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Abstract: In mountain environments, landslide activity can be assessed through a combination of
remote and proximal sensing techniques performed at different scales. The complementarity of
methods and the synergistic use of data can be crucial for landslide recognition and monitoring. This
paper explored the potential of Multi-Temporal Differential Synthetic Aperture Radar Interferometry
(MT-DInSAR) to detect and monitor slope deformations at the basin scale in a catchment area of
the Northern Apennines (Italy) and verified the consistency between the landslide classification
by the Inventory of Landslide Phenomena in Italy (IFFI) and displacements from the SAR data. In
this research, C- and X-band SAR were considered to provide insights into the performances and
suitability of sensors operating at different frequencies. This study provides clues about the state of
activity of slow-moving landslides and critically assessed its contribution to the IFFI inventory update.
Moreover, it demonstrated the benefits of the synergistic use of SAR and geomorphological analysis to
investigate slope dynamics in clayey terrains by exemplifying the approach for a relevant case study,
the Gaiato landslide. Notwithstanding the widespread use of MT-DInSAR for landslide kinematics
investigations, the main limiting factors are discussed along with the expected improvements related
to the upcoming new generations of L-band SAR satellites.

Keywords: SAR interferometry; slope dynamics; landslide recognition; Northern Apennines, Italy

1. Introduction

In mountainous areas, landslides cause significant landscape changes and can be the
main geological hazard generating fatalities, damage to infrastructures, and high economic
losses. Landslide occurrence can be favored by different predisposing factors (e.g., lithology,
topography, and faults), and triggered by different processes, such as soil erosion, tectonic
activity, intense rainfall, or anthropogenic activities like excavations, agriculture, and
mining [1–3].

This paper focuses on slow-moving landslides [4,5]. Slow-moving landslides are usu-
ally found in hilly–mountainous areas characterized by mechanically weak lithologies [6–8].
They exhibit gradual movement through time, with velocities ranging from mm year−1 to
m year−1 for months to hundreds of years [1,8].

The investigation and assessment of slow-moving landslides requires a multi-scale and
multidisciplinary methodological approach and usually includes landslide inventories [9–12],
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multitemporal monitoring [13–17], and long-term and short-term analysis aiming to de-
fine and characterize the state of activity and evolution of the slope movements [18–23].
Several methodologies can be implemented for the monitoring of landslide properties and
evolution, such as ground-based topography and geodesy, geotechnical investigations,
aerial proximal sensing, and Earth Observation (EO)-based techniques [24], together with a
variety of in situ approaches and their integrated uses [21,25–28]. Among these, technolo-
gies based on Global Navigation Satellite Systems (GNSS), terrestrial laser scanning, total
stations, geotechnical sensors (e.g., inclinometers, piezometers, extensometers etc.) and Un-
crewed Aerial Vehicles (UAVs) photogrammetry and LiDAR are commonly implemented.
In particular, UAV-based surveys are very effective for monitoring natural processes as
they allow for the generation of high-resolution 3D models at repeated intervals (months or
years) for morphological applications and investigation of slope dynamics. On the contrary,
point-based methodologies, such as GNSS and a total station, can be adopted for in situ
monitoring and whenever the establishment of a reference frame is required [29].

Satellite radar interferometric techniques have been widely used in EO applications
for their ability to provide the surface displacement components oriented along the Line of
Sight (LOS) direction to a large extent with centimeter to millimeter accuracy [30]. The first
applications of the Differential Synthetic Aperture Radar Interferometry (DInSAR) included
the mapping of displacement fields caused by earthquakes, volcanic activities, ice sheet
flow [31], and landslide detection and monitoring [32]. The combination of a long series of
radar satellite data and of advanced multi-temporal techniques [33–36] now permits the
investigation of the evolution of these phenomena. The displacement of selected targets,
the so-called Persistent Scatterers (PS), can be determined with an accuracy on the order of
1–2 mm/year for velocities extrapolated from time series [37].

For the abovementioned reasons, the ability of SAR interferometry to detect slow-
moving landslides has been widely exploited [38–43]. In addition, the technique is able
to retrieve displacements from data acquired by constellations of satellites operating at
multi-frequencies (namely the L, C, and X frequency bands) and varying spatial resolutions.

