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Abstract: Accurately identifying the expansion characteristics and driving mechanisms at different
development stages of urban agglomerations is crucial for their coordinated development. Using
the Central Yunnan Urban Agglomeration as a case study, we employ a data fusion approach to
fuse nighttime light data with LandScan data and utilize the U-net neural network to systematically
analyze the expansion characteristics and driving mechanisms of the urban agglomeration. The
results indicate that, from 2008 to 2013, the Central Yunnan Urban Agglomeration was in an initial
expansion stage, primarily driven by economic development levels and population size. From 2013 to
2018, the agglomeration entered an accelerated expansion stage, driven mainly by industrial structure
transformation and the population agglomeration effect. From 2018 to 2023, the agglomeration expe-
rienced a steady expansion stage, with industrial structure upgrading and government support as the
primary driving forces. Furthermore, we found that, over time, the influence of economic develop-
ment levels and population size as driving forces gradually weakened, while the impact of industrial
structure and government support significantly increased. Through the fusion of multi-source data
and analysis of driving mechanisms at different developmental stages, we comprehensively revealed
the development trajectory of the Central Yunnan Urban Agglomeration and provided valuable
insights for future urban agglomeration development planning and policymaking.

Keywords: urban agglomeration expansion; built-up areas; data fusion; spatiotemporal characteristics;
driving mechanisms

1. Introduction

Urban agglomerations are regions composed of multiple geographically adjacent cities
with close economic and social ties, serving as the core engines of regional economy, culture,
and innovation, playing a crucial role in promoting the overall development of both the
nation and its regions [1,2]. At present, due to the unbalanced distribution of economy
and population, the development stages of different urban agglomerations in China differ
from each other, which is reflected in the spatial expansion pattern, land use efficiency,
resource allocation, and other aspects [3]. To better guide the scientific development of
urban agglomerations, it is necessary to analyze the spatiotemporal characteristics of the
spatial expansion of urban agglomerations at different stages of development and the
driving mechanism, which not only helps to explain the diversity of urban agglomera-
tions’ development but also assists them in adopting targeted planning and management
measures and promotes the sustainable development of urban agglomerations [4].

The development of cities progresses from an initial formation stage to gradual matu-
rity, and similarly, urban agglomerations undergo comparable stages of development [5].
At different stages of city development, the characteristics and priorities of urban agglom-
erations vary, implying that planning and development strategies for these regions must be
adjusted accordingly at each stage [6]. Therefore, accurately identifying the development
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stage of urban agglomerations is crucial to the formulation of scientific and reasonable
development planning. Currently, scholars, drawing on theories of urban development
and regional economics, categorize the development of urban agglomerations into stages
such as the embryonic period, growth period, maturity period, and decline period [7,8].
Additionally, some studies, from the perspective of regional economic growth and spatial
structure evolution, have constructed life cycle models for urban agglomerations, and
these models typically encompass the stages of initial formation, accelerated development,
integration, and maturity, as well as potential transformation or decline [9,10]. The identi-
fication of urban agglomeration development stages is primarily conducted through the
analysis of quantitative indicators, and researchers often use multidimensional indicators
such as population density, economic output, industrial structure, infrastructure construc-
tion, and transportation network density [11–13]. Through methods such as statistical
analysis, cluster analysis, and principal component analysis, these indicators are employed
to delineate the stages of urban agglomerations, thereby reflecting the relative position and
characteristics of different urban agglomerations in their developmental processes [14–16].

In recent years, studies on the spatial expansion of urban agglomerations have gradu-
ally increased, and they have shown that the spatial expansion of urban agglomerations is
often characterized by non-equilibrium and complexity [17], which is not only related to
the level of economic development, population growth, and other factors but also affected
by geographic conditions, policy orientations, and historical and cultural factors [18,19],
and in this process, the expansion of built-up areas of urban agglomerations tends to
show certain spatiotemporal regularity. Therefore, analyzing the characteristics of built-up
area expansion provides an effective means to understand the processes and trends of
spatial expansion in urban agglomerations [20]. Studies on urban land expansion can
be classified into several major categories. The model simulation approach based on so-
cioeconomic data and the spatial data analysis method using remote sensing images are
currently well-developed areas of study. Additionally, mechanical statistical models hold a
significant position in this field. Scholars such as Batty, Arcaute, and Barthelemy employ
network theory, statistical mechanics, and complex systems analysis to investigate the
dynamic mechanisms of urban growth. These methods often focus on the self-organizing
characteristics of urban systems, analyzing how cities expand through self-organization
processes and how urban morphology evolves over time [21–24]. Model simulation based
on socioeconomic data explores the potential driving factors behind the spatial expansion
of urban agglomerations by simulating the impacts of variables such as population, eco-
nomic activities, and transportation networks on built-up area expansion [25]. This type of
research usually relies on urban expansion models, such as the CLUE-S model, SLEUTH
model, and Agent-based model, to predict the future expansion trend of built-up areas
by simulating the urban development process under different scenarios [26–28]. Remote
sensing image analysis, on the other hand, through multitemporal remote sensing data,
can effectively monitor the dynamic changes of urban built-up areas and analyze the speed,
direction, and pattern of their expansion. With the advancement of remote sensing tech-
nology, researchers are capable of obtaining higher-resolution image data, which makes
the extraction and analysis of built-up areas more accurate [29–31]. Data from sources
such as Landsat, MODIS, and high-resolution satellite imagery are widely used in the
study of built-up area expansion [32]. Based on these data, researchers commonly employ
techniques such as maximum likelihood classification and support vector machines to
delineate built-up areas and use time series analysis methods to explore their patterns
of change.

With the advancement of technology and the increasing availability of data resources,
researchers studying urban built-up area expansion are gradually shifting from relying
on single data sources to integrating multi-source big data for analysis [33]. Although
remote sensing imagery has seen continuous improvements in spatial and temporal res-
olution, relying on a single data source for extracting urban built-up areas still presents
certain limitations. For instance, remote sensing imagery may experience reduced classifi-
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cation accuracy under conditions such as cloud cover, image noise, and complex surface
features. Additionally, a single data source is often insufficient to comprehensively cap-
ture the socioeconomic activities of a city [34–36]. Remote sensing data, such as Landsat,
MODIS, and nighttime light (NTL) data, can provide spatial information on urban expan-
sion [37,38], while socioeconomic data, including Points of Interest (POI) data, population
density data, and transportation data, offer insights into urban functions and population
distribution [39,40]. There have been studies to achieve the effect of improving the accuracy
of built-up area extraction by fusing these two types of data [41]. For example, researchers
can use NTL light data to identify active urban areas and then verify the specific functional
types of these areas in combination with POI data to further determine the actual extent
of built-up areas [42,43]. In the process of integrating remote sensing imagery with other
data sources, image processing and classification algorithms play a crucial role. Commonly
used methods include maximum likelihood classification, support vector machines (SVMs),
random forests (RFs), and convolutional neural networks (CNNs) [44–46]. These algo-
rithms are capable of processing the complexity of multi-source data and applying it to
the extraction and analysis of urban built-up areas [47]. Although data fusion shows great
potential in the study of urban built-up area expansion, it faces a number of challenges;
firstly, the spatial and temporal resolution of different data sources may be inconsistent,
making effective alignment and integration a difficult task; secondly, the heterogeneity of
the data increases the complexity of the processing, presenting an additional challenge in
effectively managing these differences during the integration process.

