ventriglio, A.; Torales, J.; Castaldelli-Maia, J.M.; Berardis, D.D.; Bhugra, D. Urbanization and Emerging Mental Health Issues.

CNS Spectr. 2021, 26, 43–50. [CrossRef] [PubMed]
4. Wu, J.; Xiang, W.-N.; Zhao, J. Urban Ecology in China: Historical Developments and Future Directions. Landsc. Urban Plan. 2014,

125, 222–233. [CrossRef]
5. Liang, L.; Wang, Z.; Li, J. The Effect of Urbanization on Environmental Pollution in Rapidly Developing Urban Agglomerations. J.

Clean. Prod. 2019, 237, 117649. [CrossRef]

https://doi.org/10.1177/0956247816647345
https://doi.org/10.1017/S1092852920001236
https://www.ncbi.nlm.nih.gov/pubmed/32248860
https://doi.org/10.1016/j.landurbplan.2014.01.018
https://doi.org/10.1016/j.jclepro.2019.117649


Land 2024, 13, 1474 21 of 23

6. Li, G.; Zhang, X.; Mirzaei, P.A.; Zhang, J.; Zhao, Z. Urban Heat Island Effect of a Typical Valley City in China: Responds to the
Global Warming and Rapid Urbanization. Sustain. Cities Soc. 2018, 38, 736–745. [CrossRef]

7. Augusto, B.; Roebeling, P.; Rafael, S.; Ferreira, J.; Ascenso, A.; Bodilis, C. Short and Medium- to Long-Term Impacts of Nature-
Based Solutions on Urban Heat. Sustain. Cities Soc. 2020, 57, 102122. [CrossRef]

8. Founda, D.; Santamouris, M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an Extremely Hot
Summer (2012). Sci. Rep. 2017, 7, 10973. [CrossRef]

9. Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F.; et al. The Urban Heat Island and Its
Impact on Heat Waves and Human Health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [CrossRef]

10. Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of Regional Climate Change on Human Health. Nature 2005,
438, 310–317. [CrossRef]

11. Chow, W.T.L.; Pope, R.L.; Martin, C.A.; Brazel, A.J. Observing and Modeling the Nocturnal Park Cool Island of an Arid City:
Horizontal and Vertical Impacts. Theor. Appl. Clim. 2011, 103, 197–211. [CrossRef]

12. Su, Y.; Wu, J.; Zhang, C.; Wu, X.; Li, Q.; Liu, L.; Bi, C.; Zhang, H.; Lafortezza, R.; Chen, X. Estimating the Cooling Effect Magnitude
of Urban Vegetation in Different Climate Zones Using Multi-Source Remote Sensing. Urban Clim. 2022, 43, 101155. [CrossRef]

13. Qiu, G.; Li, H.; Zhang, Q.; Chen, W.; Liang, X.; Li, X. Effects of Evapotranspiration on Mitigation of Urban Temperature by
Vegetation and Urban Agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [CrossRef]

14. Sun, R.; Chen, L. Effects of Green Space Dynamics on Urban Heat Islands: Mitigation and Diversification. Ecosyst. Serv. 2017, 23,
38–46. [CrossRef]

15. Debbage, N.; Shepherd, J.M. The Urban Heat Island Effect and City Contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194.
[CrossRef]

16. Stuhlmacher, M.; Georgescu, M.; Turner, B.L.; Hu, Y.; Goldblatt, R.; Gupta, S.; Frazier, A.E.; Kim, Y.; Balling, R.C.; Clinton, N. Are
Global Cities Homogenizing? An Assessment of Urban Form and Heat Island Implications. Cities 2022, 126, 103705. [CrossRef]

17. Abdulmana, S.; Garcia-Constantino, M.; Lim, A. The Influence of Elevation, Land Cover and Vegetation Index on LST Increase in
Taiwan from 2000 to 2021. Sustainability 2023, 15, 3262. [CrossRef]