For the purposes of the proposed research, the Sentinel-1 (S1) C-band constellation
(European Space Agency, ESA) and the X-band COnstellation of small Satellites for Mediter-
ranean basin Observation (COSMO-SkyMed) (Italian Space Agency, ASI) need to be men-
tioned. It is important to highlight the advantages and drawbacks related to the use of the
different systems operating at different frequencies. Radar data acquired at higher frequen-
cies (i.e., X-band and, secondly, C-band) ensure lower phase noise as their value decreases
with the signal wavelength; on the other hand, data acquired at lower frequencies (i.e.,
L-band) are less sensitive to temporal decorrelation as longer wavelengths ensure higher
coherence values between image pairs and exhibit an increased capability to penetrate
the vegetation canopy. Moreover, the maximum detectable displacement between two
successive passes along the line of sight is strongly related to the signal wavelength as
its value is equal to λ/4 (where λ is the signal wavelength) [30,44]. Thus, when dealing
with landslide monitoring in a vegetated environment, the use of SAR data from a satel-
lite operating at a longer wavelength is advised [45,46]. This is especially pertinent for
faster slope deformation processes, as evidenced, for instance, by Strozzi et al., 2005 [25],
who demonstrated the capabilities of L-band JERS data over the Italian and Swiss Alps.
Other limitations can be attributed to geometrical and morpho-structural settings, slope
orientation, and exposure with respect to the satellite acquisition geometry, including the
occurrence of shadowing [28].

The aim of the present research was to verify the efficiency and potentialities of multi-
frequency and dual-geometry SAR interferometry to detect and monitor slope deformations
at a basin scale in a catchment area of the Northern Apennines (Italy) and assess the state of
activity of landslides by monitoring their evolution through time. This is pursued through
the exploitation of dual-orbit datasets from C-band S1 and X-band CSK Constellations. The
investigated area is the Scoltenna Stream catchment in the Modena Apennines (Emilia-
Romagna, Italy). This area is characterized by a high incidence of landslides, which vary
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in type and size, and a significant propensity for slope instability [47]. The ability of SAR
interferometry to detect surface deformations in areas with locally dominant land covers
and the assessment of results in comparison with the classification of landslides provided
by the available landslide inventories will be discussed. Furthermore, an in-depth and
exhaustive analysis of a relevant landslide located in the study area, the Gaiato landslide, is
presented to more clearly delineate the aforementioned potentialities of SAR interferometry
in a multidisciplinary approach.

2. Study Area

The Scoltenna Stream catchment is located in the Northern Apennines (Modena
Province, Italy) and has an extent of about 280 km2 and an elevation ranging from 300 to
2000 m above sea level (a.s.l.) (Figure 1). The Scoltenna Stream originates near Pievepelago
from the confluence of the Perticara, Tagliole and Pozze streams. The Scoltenna Stream is
33 km long, with an average flow rate of 3.5 m3/s and an active channel width ranging
between 10 m and 85 m [29]. The hydrographic network is strongly controlled by the
physiographic conditions of the valley, with a prevalence of sinuous pattern.
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Italy) and landslides of the IFFI inventory (available online: https://geoportale.regione.emilia-
romagna.it/ accessed 10 May 2024).

2.1. Geological and Geomorphological Setting

Geologically, the Modena Apennines belong to a fold-and-thrust mountain range de-
rived from the complex and multi-staged evolution of the post-Eocene collision between the
European and African plates [48,49]. The southern part of the Scoltenna Stream catchment
is characterized by calcareous–marly formations, while the northern part is composed by
arenaceous–clayey formations (flysch) [21].