The spatiotemporal expansion characteristics of urban agglomerations are only a
prerequisite for understanding the development of urban agglomerations, and the driving
mechanisms behind them must be analyzed in depth to truly understand why urban ag-
glomerations expand in a particular way [48]. These driving mechanisms may include a
variety of factors such as economic, social, policy, technology, natural environment, etc.,
which collectively contribute to the expansion of urban space [19,49,50]. Current research
generally identifies economic factors as the primary drivers of urban agglomeration expan-
sion, particularly in regions experiencing rapid economic growth, where the pace of urban
expansion is notably accelerated [51]. Additionally, population growth and migration
is another significant driving force, especially in developing countries where there is a
pronounced trend of population concentration in urban agglomerations [52]. Government
policies and planning also play a crucial role in guiding and regulating the spatial expan-
sion of urban agglomerations [53]. From the analysis of the driving mechanisms of spatial
expansion of these urban agglomerations, quantitative analysis is still the most commonly
used method in the study of driving mechanisms. Through quantitative tools such as statis-
tical analysis, regression analysis, and structural equation modeling (SEM), researchers can
reveal the independent effects and interactions of different drivers [54,55]. For example,
spatial analysis methods, which often integrate GIS tools with spatial econometric models,
are particularly focused on the geographical distribution and patterns of urban agglomera-
tion expansion, exploring the spatial heterogeneity of these driving mechanisms [56,57].
Additionally, modeling approaches, including urban expansion models such as the CLUE-S
model and the SLEUTH model, as well as system dynamics models, are widely used to
simulate and predict the expansion trends of urban agglomerations. These models typically
test the effects of various driving factors under different scenarios [58,59].

In existing studies, although extensive analyses have been conducted on the character-
istics and driving mechanisms of urban agglomeration spatial expansion, it is important
to recognize the significant differences in these aspects across urban agglomerations at
different stages of development. Particularly, the driving mechanisms of spatial expansion
in urban agglomerations can vary according to changes in the economic, social, and policy
factors at different stages of development [60]. From this perspective, we take the Central
Yunnan Urban Agglomeration in China as a case study to analyze the developmental stages
of the urban agglomeration, as well as the spatiotemporal expansion characteristics and
driving mechanisms at different stages, through the lens of multi-source data fusion. This
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study is conducted in the following steps: First, NTL light data, representing economic
development, is fused with LandScan population data. Second, the developmental stages
of the cities are identified. Third, deep learning techniques are employed to extract built-up
areas in the Central Yunnan Urban Agglomeration, enabling the analysis of spatiotem-
poral expansion characteristics at different stages of development. Finally, the driving
mechanisms behind the spatiotemporal expansion at different stages are analyzed and
their differences compared. This study advances the application of multi-source data in
urban spatial study by fusing two key dimensions: economy and population. Simultane-
ously, it reveals the differences in spatial expansion characteristics and driving mechanisms
across various developmental stages of urban agglomerations, providing a scientific basis
for formulating more precise regional development policies to promote coordinated and
sustainable regional development.

2. Materials and Methods
2.1. Study Area

The Central Yunnan Urban Agglomeration (Figure 1) is located in the central region of
Yunnan Province, China, and comprises Kunming, Qujing, Yuxi, Chuxiong Yi Autonomous
Prefecture, and Honghe Hani and Yi Autonomous Prefecture. As the most economically
developed area in Yunnan Province, this urban agglomeration covers 29% of the province’s
total area and is home to 44.02% of its population. In recent years, the Central Yunnan
Urban Agglomeration, as a key region in Southwest China, has been experiencing rapid ur-
banization and economic growth [61]. However, due to differences in geographical location,
economic development levels, and policy environments, the expansion of built-up areas in
the Central Yunnan Urban Agglomeration exhibits unique spatiotemporal characteristics in
terms of speed, scale, and spatial patterns. By studying the spatiotemporal characteristics
of urban expansion in the Central Yunnan Urban Agglomeration, it is possible to uncover
the expansion patterns and spatial structure changes during different periods, providing
a scientific basis for the rational planning of urban development. Moreover, an in-depth
studying of these characteristics and mechanisms can support the government in formulat-
ing more reasonable and effective regional development policies, thereby promoting the
coordinated and sustainable development of the Central Yunnan Urban Agglomeration.
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2.2. Data Source

The data utilized in this study primarily include NTL data and LandScan data for four
time periods: 2008, 2013, 2018, and 2023. The specific processing methods and workflows
for these different datasets are outlined as follows.

2.2.1. NTL Data

NPP/VIIRS (Suomi National Polar-orbiting Partnership/Visible Infrared Imaging
Radiometer Suite) NTL data are collected by the VIIRS sensors on Suomi NPP satellites,
which record the brightness of the Earth’s lights at night, including city lights, road lights,
fishing boat lights, etc. [62]. The NPP/VIIRS NTL light data are an important tool for
analyzing the expansion of urban agglomerations and their driving mechanisms because
of its high resolution (500 m), wide dynamic range, regular updates, and global coverage.
In addition to providing detailed and timely NTL light information, NPP/VIIRS NTL
data can be combined with other geographic data to help uncover subtle changes and
driving factors behind urban expansion. This makes it a valuable resource for urban
planning, policymaking, and regional development by providing a scientific basis for
decision-making. In this study, NPP/VIIRS NTL data for the Central Yunnan Urban
Agglomeration for the years 2008, 2013, 2018, and 2023 are obtained from NASA’s Earth
Observing System Data and Information System (EOSDIS) website. After preprocessing the
acquired data, including radiometric calibration and monthly averaging, the preprocessed
NTL data for the Central Yunnan Urban Agglomeration is obtained, as shown in Figure 2.
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2.2.2. LandScan Data

LandScan data are a global population distribution dataset developed and maintained
by the Oak Ridge National Laboratory (ORNL) in the United States. This dataset leverages
multi-source information, including satellite imagery, geographic information systems
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(GIS) data, census data, and remote sensing technology, to generate high-resolution global
population distribution maps. Due to its high resolution, global coverage, dynamic updates,
and multi-source integration, LandScan data have become an essential tool for analyzing
urban agglomeration expansion and its driving mechanisms [24]. It not only provides de-
tailed population distribution information but also, when combined with other geographic
data, helps to reveal subtle changes and driving factors behind urban expansion, offering a
scientific basis for urban planning, policymaking, and regional development. In this study,
LandScan population data for the Central Yunnan Urban Agglomeration for the years 2008,
2013, 2018, and 2023 are obtained from the official website (https://landscan.ornl.gov/
accessed on 1 March 2023). After preprocessing the data, the spatial population distribution
map for the Central Yunnan Urban Agglomeration is generated, as shown in Figure 3.