18. Peng, W.; Yuan, X.; Gao, W.; Wang, R.; Chen, W. Assessment of Urban Cooling Effect Based on Downscaled Land Surface
Temperature: A Case Study for Fukuoka, Japan. Urban Clim. 2021, 36, 100790. [CrossRef]

19. Xiang, Y.; Ye, Y.; Peng, C.; Teng, M.; Zhou, Z. Seasonal Variations for Combined Effects of Landscape Metrics on Land Surface
Temperature (LST) and Aerosol Optical Depth (AOD). Ecol. Indic. 2022, 138, 108810. [CrossRef]

20. Gabriel, K.M.A.; Endlicher, W.R. Urban and Rural Mortality Rates during Heat Waves in Berlin and Brandenburg, Germany.
Environ. Pollut. 2011, 159, 2044–2050. [CrossRef]

21. Kim, M.; Lee, K.; Cho, G.-H. Temporal and Spatial Variability of Urban Heat Island by Geographical Location: A Case Study of
Ulsan, Korea. Build. Environ. 2017, 126, 471–482. [CrossRef]

22. Chapman, S.; Thatcher, M.; Salazar, A.; Watson, J.E.M.; McAlpine, C.A. The Impact of Climate Change and Urban Growth on
Urban Climate and Heat Stress in a Subtropical City. Int. J. Climatol. 2019, 39, 3013–3030. [CrossRef]

23. Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban Heat Island Effects of Various Urban Morphologies under Regional
Climate Conditions. Sci. Total Environ. 2020, 743, 140589. [CrossRef]

24. Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal Contrast of the Dominant Factors for Spatial Distribution of Land Surface
Temperature in Urban Areas. Remote Sens. Environ. 2018, 215, 255–267. [CrossRef]

25. Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the Relationship between Land Use
Land Cover Change and Land Surface Temperature. ISPRS J. Photogramm. 2017, 124, 119–132. [CrossRef]

26. Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of Urban Spatial Form on Urban Heat Island Effects at the Community
Level in China. Sustain. Cities Soc. 2020, 53, 101972. [CrossRef]

27. Han, D.; An, H.; Wang, F.; Xu, X.; Qiao, Z.; Wang, M.; Sui, X.; Liang, S.; Hou, X.; Cai, H.; et al. Understanding Seasonal
Contributions of Urban Morphology to Thermal Environment Based on Boosted Regression Tree Approach. Build. Environ. 2022,
226, 109770. [CrossRef]

28. Özhancı, E.; Koç, A. The Effect of Different Area Uses and Topography on Surface Temperature and Climate Parameters. Environ.
Sci. Pollut. Res. 2023, 30, 47038–47051. [CrossRef]

29. Saavedra, M.; Junquas, C.; Espinoza, J.-C.; Silva, Y. Impacts of Topography and Land Use Changes on the Air Surface Temperature
and Precipitation over the Central Peruvian Andes. Atmos. Res. 2020, 234, 104711. [CrossRef]

30. Xin, J.; Yang, J.; Sun, D.; Han, T.; Song, C.; Shi, Z. Seasonal Differences in Land Surface Temperature under Different Land
Use/Land Cover Types from the Perspective of Different Climate Zones. Land 2022, 11, 1122. [CrossRef]

31. Yuan, B.; Li, X.; Zhou, L.; Bai, T.; Hu, T.; Huang, J.; Liu, D.; Li, Y.; Guo, J. Global Distinct Variations of Surface Urban Heat
Islands in Inter- and Intra-Cities Revealed by Local Climate Zones and Seamless Daily Land Surface Temperature Data. ISPRS J.
Photogramm. Remote Sens. 2023, 204, 1–14. [CrossRef]

32. Peng, J.; Dan, Y.; Qiao, R.; Liu, Y.; Dong, J.; Wu, J. How to Quantify the Cooling Effect of Urban Parks? Linking Maximum and
Accumulation Perspectives. Remote Sens. Environ. 2021, 252, 112135. [CrossRef]