https://geoportale.regione.emilia-romagna.it/
https://geoportale.regione.emilia-romagna.it/
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The geological units outcropping in the catchment show a remarkable predisposition
to slope instability. Erosion processes influence and decrease the mechanical properties of
the geological formations and facilitate progressive water absorption, making the slopes
prone to landslide processes [50,51]. The main predisposing factors for landslide occurrence
can be related to the prevalent clayey nature of the rocks and to intense and/or prolonged
rainfall concentrated in the autumn and spring periods. The types of landslides are deter-
mined by the geological–structural properties of the formations involved. Landslides are
generally composed of thick clayey deposits with gravel and blocks due to the weathering
of claystone, sandstone, and limestone rocks. Landslides can evolve through multiple
and/or successive movements with partial and/or total reactivations. The reactivations
can be due to (a) failures at the crown zone, (b) undrained loading of pre-existing landslide
deposits, and (c) downslope failure propagation of the entire landslide body [52,53]. All
landslide types can be recognized in the study area, but the most frequent are slow-moving
earth slides and earth flows [21,54–59]. In the Scoltenna catchment, 1239 landslides were
identified, 393 are active (31.7%) and the remaining 846 are dormant (68.3%) [60].

2.2. Climatic Setting

According to the Köppen classification [61] the climate of the Scoltenna catchment is
defined as “sub-continental” and locally as “cool-temperate” with a mild temperate climate
(Cfa). The area presents a Mediterranean climate and is characterized by intense rainfall
in spring and autumn and dry summers and winters with moderate precipitation and/or
snowfall [62–64]. Rainfall is generally one of the main factors triggering the reactivation of
landslides, especially during autumn and spring when intense precipitation can last for
several days, which is becoming more common due to recent climate changes [53,65].

2.3. The Gaiato Landslide Case Study

A relevant case study, the Gaiato landslide, was deeply investigated to better assess
the potentialities of SAR interferometry and a multidisciplinary approach. The Gaiato
landslide (Figure 1) is located in the lower Scoltenna catchment and is characterized by
clay terrains. It is classified as earth flow, but detachment from the sub-vertically fractured
calcarenites can lead to rock falls and block slides. The infiltration of rainfall in the fracture
networks can lead to the reactivation of a deep ruptured surface, eventually reaching the
less permeable clay formations underneath that become more plastic [66,67]. An important
role is also played by the runoff waters, which cause rapid incision of the slope due to the
high erodibility of the soil with consequent degradation and erosion of the surface and slope
processes. The current conditions of the Gaiato landslide does not represent a hazardous
situation due to the absence of settlements in the immediate vicinity but a foreseeable
progressive regression of the crown of the landslide, due to subsequent collapses, could
damage the buildings closest to the landslide (including the Tower of Gaiato from the XII
century). The most recent movements occurred after intense rainfall between March and
April 2013 (available online: https://geoportale.regione.emilia-romagna.it/, accessed on
17 July 2024 [60]).

3. Materials and Methods

This research took advantage of a multidisciplinary approach for the detection, inves-
tigation and assessment of slope movements. Cartographic material and different datasets
were analyzed: slope instability maps and landslide inventories and catalogs were comple-
mented by satellite radar datasets, and detailed geomorphological surveys were carried
out for ground truthing. The flowchart summarizing the proposed approach is presented
in Figure 2.

https://geoportale.regione.emilia-romagna.it/
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3.1. Cartographic Material

The open-access availability of geospatial datasets and cartographic products, as
well as inventories, catalogs, archives, online platforms and digital databases, is rapidly
increasing and becoming a useful tool to investigate and assess slope dynamics. Regional,
national, or international repositories (e.g., the Italian Regional and National Geoportals)
provide different thematic maps, including geological maps and slope instability maps,
and landslide inventory maps, historical digital orthophotos, and interferometric data [29].
In this study, the authors collected digital color orthophotos and optical satellite imagery,
together with a Digital Elevation Model (DEM) at 5 × 5 m spatial resolution [60] and
the Inventory of Landslide Phenomena in Italy (IFFI). The IFFI project by ISPRA (Italian
Institute for Environmental Protection and Research) supplies a detailed picture of the
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distribution of landslides in Italy [68]. This Inventory is the national and official database
on landslides [47]. Since 2005, ISPRA has made the data available in online archives to
encourage the widest dissemination and utilization of the information by citizens, local
administrations, researchers and technicians engaged in the field of territorial and land
use planning. Moreover, orthophotos accessible via the Regional Web Map Service were
analyzed in a multitemporal perspective in order to investigate and monitor the evolution
of the Gaiato landslide. The following years were considered in the analysis: 2008, 2011,
2018 and 2020. The multi-temporal mapping of the landslides was conducted in a GIS
environment through a manual delineation method. For each orthophoto in the landslide
polygon, the state of activity and land use were mapped. The latter was divided into the
following classes: woods, bushes (high and low density), grass, and bare soil.