Land 2024, 13, x FOR PEER REVIEW 6 of 24 
 

leverages multi-source information, including satellite imagery, geographic information 

systems (GIS) data, census data, and remote sensing technology, to generate high-resolu-

tion global population distribution maps. Due to its high resolution, global coverage, dy-

namic updates, and multi-source integration, LandScan data have become an essential 

tool for analyzing urban agglomeration expansion and its driving mechanisms [24]. It not 

only provides detailed population distribution information but also, when combined with 

other geographic data, helps to reveal subtle changes and driving factors behind urban 

expansion, offering a scientific basis for urban planning, policymaking, and regional de-

velopment. In this study, LandScan population data for the Central Yunnan Urban Ag-

glomeration for the years 2008, 2013, 2018, and 2023 are obtained from the official website 

(https://landscan.ornl.gov/ accessed on 1Mar 2023). After preprocessing the data, the spa-

tial population distribution map for the Central Yunnan Urban Agglomeration is gener-

ated, as shown in Figure 3. 

 

Figure 3. Preprocessing result of the LandScan Data of Central Yunnan Urban Agglomeration in 

2008, 2013, 2018, and 2023. 

2.3. Methods 

2.3.1. Rank Size Rule 

In the historical process of urban development, peripheral expansion has been the 

primary method of urban growth, where cities expand the scale of construction land into 

surrounding areas to promote economic and population growth. This model emphasizes 

the close connection between the spatial expansion rate of land development and urban 

economic growth, particularly in rapidly developing urban agglomerations. In this con-

text, central cities expand their construction scale by occupying surrounding land re-

sources, while peripheral cities gradually grow by absorbing spillover resources. This spa-

tial expansion allows for the measurement of the degree of development coordination and 

Figure 3. Preprocessing result of the LandScan Data of Central Yunnan Urban Agglomeration in 2008,
2013, 2018, and 2023.

2.3. Methods
2.3.1. Rank Size Rule

In the historical process of urban development, peripheral expansion has been the
primary method of urban growth, where cities expand the scale of construction land into
surrounding areas to promote economic and population growth. This model emphasizes
the close connection between the spatial expansion rate of land development and urban
economic growth, particularly in rapidly developing urban agglomerations. In this context,
central cities expand their construction scale by occupying surrounding land resources,
while peripheral cities gradually grow by absorbing spillover resources. This spatial ex-
pansion allows for the measurement of the degree of development coordination and scale
differences between cities within an urban agglomeration through the spatial distribution
characteristics of construction areas [63,64]. Furthermore, the development of urban ag-
glomerations progresses from an initial to an advanced stage through a gradual process of

https://landscan.ornl.gov/
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integration. In the early stage, the central city expands rapidly due to its scale advantages,
while peripheral cities develop more slowly, relying primarily on the economic spillover
effects of the central city. At this stage, the central city’s resource aggregation effect is highly
pronounced. As the urban agglomeration evolves, peripheral cities gradually assume some
functions of the central city, marking the onset of the accelerated agglomeration phase. With
more balanced resource allocation, peripheral cities gain a greater capacity for independent
development, and the urban agglomeration gradually evolves into a polycentric structure
with more refined functional divisions. This leads to the phase of agglomeration decay and
a tendency toward decentralization. Ultimately, cities within the agglomeration form a
highly coordinated division of labor, with stronger linkages between central and peripheral
cities, achieving overall functional integration [65,66].

Overall, the scale advantage of central cities and the level of coordination between
central and peripheral cities are important criteria for evaluating the developmental stages
of urban agglomerations. The rank–size rule can reflect the scale distribution and devel-
opment imbalance among different cities, which is crucial for analyzing the relationship
between central and peripheral cities within an agglomeration. Therefore, we aim to use
the Zipf index (q value) of the rank–size rule to reveal the scale differences and distribution
patterns among cities within the urban agglomeration. This analysis will further allow
us to identify the coordination between central and peripheral cities and, subsequently,
determine the developmental stage of the urban agglomeration [67,68].

lnYi = lnY1 − qlnr (1)

where lnYi represents the size of city i, Y1 is the theoretical maximum NTL_LS value
for the central city, and r is the rank of city i. The parameter q is the Zipf index, which
reflects the degree of balance in the city size distribution. The specific calculation process
involves sorting the city sizes of the Central Yunnan Urban Agglomeration in descending
order based on NTL_LS data fusion. The rank r of each city is then obtained, and a linear
regression analysis is performed based on the equation lnYi = lnY1 − qlnr. Through this
regression analysis, the slope q is determined.

Specially, when q equals 1, it indicates an optimal distribution, which generally sug-
gests that the resource allocation or size differences within the system are relatively bal-
anced. When q is greater than 1, it indicates that the distribution of urban elements is
concentrated, with the central city having a significant size advantage and smaller elements
being relatively scarce. When q is less than 1, it indicates the distribution of urban ele-
ments is more balanced, with the central city having a weaker size advantage and small-
to medium-sized cities being more developed. As the value of q increases, the spatial
expansion coordination between the central city and peripheral cities gradually decreases,
while a decrease in q enhances the spatial expansion coordination between the central and
peripheral cities [66,69]. In the calculation of the Zipf index from 2008 to 2023, the q values
for 2008, 2013, 2018, and 2023 are found to be 0.72, 1.13, 1.36, and 1.22, respectively. From
2008 to 2013, the increasing q value, with a value greater than 1 in 2013, indicates a high
concentration of resources in the central city, with peripheral cities lagging in development.
The central city was significantly larger than the other cities. From 2013 to 2018, the q
value continued to rise, suggesting that the agglomeration effect of the central city further
intensified, attracting more resources and population. The development of peripheral cities
remained slow, widening the gap between central and peripheral cities. However, from
2018 to 2023, the q value decreased, indicating that, as peripheral cities developed, the
distribution of resources and population within the urban agglomeration became more
balanced, and the expansion rate of the central city slowed. Peripheral cities gradually
began to assume regional functions, enhancing the coordination between cities within
the agglomeration. Based on these findings, the development of the urban agglomera-
tion can be divided into four stages: initial tendency toward agglomeration, accelerated
agglomeration, agglomeration decay, and dispersal tendency.
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2.3.2. Data Fusion

Data fusion refers to the integration and processing of data from different sources or
sensors to obtain more comprehensive, accurate, and consistent results. By fusing multi-
source data, the limitations of single data sources can be overcome, thereby enhancing the
accuracy and quality of data analysis and decision-making. Wavelet transform, a commonly
used signal processing tool, has been widely applied in the field of data fusion. Utilizing
wavelet transform for data fusion effectively preserves the characteristic information of
each data source and improves the quality of the fusion results [70,71].

The primary distinction between wavelet transform and Fourier transform lies in its
ability to provide a time–frequency analysis of signals. Fourier transform only analyzes the
frequency components of a signal, whereas wavelet transform not only captures frequency
information but also detects local variations in the time or spatial domain. By decomposing
a signal into wavelet functions at different scales and frequencies, wavelet transform enables
multi-scale and multi-resolution analysis, allowing for the detection of subtle changes in
the signal. This characteristic makes it an ideal tool for data fusion. The formula for wavelet
transform is as follows:

WT(α, τ) = f (t)φ(t) =
1√
α

f (t)
∫ +∞

−∞
φ(

t − b
α

)dt (2)

where f (t) is the image signal vector, φ(t) is the wavelet transform function, α is the wavelet
transform scale, τ is the translation parameter of the image signal, and b is the parameter.