33. Zhou, T.; Jia, W.; Yan, L.; Hong, B.; Wang, K. Urban Park’s Vertical Canopy Structure and Its Varied Cooling Effect under
Continuous Warming Climate. Urban Clim. 2024, 53, 101819. [CrossRef]

https://doi.org/10.1016/j.scs.2018.01.033
https://doi.org/10.1016/j.scs.2020.102122
https://doi.org/10.1038/s41598-017-11407-6
https://doi.org/10.1007/s00484-009-0256-x
https://doi.org/10.1038/nature04188
https://doi.org/10.1007/s00704-010-0293-8
https://doi.org/10.1016/j.uclim.2022.101155
https://doi.org/10.1016/S2095-3119(13)60543-2
https://doi.org/10.1016/j.ecoser.2016.11.011
https://doi.org/10.1016/j.compenvurbsys.2015.08.002
https://doi.org/10.1016/j.cities.2022.103705
https://doi.org/10.3390/su15043262
https://doi.org/10.1016/j.uclim.2021.100790
https://doi.org/10.1016/j.ecolind.2022.108810
https://doi.org/10.1016/j.envpol.2011.01.016
https://doi.org/10.1016/j.buildenv.2017.10.023
https://doi.org/10.1002/joc.5998
https://doi.org/10.1016/j.scitotenv.2020.140589
https://doi.org/10.1016/j.rse.2018.06.010
https://doi.org/10.1016/j.isprsjprs.2017.01.001
https://doi.org/10.1016/j.scs.2019.101972
https://doi.org/10.1016/j.buildenv.2022.109770
https://doi.org/10.1007/s11356-023-25580-x
https://doi.org/10.1016/j.atmosres.2019.104711
https://doi.org/10.3390/land11081122
https://doi.org/10.1016/j.isprsjprs.2023.08.012
https://doi.org/10.1016/j.rse.2020.112135
https://doi.org/10.1016/j.uclim.2024.101819


Land 2024, 13, 1474 22 of 23

34. Zhang, K.; Yun, G.; Song, P.; Wang, K.; Li, A.; Du, C.; Jia, X.; Feng, Y.; Wu, M.; Qu, K.; et al. Discover the Desirable Landscape
Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a
Lens. Int. J. Environ. Res. Public Health 2023, 20, 3155. [CrossRef] [PubMed]

35. Sobrino, J.A.; Juan, C. Jiménez-Muoz, J.C. Leonardo Paolini Land Surface Temperature Retrieval from LANDSAT TM 5. Remote
Sens. Environ. 2004, 90, 434–440. [CrossRef]

36. Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens.
Environ. 1997, 62, 241–252. [CrossRef]

37. Huang, J.; Wang, Y. Cooling Intensity of Hybrid Landscapes in a Metropolitan Area: Relative Contribution and Marginal Effect.
Sustain. Cities Soc. 2022, 79, 103725. [CrossRef]

38. Li, Z.; Hu, D. Exploring the Relationship between the 2D/3D Architectural Morphology and Urban Land Surface Temperature
Based on a Boosted Regression Tree: A Case Study of Beijing, China. Sustain. Cities Soc. 2022, 78, 103392. [CrossRef]

39. Du, C.; Song, P.; Wang, K.; Li, A.; Hu, Y.; Zhang, K.; Jia, X.; Feng, Y.; Wu, M.; Qu, K.; et al. Investigating the Trends and Drivers
between Urbanization and the Land Surface Temperature: A Case Study of Zhengzhou, China. Sustainability 2022, 14, 13845.
[CrossRef]

40. Min, M.; Zhao, H.; Miao, C. Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City,
China. Sustainability 2018, 10, 1992. [CrossRef]

41. Yang, H.; Xi, C.; Zhao, X.; Mao, P.; Wang, Z.; Shi, Y.; He, T.; Li, Z. Measuring the Urban Land Surface Temperature Variations
Under Zhengzhou City Expansion Using Landsat-Like Data. Remote Sens. 2020, 12, 801. [CrossRef]