The basic process of wavelet transform includes multi-scale decomposition, the ap-
plication of fusion rules, and inverse wavelet transform. First, data from different sources
undergo wavelet transform, decomposing into detail and approximation components at
multiple scales. This process allows for the extraction of key information at various scales.
Second, at each scale, the detail and approximation components are processed based on
predefined fusion rules, selecting or synthesizing critical features. These fusion rules can
be tailored to the specific requirements of the application, such as selecting the maximum
absolute value or calculating the mean. Finally, inverse wavelet transform is applied to re-
construct the multi-scale features into a single data result that contains more comprehensive
and enriched information.

2.3.3. U-Net Neural Network

U-Net is a convolutional neural network (CNN) architecture composed of a down-
sampling path (encoder) and an up-sampling path (decoder), with skip connections that
fuse features across different scales, making it highly effective for pixel-level image segmen-
tation tasks [72]. When extracting urban built-up areas, U-Net can classify each pixel in a
remote sensing image as either “built-up” or “non-built-up”, thereby accurately delineating
the boundaries of urban regions. Its advantages include high-precision segmentation,
multi-scale feature fusion, and the ability to learn effectively even with a small amount
of training data [73]. These qualities make U-Net an ideal tool for remote sensing image
analysis in urban planning and geographic information systems (GIS), providing precise
technical support for the extraction of urban built-up areas.

Equations of the component layers of U-Net.
Layer Convolution:

Cout j = bias(Cout) + ∑Cin−1
k=0 weight

(
Cout j, k

)
∗ input(k) (3)

Layer Max-pooling:

out(Cj, h, w) = maxm=0,......,kH−1maxn=0,......,kW−1input(Cj, stride[0]× h + m, stride[1]× w + n) (4)

Layer ReLU:
ReLU(x) = max(0, x) (5)
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Layer Softmax:

So f tmax(xi) =
exp(xi)

∑k
j=1 exp(xi)

(6)

Layer Cross-entropy:

loss(x, y) = −log(
exp(x[y])

∑k
j=1 exp(x[y])

) (7)

In the Layer Convolution Formula (3), the input feature map has dimensions (Cin, H,
W), and the output feature map has dimensions (Coutt, Hout, Wout). The output channel Cout j
is obtained by performing a weighted summation over all input channels Cin and adding a
bias term. Here, the convolution kernel weight, weight

(
Cout j, k

)
, represents the convolution

kernel between the j-th output channel and the k-th input channel. The convolution kernel
slides over the input feature map (performing valid convolution), executing pointwise
convolution operations. Through this weighted summation, the convolution layer can
extract feature information at different scales and levels. The bias term is a trainable
parameter for each output channel, used to adjust the convolution result, allowing the
network to flexibly express different patterns. In the Layer Max-Pooling Formula (4), the
max-pooling layer reduces the spatial dimensions of the feature map by selecting the
maximum value within local regions of size (kH, kW). This operation retains the most
important information within each local region while reducing the spatial dimensions of
the feature map. The pooling operation reduces the height and width of the original input
feature map, with the stride controlling the sliding step of the pooling operation. Max-
pooling is primarily used for down-sampling, preserving the most significant features while
reducing the spatial dimensions, which helps decrease the computational complexity and
enhances the network’s ability to handle invariance. In the Layer ReLU Formula (5), ReLU
is a commonly used nonlinear activation function that truncates the negative values of the
input to 0 while keeping the positive values unchanged. ReLU introduces nonlinearity,
enabling the network to learn complex patterns and features. Additionally, by eliminating
negative values, it helps mitigate the vanishing gradient problem and accelerates network
training. In the Layer Softmax Formula (6), Softmax is used to convert the network’s
output into a probability distribution. The input xi represents the raw classification score
for a particular pixel, and Softmax transforms these scores into probabilities, ensuring
that the sum of probabilities across all categories equals 1. Softmax is a commonly used
activation function in multi-class classification tasks, producing the probability that each
pixel belongs to different categories. In image segmentation tasks, it is employed for
pixel-level classification to determine the category to which each pixel belongs. In the
Layer Cross-Entropy Formula (7), Cross-Entropy is used to measure the difference between
the model’s predicted probability distribution and the true class labels. In the formula,
x[y] represents the score of the correctly predicted class by the model, and the loss value
for the pixel is computed through the logarithm and negative sign operations. Cross-
Entropy loss guides the network in optimizing the model parameters by minimizing the
difference between predicted probabilities and the true classes, thereby improving the
model’s classification accuracy.

2.3.4. Geographical Detector (Geo-Detector)

The Geo-detector is a statistical method for detecting and analyzing spatial heterogene-
ity and its causes, which is mainly used for spatial data analysis in the fields of geography,
environmental science, and public health. It aims to quantitatively assess the influence
of various factors on spatial distribution characteristics and their interactions, thereby
investigating and uncovering the driving forces behind geographical phenomena and their
impact [74,75]. By quantitatively analyzing the influence of different geographical factors
(such as the natural environment, socioeconomic conditions, etc.) on the spatial distribu-
tion of specific phenomenon (such as urban expansion), the Geo-detector can quantify the
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spatial heterogeneity of the phenomenon and identify the key influencing factors and their
contributions. The formula for the Geo-detector model is as follows:

q = 1 − 1
Nσ2 ∑L

m=1 Nmσ2
m (8)

where q is the explanatory power of regional geographical environmental factors; m = 1, 2,
. . .; L is the number of categories; Nm and N are the number of units in category m and the
total number of units in the entire area, respectively; and σ2 is the variance of the indicator.
The q value ranges from 0 to 1, with higher q values indicating a stronger explanatory
power for spatial heterogeneity.

The technical workflow of this study is as follows (Figure 4):
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3. Results
3.1. Multi-Source Big Data Fusion

As the complexity of urban systems continues to increase, a single data source often
proves inadequate in fully capturing the intricate spatial structures and dynamic changes
within cities. This is because urban spatial distribution encompasses multidimensional
characteristics, such as land use, building density, population distribution, transportation
networks, and the ecological environment, which exhibit significant heterogeneity and
dynamism. Therefore, a single data source—such as relying solely on demographic data,
remote sensing imagery, or traffic flow data—tends to capture only one aspect, making it
difficult to provide a comprehensive perspective of the entire urban system. Data fusion
refers to the integration of data from different sources, times, or spatial scales to generate
information that is more comprehensive, accurate, and consistent than what a single data
source can provide. By leveraging the strengths of multiple data sources, data fusion
not only overcomes the limitations of a single data source in terms of space, time, and
dimension but also reduces prediction errors in the analysis and enhances the reliability of
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data interpretation. For example, by fusing remote sensing imagery, socioeconomic data,
and transportation network data, one can simultaneously capture changes in urban land
use, population movement trends, and traffic pressure distribution, thereby providing a
more comprehensive depiction of urban spatial distribution and dynamic changes.

In urban studies, spatial distribution refers to the pattern of how various elements, such
as population, buildings, land use, and infrastructure, are arranged within a geographical
space. The relationships between these elements are complex and influenced by multiple
factors. A single data source may not effectively capture the interactions and spatial
heterogeneity among different elements. Therefore, through multi-source data fusion, a
deeper understanding of the complex spatial structure within a city can be revealed.

In urban spaces, NTL data and LandScan data exhibit significant spatial correlation,
characterized by a gradual decrease in light intensity and population density from the
urban center to the periphery. Based on this spatial correlation, we attempt to fuse NTL
data with the LandScan data, as shown in Figure 5, which demonstrates the data before and
after the fusion. Specifically, we use wavelet transform to fuse NTL data with LandScan
data, utilizing the multi-scale analysis properties of wavelet transform to decompose the
data into frequency bands of different scales.
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Wavelet transform effectively separates low-frequency and high-frequency informa-
tion by decomposing data into different frequency components. In the fusion of NTL data
with LandScan data, wavelet transform helps distinguish the overall trend (low-frequency
components) from local details (high-frequency components), allowing the fused data to
preserve both macro-level information and detailed features [76]. In the low-frequency
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component, the global trend information dominates the data. To fuse the overall trends
of NTL data and LandScan data, we use a weighted averaging method. By assigning
appropriate weights to each data source, we ensure that both are adequately represented
in the fused result [77]. The high-frequency component contains local detail information,
such as city edges and subtle variations in population distribution. To preserve the most
significant detail features, we employ a maximum value selection fusion strategy for the
high-frequency component. By selecting the maximum value from the two data sources,
the fused result retains the most representative details from both the NTL data and the
LandScan data [78]. Overall, wavelet transform provides us with the ability to separate
low-frequency and high-frequency information. The low-frequency component is fused us-
ing weighted averaging, ensuring that the global trend is included in the fused result, while
the high-frequency component is fused using maximum value selection, preserving the
local detail features in the data. This fusion strategy effectively enhances the expressiveness
of the data while retaining significant features from different data sources.

By comparing the data before and after fusion, visual analysis shows that the pre-
fusion data exhibits blurred city boundaries and unclear details, making it difficult to
accurately describe the urban spatial structure. After fusion, the detail of spatial distribution
is significantly clearer, and city boundaries become more distinct. This improvement is
particularly notable in areas with complex terrain and densely populated regions, where
the fused data show marked enhancements in spatial consistency and feature preservation.
Additionally, we conduct a detailed analysis of the signal-to-noise ratio (SNR) before and
after fusion, revealing that, before the fusion, the SNR was 15 dB, while, after the fusion,
the SNR increased to 25 dB. Overall, the use of wavelet transform effectively separates
and suppresses noise, enhances signal strength, and significantly improves data quality.
This improvement supports the next step in analyzing the spatiotemporal expansion of the
Central Yunnan Urban Agglomeration.

3.2. Urban Agglomeration Development Stages

By calculating the q values for the Central Yunnan Urban Agglomeration at four time
points between 2008 and 2023 using the rank–size rule, we find the values to be 0.72, 1.13,
1.36, and 1.22, respectively. This indicates that the Central Yunnan Urban Agglomeration
has transitioned from a tendency towards agglomeration and accelerated agglomeration
phases since 2008 and is currently in a phase of agglomeration deceleration. From 2008 to
2013, the Central Yunnan Urban Agglomeration is in the initial stage of agglomeration. In
2008, the q value for the urban agglomeration is relatively low, indicating that the differences
in city sizes within the agglomeration are minimal and that the spatial distribution of
cities is relatively dispersed. During this period, the urban agglomeration has not yet
developed a significant agglomeration effect, and the urbanization process is progressing
at a relatively moderate pace. By 2013, the q value has increased significantly, indicating
that the scale differences between cities begin to widen, and the major cities within the
urban agglomeration gradually assert their dominant positions. This period may have been
driven by economic policies and the development of transportation infrastructure (such as
high-speed rail and airports), leading to the concentration of resources and population in
the core cities of the Central Yunnan Urban Agglomeration, thereby initiating the formation
of agglomeration effects. From 2013 to 2018, the Central Yunnan Urban Agglomeration
enters a phase of accelerated agglomeration. During this period, the q value of the urban
agglomeration continues to rise, indicating a further widening of the scale differences
among cities within the region and a rapid intensification of the agglomeration effect. The
radiating and driving influence of the core cities become increasingly prominent, with a
significant concentration of resources, population, and economic activities in these core
cities. With the acceleration of the agglomeration effect, there is an obvious imbalance in the
development of cities within the urban development, with core cities experiencing rapid
growth while peripheral cities grow at a relatively slower pace. The Central Yunnan Urban
Agglomeration exhibits a pronounced siphoning trend during this stage, leading to a more
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centralized spatial structure within the region, and from 2018 to 2023, the Central Yunnan
Urban Agglomeration entered a phase of agglomeration decay. After 2018, the decrease
in the q value indicates that the agglomeration effect within the Central Yunnan Urban
Agglomeration began to weaken. Although the core cities still maintain their dominance,
the scale difference between them and the peripheral cities no longer expands significantly,
and some cities begin to show a relatively balanced development trend. This shift can
be attributed to policy interventions, industrial decentralization, and the advancement of
transportation and communication technologies, which facilitates a more even distribution
of resources and opportunities across the urban agglomeration. While the agglomeration
effect is weakening, there is a trend of polycentric development in the Central Yunnan
Urban Agglomeration. That is, numbers of sub-cities have formed several regional centers,
alleviating the pressure on the core city of Kunming and promoting broader regional
development within the urban agglomeration.

While the Zipf index is a useful tool for measuring the degree of imbalance in the size
distribution of urban agglomerations, it is not sufficient on its own to explain agglomeration
phenomena. The formation and evolution of agglomeration effects are influenced by multi-
ple factors, including economic development, transportation infrastructure construction,
policy regulation, and technological advancements, with the Zipf index representing only
one aspect of this complex process. From 2008 to 2013, the rising q value reflected an increas-
ing disparity in city sizes, driven by accelerated economic growth in the Central Yunnan
Urban Agglomeration, particularly in core cities like Kunming, which attracted substantial
investment and infrastructure development (e.g., high-speed rail and airports). These eco-
nomic stimulus policies promoted the concentration of resources, population, and capital
in core cities, exacerbating size differences within the agglomeration. However, after 2018,
with the adjustment of industrial structures, some emerging industries and services began
to diffuse into secondary cities, reducing the agglomeration effect in core cities and fostering
a trend toward polycentric development. Thus, the weakening of the agglomeration effect
does not indicate the decline of the urban agglomeration but rather the redistribution of
resources and opportunities within it. As resources and opportunities spread to secondary
cities, the agglomeration effect diminishes, and the q value starts to decline. However, this
does not signify the decline of the urban agglomeration but instead indicates a transition
from single-core concentration to more coordinated polycentric development.