42. Li, B.; Shi, X.; Wang, H.; Qin, M. Analysis of the Relationship between Urban Landscape Patterns and Thermal Environment: A
Case Study of Zhengzhou City, China. Environ. Monit. Assess. 2020, 192, 540. [CrossRef] [PubMed]

43. Zhao, H.; Tan, J.; Ren, Z.; Wang, Z. Spatiotemporal Characteristics of Urban Surface Temperature and Its Relationship with
Landscape Metrics and Vegetation Cover in Rapid Urbanization Region. Complexity 2020, 2020, 7892362. [CrossRef]

44. Zhou, X.; Chen, H. Experimental Analysis of the Influence of Urban Morphological Indices on the Urban Thermal Environment
of Zhengzhou, China. Atmosphere 2021, 12, 1058. [CrossRef]

45. Zhang, X.; Xiao, Y.; Zhu, G.; Shi, J. A Coupled CEEMD-BiLSTM Model for Regional Monthly Temperature Prediction. Environ.
Monit. Assess. 2023, 195, 379. [CrossRef]

46. Zhou, S.; Liu, D.; Zhu, M.; Tang, W.; Chi, Q.; Ye, S.; Xu, S.; Cui, Y. Temporal and Spatial Variation of Land Surface Temperature
and Its Driving Factors in Zhengzhou City in China from 2005 to 2020. Remote Sens. 2022, 14, 4281. [CrossRef]

47. Li, Y.; Fan, S.; Li, K.; Zhang, Y.; Kong, L.; Xie, Y.; Dong, L. Large Urban Parks Summertime Cool and Wet Island Intensity and Its
Influencing Factors in Beijing, China. Urban For. Urban Green. 2021, 65, 127375. [CrossRef]

48. Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban Greening to Cool Towns and Cities: A Systematic Review of the
Empirical Evidence. Landsc. Urban Plan. 2010, 97, 147–155. [CrossRef]

49. Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of Parks in Mitigating Urban Heat Island Effect: An Example from Addis Ababa.
Landsc. Urban Plan. 2014, 123, 87–95. [CrossRef]

50. Lin, W.; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating Cooling Extents of Green Parks Using Remote Sensing: Method and Test.
Landsc. Urban Plan. 2015, 134, 66–75. [CrossRef]

51. Oliveira, S.; Andrade, H.; Vaz, T. The Cooling Effect of Green Spaces as a Contribution to the Mitigation of Urban Heat: A Case
Study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [CrossRef]

52. Onishi, A.; Xin, C.; Ito, T.; Shi, F.; Imura, H. Evaluating the Potential for Urban Heat-Island Mitigation by Greening Parking Lots.
Urban For. Urban Green. 2010, 9, 323–332. [CrossRef]

53. Hamada, S.; Ohta, T. Seasonal Variations in the Cooling Effect of Urban Green Areas on Surrounding Urban Areas. Urban For.
Urban Green. 2010, 9, 15–24. [CrossRef]

54. Yang, C.; He, X.; Wang, R.; Yan, F.; Yu, L.; Bu, K.; Yang, J.; Chang, L.; Zhang, S. The Effect of Urban Green Spaces on the Urban
Thermal Environment and Its Seasonal Variations. Forests 2017, 8, 153. [CrossRef]

55. Ca, V.T.; Asaeda, T.; Abu, E.M. Reductions in air conditioning energy caused by a nearby park. Energy Build. 1998, 29, 83–92.
[CrossRef]

56. Yao, L.; Li, T.; Xu, M.; Xu, Y. How the Landscape Features of Urban Green Space Impact Seasonal Land Surface Temperatures at a
City-Block-Scale: An Urban Heat Island Study in Beijing, China. Urban For. Urban Green. 2020, 52, 126704. [CrossRef]