3.3. Spatiotemporal Characteristics of Urban Agglomeration Expansion

To more accurately extract the built-up areas of the Central Yunnan Urban Agglom-
eration, we first divide the fused dataset into 512 × 512 tiles to generate training samples
and labels. The label data are derived from the built-up area vector data published by the
Central Yunnan Urban Agglomeration in 2020, which we cross-reference and calibrate with
high-resolution satellite imagery to ensure a certain level of accuracy. After preprocessing,
we generate binary images with the same resolution as the input data. The built-up areas
of the Central Yunnan Urban Agglomeration at four time points from 2008 to 2023 are
obtained using the U-net neural network, as shown in Figure 6.

From 2008 to 2023, the total built-up area of the Central Yunnan Urban Agglomeration
increases from 1798.19 square kilometers to 4057.70 square kilometers, representing a
growth of approximately 2.26-fold. The expansion of the built-up area of the Central
Yunnan Urban Agglomeration shows a trend of gradual acceleration from 2008 to 2023,
especially from 2018 to 2023, and the expansion speed is obviously accelerated, which is
closely related to the advancement of regional economic integration, the improvement
of transportation infrastructure, and the optimization of industrial distribution within
the Central Yunnan Urban Agglomeration. Spatially, Kunming, as the core city of the
Central Yunnan Urban Agglomeration, exhibits the fastest expansion and the largest
growth area, demonstrating a significant polarization effect. Other cities, such as Qujing
and Yuxi, also show notable expansion trends, indicating the gradual development of
secondary center cities. The expansion in Chuxiong and Honghe is relatively slower
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but still demonstrates steady growth. With the progression of urbanization, the Central
Yunnan Urban Agglomeration has gradually developed a polycentric spatial structure, with
Kunming as the core, Qujing and Yuxi as secondary centers, and Chuxiong and Honghe as
supporting cities.
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Specifically, in terms of the spatiotemporal characteristics of built-up area expansion,
Kunming, as the core city of the Central Yunnan Urban Agglomeration, consistently main-
tains a dominant position in spatial expansion. The built-up area of Kunming expands
most rapidly and with the greatest magnitude, and this polarization effect reflects the
agglomeration effect of Kunming as the political, economic, and cultural center of Yunnan
Province, which attracts a large amount of resources, population, and investment. This
expansion pattern reinforces Kunming’s regional core status but also exacerbates develop-
mental imbalances among other cities in the region. Secondary center cities such as Yuxi
and Qujing exhibit rapid growth in their built-up areas, particularly between 2018 and
2023, when their expansion rates accelerated significantly. This trend indicates that the
urban system of the Central Yunnan Urban Agglomeration is gradually transitioning from
a single-center to a more polycentric development model, forming a multi-tiered urban
network with Kunming as the core and secondary cities as key supports. This polycentric
expansion pattern helps alleviate urban pressure on Kunming and promotes a more bal-
anced regional development. The growth of these secondary center cities benefits, to some
extent, from regional policy support and improvements in the transportation network,
gradually integrating them into the overall development framework of the Central Yunnan
Urban Agglomeration. However, the expansion of these cities tends to be characterized by
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steady linear growth rather than explosive expansion, indicating that their roles in regional
development remain primarily supportive.

As for the expansion focus of the urban agglomeration across different periods, from
2008 to 2013, the expansion of the Central Yunnan Urban Agglomeration primarily concen-
trated on the core city of Kunming and its surrounding areas. This period is characterized
by a distinct core-to-periphery radiating pattern, where Kunming, as the regional core city,
drives rapid expansion in the surrounding regions. From 2013 to 2018, the agglomeration’s
expansion shows the characteristics of multi-direction and multi-node. The expansion of
the core city of Kunming is further accelerated, and the neighboring Yuxi and Qujing begin
to show strong expansion momentum. From 2018 to 2023, the expansion of the Central
Yunnan Urban Agglomeration entered a stage of full acceleration, with urban development
advancing in all directions both within and beyond the agglomeration, reflecting a trend
towards regional integration. Urban expansion is not only concentrated in the core area
but also extends to the periphery of the agglomeration. Overall, from 2008 to 2023, the
expansion of the Central Yunnan Urban Agglomeration transitioned from a single-center
radiating expansion to multi-nodal, multi-directional growth, and, finally, to a stage of
comprehensive integrated development.

3.4. Expansion Driving Mechanisms of Urban Agglomeration

From the results of the spatial expansion of the Central Yunnan Urban Agglomeration
from 2008 to 2023, it is evident that the agglomeration has undergone significant growth
over the past fifteen years. To accurately assess the driving processes at different stages
of this development, we employ the Geo-detector to conduct an objective analysis of the
potential driving mechanisms involved during various periods.

From the previous spatial expansion of urban agglomerations, there are many factors
affecting the spatial expansion of cities, and the influencing factors vary from one city
to another. However, from the comprehensive view of existing studies, there are several
influencing factors that are generally recognized by researchers, including the level of
economic development, the size of the resident population, the industrial structure, and
the condition of transportation infrastructure, as these aspects inevitably affect the develop-
ment of all cities. In addition, considering the actual development of the Central Yunnan
Urban Agglomeration and existing literature, we select the economic development level,
population size, industrial structure, elevation, slope, government support, transportation
infrastructure, and openness as the driving factors. The descriptions and data sources for
these driving factors are as follows [76,79–82]:

The level of economic development is one of the core driving factors of urban ex-
pansion. Higher levels of economic development are typically associated with increased
investment, infrastructure development, and demand for land, which collectively drive
urban growth. Within the Central Yunnan Urban Agglomeration, economically developed
areas are often hotspots of urban expansion, with wealth accumulation and industrial
development serving as key forces behind the agglomeration’s growth. In this study, we
measure the level of economic development using per capita GDP, calculated as the sum of
the gross output of the secondary and tertiary sectors divided by the total urban population.

The population size has a direct impact on the development needs of cities. As the
population increases, so does the demand for housing, infrastructure, public services,
etc., thus contributing to urban expansion. In the Central Yunnan Urban Agglomeration,
core cities like Kunming, with a high population density and rapid population growth,
experience swift urban expansion. Population size not only determines the physical
expansion needs of a city but also reflects its attractiveness and competitiveness. In this
study, we use the resident population size to represent this factor.

Changes and upgrading in an industrial structure have an important impact on urban
expansion. High value-added industries, such as high-tech and financial services, typically
concentrate in economically developed areas, attracting a substantial labor force and
resources, thereby driving urban growth. The Central Yunnan Urban Agglomeration has
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undergone industrial restructuring and upgrading in recent years, particularly in cities
like Kunming and Yuxi, where industrial concentration and upgrading have markedly
accelerated urban spatial expansion. This study examines the impact of industrial structure
on the spatial evolution of urban agglomeration by analyzing the ratios of the secondary
and tertiary sectors.

Elevation is one of the key natural geographic factors influencing urban spatial layout.
The Central Yunnan Urban Agglomeration is located in a mountainous region with complex
terrain, where high-altitude areas often limit the direction and scale of urban expansion.
Urban expansion usually tends to occur in flatter and lower elevation areas; thus, elevation
has a direct impact on the feasibility and cost of urban expansion. This study uses DEM to
extract elevation.

Slope is another key topographic factor that affects the difficulty and cost of urban
development. Steeper slopes increase the challenges of constructing buildings and infras-
tructure and impact the accessibility and convenience of transportation within the city.
Therefore, in the expansion of the Central Yunnan Urban Agglomeration, areas with gentler
slopes are more likely to be chosen for urban growth, while steeper areas may constrain
expansion. In this study, we extract land slope data using DEM.

Government policies and support play a crucial role in urban expansion. The gov-
ernment directly influences the speed and direction of urban expansion through planning
policies, investment guidance, and infrastructure construction. In the Central Yunnan
Urban Agglomeration, government-led development plans, industrial policies, and invest-
ments in infrastructure, such as transportation and public services, are key drivers of urban
expansion. Government support is also reflected in policies aimed at assisting underdevel-
oped areas and in preferential policies for new towns and economic development zones. In
this study, we use the share of fiscal expenditure of the upper-level government in the GDP
of the urban agglomeration to indicate the degree of support from the local government.

Transportation infrastructures directly affect a city’s accessibility and external connec-
tivity, which, in turn, affects urban expansion. A well-developed transportation network
facilitates intercity connections and resource flows and reduces the marginal cost of urban
expansion. In the Central Yunnan Urban Agglomeration, the construction of transportation
infrastructure, such as highways and high-speed railways, significantly drives spatial ex-
pansion both within and beyond the urban agglomeration. The improvement of transporta-
tion not only promotes urban expansion but also strengthens interaction and cooperation
between cities.

Openness refers to the degree to which a city is open to external exchanges, trade,
and investment. A higher degree of openness is usually accompanied by a greater inflow
of foreign capital, technological exchanges, and personnel exchanges, further promoting
the economic development and spatial expansion of the city. As an important gateway
connecting Southeast Asia, the Central Yunnan Urban Agglomeration, especially Kunming,
has a high degree of openness and has attracted a number of foreign-funded enterprises
and international projects, a factor that has significantly contributed to the city’s expansion.
This study examines the impact of economic globalization on the spatial structure of the
urban agglomeration by using the proportion of actual utilized foreign capital to GDP as
an indicator.

The results of the driving factors for the expansion of the Central Yunnan Urban
Agglomeration at different periods, obtained through Geo-detector analysis, are presented
in Figure 7. From the analysis of these driving factors, it is evident that, during the period of
aggregation from 2008 to 2023, the expansion of the Central Yunnan Urban Agglomeration
underwent significant phase changes, displaying an evolutionary process driven progres-
sively by economic development, population size, industrial structure, and government
support. During the period of accelerated agglomeration from 2008 to 2013, the urban
expansion is mainly driven by the level of economic development and population size,
and the economic growth brought by the infrastructure development and employment
opportunities significantly contributed to the expansion of urban land, accompanied by
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rapid population growth, especially in core cities such as Kunming, where urban space
expanded dramatically to meet the growing demand for housing and services. During the
period of decelerating aggregation from 2013 to 2018, although the level of economic devel-
opment remains an important driving force for urban expansion, its relative influence has
weakened, and the transformation and upgrading of the industrial structure begins to play
a more critical role, particularly with the rise of the tertiary sector and high-tech industries.
This shift diversified the modes of urban expansion, leading to the optimization of urban
functions and adjustments in spatial layout. From 2018 to 2023, industrial structure and
government support became the main driving forces, with the rapid development of ter-
tiary and innovative industries giving rise to new urban growth poles, while governments
at all levels have further promoted the coordinated development of urban agglomerations
and regional integration through policy guidance and infrastructure investment, especially
in the development of key regions and the construction of new districts, where the govern-
ment’s leading role has been particularly prominent, prompting urban expansion towards
functionality and integration. Additionally, during the period from 2018 to 2023, the expan-
sion of the Central Yunnan Urban Agglomeration was inevitably impacted and adjusted
by the COVID-19 pandemic. Following the outbreak, the pace of economic development
in the urban agglomeration slowed down, particularly in the early stages of 2020 and
beyond, as economic uncertainty delayed infrastructure investments and urban expansion
projects. The pandemic’s impact on traditional industries (such as manufacturing and
retail) weakened the economic growth momentum, thereby affecting the process of urban
expansion. During the initial lockdowns and restrictions of the pandemic, cross-regional
mobility decreased, which slowed the pace of urban expansion within the Central Yunnan
Urban Agglomeration to some extent. With population growth in Kunming tending to slow,
other cities experienced a decline or stagnation in population inflows, temporarily easing
the spatial pressure of urban expansion. The COVID-19 pandemic had a profound impact
on the industrial structure of the Central Yunnan Urban Agglomeration, accelerating the
process of industrial transformation and upgrading. These emerging industries stimulated
new employment opportunities and demands for urban expansion, particularly in the
formation of high-tech industrial parks and innovation clusters, driving the functional
upgrading and spatial reorganization of cities. During this period, the development of
innovative industries and digital economy infrastructure became key drivers of urban
expansion in the Central Yunnan Urban Agglomeration. For example, the growth of e-
commerce and logistics industries created new demands for industrial land, particularly
evident in the construction of logistics hubs in Kunming and its surrounding areas.

We also found significant changes in the driving process over time. Specifically, the
level of economic development and the size of the population gradually weakened as
drivers of urban expansion over the period from 2008 to 2023. Although these factors
played a critical role in the early stages, their direct impact on urban expansion dimin-
ishes as economic growth and population increase slow down. The driving force of the
industrial structure strengthens continuously during this period, particularly in the later
stages, where industrial upgrading and structural adjustment become key drivers of urban
expansion. Additionally, the spatial expansion of the Central Yunnan Urban Agglomeration
gradually shifts towards a focus on industrial development, driving the transformation
of urban functions and layout. As the strategic importance of the Central Yunnan Urban
Agglomeration increases, the roles of government support and openness as driving forces
significantly intensify in the later stages. Government intervention through policy guid-
ance and planning facilitates the coordinated development and external openness of the
urban agglomeration, serving as a crucial force in ensuring urban expansion. However,
natural geographic factors such as elevation and slope exhibit little change over time but
continue to impose constraints on urban expansion. Especially in a region with complex
topography like Central Yunnan, elevation and slope have an important influence on the
spatial selection and development cost of urban expansion. These factors determine the
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feasibility of urban expansion, especially in terms of site selection and spatial layout, and
thus influence the direction and pattern of urban expansion.
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Overall, the urban expansion of the Central Yunnan Urban Agglomeration between
2008 and 2023 exhibited a clear shift in the driving mechanisms across different phases.
Economic development and population size are the primary driving forces in the early
stages, but their influence gradually diminish over time. In contrast, the roles of industrial
structure and government support increasingly strengthen, becoming the key drivers of
urban expansion in the later stages. The enhancement of openness also promotes outward-
oriented urban development, while natural geographic factors such as elevation and slope
continuously impact the spatial choices for urban expansion throughout the entire period.