57. Nwakaire, C.M.; Onn, C.C.; Yap, S.P.; Yuen, C.W.; Onodagu, P.D. Urban Heat Island Studies with Emphasis on Urban Pavements:
A Review. Sustain. Cities Soc. 2020, 63, 102476. [CrossRef]

58. Yang, Q.; Huang, X.; Li, J. Assessing the Relationship between Surface Urban Heat Islands and Landscape Patterns across Climatic
Zones in China. Sci. Rep. 2017, 7, 9337. [CrossRef]

59. Lin, B.-S.; Lin, Y.-J. Cooling Effect of Shade Trees with Different Characteristics in a Subtropical Urban Park. Hortscience 2010, 45,
83–86. [CrossRef]

60. Cao, S.; Sanchez-Azofeifa, A. Modeling Seasonal Surface Temperature Variations in Secondary Tropical Dry Forests. Int. J. Appl.
Earth Obs. Geoinf. 2017, 62, 122–134. [CrossRef]

61. Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban Green Space Cooling Effect in Cities. Heliyon 2019, 5, e01339. [CrossRef]
62. Wu, W.; Li, L.; Li, C. Seasonal Variation in the Effects of Urban Environmental Factors on Land Surface Temperature in a Winter

City. J. Clean. Prod. 2021, 299, 126897. [CrossRef]

https://doi.org/10.3390/ijerph20043155
https://www.ncbi.nlm.nih.gov/pubmed/36833848
https://doi.org/10.1016/j.rse.2004.02.003
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1016/j.scs.2022.103725
https://doi.org/10.1016/j.scs.2021.103392
https://doi.org/10.3390/su142113845
https://doi.org/10.3390/su10061992
https://doi.org/10.3390/rs12050801
https://doi.org/10.1007/s10661-020-08505-w
https://www.ncbi.nlm.nih.gov/pubmed/32710260
https://doi.org/10.1155/2020/7892362
https://doi.org/10.3390/atmos12081058
https://doi.org/10.1007/s10661-023-10977-5
https://doi.org/10.3390/rs14174281
https://doi.org/10.1016/j.ufug.2021.127375
https://doi.org/10.1016/j.landurbplan.2010.05.006
https://doi.org/10.1016/j.landurbplan.2013.12.008
https://doi.org/10.1016/j.landurbplan.2014.10.012
https://doi.org/10.1016/j.buildenv.2011.04.034
https://doi.org/10.1016/j.ufug.2010.06.002
https://doi.org/10.1016/j.ufug.2009.10.002
https://doi.org/10.3390/f8050153
https://doi.org/10.1016/S0378-7788(98)00032-2
https://doi.org/10.1016/j.ufug.2020.126704
https://doi.org/10.1016/j.scs.2020.102476
https://doi.org/10.1038/s41598-017-09628-w
https://doi.org/10.21273/HORTSCI.45.1.83
https://doi.org/10.1016/j.jag.2017.06.008
https://doi.org/10.1016/j.heliyon.2019.e01339
https://doi.org/10.1016/j.jclepro.2021.126897


Land 2024, 13, 1474 23 of 23

63. Chen, L.; Wang, X.; Cai, X.; Yang, C.; Lu, X. Seasonal Variations of Daytime Land Surface Temperature and Their Underlying
Drivers over Wuhan, China. Remote Sens. 2021, 13, 323. [CrossRef]

64. Zhang, W.; Jiang, J.; Zhu, Y. Change in Urban Wetlands and Their Cold Island Effects in Response to Rapid Urbanization. Chin.
Geogr. Sci. 2015, 25, 462–471. [CrossRef]

65. Haase, D.; Jänicke, C.; Wellmann, T. Front and Back Yard Green Analysis with Subpixel Vegetation Fractions from Earth
Observation Data in a City. Landsc. Urban. Plan. 2019, 182, 44–54. [CrossRef]

66. Park, J.; Kim, J.-H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The Influence of Small Green Space Type and Structure at the Street Level on
Urban Heat Island Mitigation. Urban. For. Urban Green. 2017, 21, 203–212. [CrossRef]