4. Discussion

Traditional studies on urban agglomeration spatial expansion primarily rely on land
use data and statistical data. While these conventional data sources provide a foundational
basis for analyzing urban spatial expansion, they generally suffer from the problems
of untimely updating, low resolution, and high influence of external conditions, which
make it challenging to comprehensively and in real-time capture the dynamic processes
of urban expansion [83]. As urbanization accelerates, the speed and complexity of urban
expansion continue to increase, making it increasingly difficult for a single data source to
accurately reflect the rapid changes occurring within urban spaces. Based on the spatial
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characteristics of NTL data and LandScan data, this study analyzes the spatiotemporal
characteristics and driving mechanism of the spatial expansion of Central Yunnan Urban
Agglomeration using data fusion methods. A simple and reliable approach for identifying
urban agglomeration spatial expansion through multi-source data fusion is developed,
and the driving mechanisms are systematically analyzed across different development
stages. This approach allows for an in-depth understanding of the dynamic changes and
spatial layout of urban agglomerations, helping to reveal the characteristics at various
stages of development, thereby providing a scientific basis for understanding the overall
development trends of urban agglomerations.

This study, through the analysis of spatial expansion in the Central Yunnan Urban
Agglomeration between 2008 and 2023, reveals the phased characteristics and key driving
factors of urban expansion in this region. Our findings align with some of the existing
literature but also highlight unique regional characteristics and offer new insights [84].
Consistent with other studies on the development of urban agglomerations in China, we
find that the early expansion of the Central Yunnan Urban Agglomeration is primarily
driven by economic development and population size. This is similar to the phenomenon
observed by Liu et al. (2016) in their study of the Yangtze River Delta Urban Agglomeration,
indicating that economic growth and population concentration serve as the initial drivers of
urban expansion [85]. However, our study further demonstrates that the relative influence
of economic development and population size gradually diminishes over time. This
contrasts with the findings of Zhou et al. (2020) in the Pearl River Delta region, where
economic and population drivers remain strong over a longer time span [86]. This difference
may stem from the relatively low economic starting point and greater topographical
constraints of the Central Yunnan Urban Agglomeration, which makes other factors such
as industrial structure and government support more important at later stages.

As time progresses, the transformation of the industrial structure in the Central Yun-
nan Urban Agglomeration plays an increasingly important role in urban expansion. This
finding aligns with the perspective proposed by Yang et al. (2018) in their study of the
Bohai Rim Urban Agglomeration, which suggests that the optimization and upgrading of
industrial structures have become significant forces driving urban expansion [87]. However,
our study further reveals that, during the period from 2018 to 2023, the rapid development
of the tertiary industry and high-tech industry in the Central Yunnan Urban Agglomeration
is particularly notable, contributing to the enhancement of urban functions and the opti-
mization of the spatial structure. This contrasts with the view of Wang and Zhang (2019) in
their study of the Chengdu-Chongqing Urban Agglomeration, where they suggest that the
expansion in that region is more reliant on the development of traditional manufacturing
and heavy industries [88]. This suggests that the path of industrial structure transformation
in different regions may be significantly influenced by their historical development back-
ground and resource endowment. Additionally, our study also shows that government
support emerges as a key driver for the expansion of the Central Yunnan Urban Agglom-
eration, especially during the period from 2018 to 2023. This finding is consistent with
Xu et al. (2017) in their study of the Beijing-Tianjin-Hebei region, which also emphasizes
the crucial role of government in regional coordinated development and urban agglom-
eration planning [89]. However, a notable difference is that the openness of the Central
Yunnan Urban Agglomeration gradually becomes another important factor promoting
urban expansion, especially in terms of strengthening connections with Southeast Asian
countries. In contrast, Li et al. (2018), in their study of the Guangdong-Hong Kong-Macao
Greater Bay Area, highlight that the impact of openness is more globalized, with a focus on
attracting international capital and technology. This difference may reflect how the Central
Yunnan Urban Agglomeration, as an inland region of China, leverages regional openness
to enhance its position in national and international divisions of labor [90].

Overall, although the spatiotemporal characteristics and driving mechanism of urban
expansion in urban agglomeration is not a brand new topic, and many studies have
conducted various analyses of urban expansion in various urban agglomerations in China
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and even in the world, this study builds on this foundation by fusing NTL data with
LandScan data to systematically analyze the expansion patterns and driving mechanisms
of the Central Yunnan Urban Agglomeration across different development stages, revealing
the region’s unique urban development trajectory. Through the fusion of multi-source data
and the application of the U-Net model, we not only accurately extracted the built-up areas
of the Central Yunnan Urban Agglomeration to analyze the spatiotemporal characteristics
of its expansion but also conducted an in-depth exploration of the impact of various factors
such as economy, population, industry, and government support on urban expansion. This
study deepens the understanding of the driving mechanisms of urban expansion and offers
the potential for a comprehensive analysis of the multidimensional driving factors, thereby
providing a possible timely feedback mechanism for urban agglomerations.

This study analyzes the spatiotemporal mechanisms of urban expansion in the Central
Yunnan Urban Agglomeration and the driving mechanisms that influenced this expansion
during different periods. However, there are some limitations in this study. First, at the
data level, the spatial resolution limitation and the effect of light pollution of NTL data, and
the timeliness and population estimation error of LandScan data, can all affect the accuracy
of the analysis [91]. Second, the time span of this study is from 2008 to 2023, and future
studies could further extend the time span to capture the expanding trend over a longer
period. Additionally, although we discussed the role of industrial structure and government
support, other potential drivers, such as environmental policies and sociocultural factors,
have not been fully explored, which provides direction for future research.

5. Conclusions

Through an in-depth analysis of the spatial expansion characteristics and driving
mechanisms of the Central Yunnan Urban Agglomeration from 2008 to 2023, we revealed
the complexity and phased characteristics of urban agglomeration development in the
region. By integrating multi-source data fusion techniques with the U-Net model, we
successfully extracted changes in the built-up areas of the Central Yunnan Urban Agglom-
eration during different periods, allowing us to analyze the spatiotemporal characteristics
of urban expansion and identify the primary driving factors at various stages. The study
finds that the early spatial expansion of the Central Yunnan Urban Agglomeration is pri-
marily driven by economic development and population growth. However, over time,
the upgrading of the industrial structure and the strengthening of government support
gradually become the core drivers of urban expansion. This is particularly evident dur-
ing the period from 2018 to 2023, when industrial transformation and policy guidance
play a significant role in optimizing urban functions and adjusting the spatial structure.
Additionally, the study also highlights that, although natural geographic factors such as
elevation and slope remain relatively unchanged throughout the period, their restrictive
impact on the location choices and development costs of spatial expansion in the Central
Yunnan Urban Agglomeration cannot be overlooked. By analyzing the driving mechanism
of the Central Yunnan Urban Agglomeration, this study provides a new perspective for
understanding the spatial expansion of inland urban agglomerations in China and offers a
reference for related urban planning practices and policy formulation. Future studies can
further extend the time span and consider additional environmental and social factors for a
more comprehensive understanding of the complex dynamics of urban expansion.
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