67. Wu, C.; Li, J.; Wang, C.; Song, C.; Finka, M. Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in
Shanghai, China. Front. Environ. Sci. 2021, 9, 657969. [CrossRef]

68. Cao, X.; Onishi, A.; Chen, J.; Imura, H. Quantifying the Cool Island Intensity of Urban Parks Using ASTER and IKONOS Data.
Landsc. Urban Plan. 2010, 96, 224–231. [CrossRef]

69. Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional Relationships between Surface Temperature,
Vegetation, and Human Settlement in a Rapidly Urbanizing Ecosystem. Landsc. Ecol. 2007, 22, 353–365. [CrossRef]

70. Eyster, H.N.; Beckage, B. Conifers May Ameliorate Urban Heat Waves Better Than Broadleaf Trees: Evidence from Vancouver,
Canada. Atmosphere 2022, 13, 830. [CrossRef]

71. Li, Z.; Zheng, H. Cooling and Humidification Effects of Coniferous and Broad-Leaved Plant Communities in Urban Park. Build.
Environ. 2023, 245, 110892. [CrossRef]

72. Yuan, F.; Bauer, M.E. Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of
Surface Urban Heat Island Effects in Landsat Imagery. Remote Sens. Environ. 2007, 106, 375–386. [CrossRef]

73. Yu, Z.; Xu, S.; Zhang, Y.; Jorgensen, G.; Vejre, H. Strong Contributions of Local Background Climate to the Cooling Effect of Urban
Green Vegetation. Sci. Rep. 2018, 8, 6798. [CrossRef] [PubMed]

74. Huang, G.; Cadenasso, M.L. People, Landscape, and Urban Heat Island: Dynamics among Neighborhood Social Conditions,
Land Cover and Surface Temperatures. Landsc. Ecol. 2016, 31, 2507–2515. [CrossRef]

75. Asgarian, A.; Amiri, B.J.; Sakieh, Y. Assessing the Effect of Green Cover Spatial Patterns on Urban Land Surface Temperature
Using Landscape Metrics Approach. Urban Ecosyst. 2015, 18, 209–222. [CrossRef]

76. Xue, Y.; Lu, H.; Guan, Y.; Tian, P.; Yao, T. Impact of Thermal Condition on Vegetation Feedback under Greening Trend of China.
Sci. Total Environ. 2021, 785, 147380. [CrossRef]

77. Chen, J.; Jin, S.; Du, P. Roles of Horizontal and Vertical Tree Canopy Structure in Mitigating Daytime and Nighttime Urban Heat
Island Effects. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102060. [CrossRef]

78. Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E. The Surface Heat Island of Rotterdam and Its Relationship with Urban Surface
Characteristics. Resour. Conserv. Recycl. 2012, 64, 23–29. [CrossRef]

79. Yang, C.; Yan, F.; Lei, X.; Ding, X.; Zheng, Y.; Liu, L.; Zhang, S. Investigating Seasonal Effects of Dominant Driving Factors on
Urban Land Surface Temperature in a Snow-Climate City in China. Remote Sens. 2020, 12, 3006. [CrossRef]

80. Liu, C.-F.; Li, J.-Z.; Li, X.-M.; He, X.-Y.; Chen, W. Selection of landscape metrics for urban forest based on simulated landscapes.
Ying Yong Sheng Tai Xue Bao 2009, 20, 1125–1131.

81. Xie, M.; Wang, Y.; Chang, Q.; Fu, M.; Ye, M. Assessment of Landscape Patterns Affecting Land Surface Temperature in Different
Biophysical Gradients in Shenzhen, China. Urban Ecosyst. 2013, 16, 871–886. [CrossRef]

82. Masoudi, M.; Tan, P.Y. Multi-Year Comparison of the Effects of Spatial Pattern of Urban Green Spaces on Urban Land Surface
Temperature. Landsc. Urban Plan. 2019, 184, 44–58. [CrossRef]

83. Yin, J.; Wu, X.; Shen, M.; Zhang, X.; Zhu, C.; Xiang, H.; Shi, C.; Guo, Z.; Li, C. Impact of Urban Greenspace Spatial Pattern on
Land Surface Temperature: A Case Study in Beijing Metropolitan Area, China. Landsc. Ecol. 2019, 34, 2949–2961. [CrossRef]

84. Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial Pattern of Greenspace Affects Land Surface Temperature: Evidence from
the Heavily Urbanized Beijing Metropolitan Area, China. Landsc. Ecol. 2012, 27, 887–898. [CrossRef]

85. Zhao, H.; Zhang, H.; Miao, C.; Ye, X.; Min, M. Linking Heat Source-Sink Landscape Patterns with Analysis of Urban Heat Islands:
Study on the Fast-Growing Zhengzhou City in Central China. Remote Sens. 2018, 10, 1268. [CrossRef]

86. Zheng, Z.; Lin, X.; Chen, L.; Yan, C.; Sun, T. Effects of Urbanization and Topography on Thermal Comfort during a Heat Wave
Event: A Case Study of Fuzhou, China. Sustain. Cities Soc. 2024, 102, 105233. [CrossRef]

87. Song, B.; Park, K. Mountain Valley Cold Air Flow Interactions with Urban Morphology: A Case Study of the Urban Area of
Changwon, South Korea. Landsc. Urban Plan. 2023, 233, 104703. [CrossRef]

88. Badaro-Saliba, N.; Adjizian-Gerard, J.; Zaarour, R.; Najjar, G. LCZ Scheme for Assessing Urban Heat Island Intensity in a Complex
Urban Area (Beirut, Lebanon). Urban Clim. 2021, 37, 100846. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs13020323
https://doi.org/10.1007/s11769-015-0764-z
https://doi.org/10.1016/j.landurbplan.2018.10.010
https://doi.org/10.1016/j.ufug.2016.12.005
https://doi.org/10.3389/fenvs.2021.657969
https://doi.org/10.1016/j.landurbplan.2010.03.008
https://doi.org/10.1007/s10980-006-9032-z
https://doi.org/10.3390/atmos13050830
https://doi.org/10.1016/j.buildenv.2023.110892
https://doi.org/10.1016/j.rse.2006.09.003
https://doi.org/10.1038/s41598-018-25296-w
https://www.ncbi.nlm.nih.gov/pubmed/29717184
https://doi.org/10.1007/s10980-016-0437-z
https://doi.org/10.1007/s11252-014-0387-7
https://doi.org/10.1016/j.scitotenv.2021.147380
https://doi.org/10.1016/j.jag.2020.102060
https://doi.org/10.1016/j.resconrec.2012.01.009
https://doi.org/10.3390/rs12183006
https://doi.org/10.1007/s11252-013-0325-0
https://doi.org/10.1016/j.landurbplan.2018.10.023
https://doi.org/10.1007/s10980-019-00932-6
https://doi.org/10.1007/s10980-012-9731-6
https://doi.org/10.3390/rs10081268
https://doi.org/10.1016/j.scs.2024.105233
https://doi.org/10.1016/j.landurbplan.2023.104703
https://doi.org/10.1016/j.uclim.2021.100846

	Introduction 
	Materials and Methods 
	Study Area 
	Data and Methods 
	Parks Selection, Classification, and Field Survey 
	Inversion of LST 
	Impact Factors 
	Correlation between LST and Driving Factors 


	Results 
	Characteristics of Spatial and Temporal Variability of LST in Parks 
	Spatial Changes in Impact Factors 
	Corrections between LST and Impact Factors 
	Relative Importance of Impact Factors 
	Marginal Effects 

	Discussion 
	Seasonal Variations in LST in Parks 
	Impact Factors Driving LST 
	Implications for Future Urban Planning and Management 
	Limitations and Suggestions 

	Conclusions 
	Appendix A
	References