3.2. Sentinel-1 Constellation and European Ground Motion Service

The major ESA EO program, the Copernicus, includes a constellation of C-band SAR
satellites, composed of the Sentinel-1A (S1A) and -1B (S1B) launched in 2014 and 2016,
respectively. The data distribution policy of the ESA led to the free availability of a large
amount of SAR data worldwide at average spatial resolution and very short revisit times.
In the Interferometric Wide (IW) acquisition mode, a resolution of 5 m × 20 m was achieved
and a 6 day revisit time is available when the ensembled S1 constellation is considered [69].
In addition to the open datasets, ESA released a trusted tool for the processing of data
provided by the Sentinels constellation, the Sentinel Application Platform (SNAP) software
(version 9.0.0 was used in this work), which includes interferometric utilities, comple-
mented by the Statistical Cost Network Flow Algorithm for Phase Unwrapping (SNAPHU)
package for phase unwrapping [70].

In addition, the open-source distribution strategy of the S1 data paved the way for the
development of a ground deformation service for the monitoring of the entire European
territory, the European Ground Motion Service (EGMS) [71,72]. The objective of the EGMS
is to provide standardized, consistent, interoperable and harmonized ground motion
data combining the most advanced Multi-Temporal DInSAR (MT-DInSAR) processing
techniques of dual-orbit S1 data available from the beginning of the mission (i.e., 2015) and
high-quality GNSS models to calibrate the products [73]. The EGMS provides deformation
maps and displacement time series of single targets updated on a yearly basis. The main
products of the service are: (a) the GNSS-calibrated deformation maps and time series
along the radar LOS and (b) the decomposed (east–west oriented and vertical) deformation
maps at a spatial resolution of 100 m × 100 m.

To achieve the objectives of this research work, the calibrated LOS-oriented prod-
ucts have been considered to preserve the full resolution of the S1 data and to provide
measurements relative to an absolute reference frame. In particular, products from both
ascending (117 passes) and descending (168 passes) orbits related to the period 2015–2021
were downloaded from the EGMS Explorer and imported in a GIS project [74].

3.3. COSMO-SkyMed Constellations and Data Processing over the Scoltenna Catchment

The COSMO-SkyMed (CSK) is the ASI main EO system, whose aim is to provide
data and products for scientific, defense and commercial applications and risk manage-
ment [75]. The CSK first generation mission reached full operational capabilities in 2011
and is composed of a constellation of four satellites equipped with a multi-mode high
resolution X-band SAR. The first generation constellation is currently being complemented
by the COSMO-SkyMed Second Generation (CSG), a constellation of two enhanced SAR
satellites conceived to ensure the operational continuity to the CSK and to improve the
data in terms of spatial resolution, number of available images and available sensing
modes [76]. For this research, a dual orbit CSK dataset was requested from ASI through
the new portal for Italian Institutional Users. This portal allows registered users to obtain
free access to CSK and CSG data after submitting a project proposal [77]. An ascending
dataset (spanning the years 2012–2022) and a descending one (from 2012 to 2021) was
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requested for the Scoltenna catchment. The dataset is composed of Single-look Complex
Slant (SCS) weighted and radiometrically equalized (Level 1A) data acquired with the
Stripmap Himage mode. The data have a spatial resolution of 3 m in both range and
azimuth directions. Further information regarding the CSK dataset can be found in Table 1.

Table 1. Information regarding the CSK dataset over the Scoltenna catchment.

Orbit Type Number of
Products

Acquisition
Time

Scene Center
[Lat, Lon] Start Date End Date Master

Date
Mean Temporal

Baseline

Ascending 92 04:46 UTC [44.2581487,
10.65246370] 03/03/2012 22/08/2022 01/03/2017 41 days

Descending 50 17:20 UTC [44.25349403,
10.70065910] 07/05/2012 05/12/2021 07/10/2015 70 days

The ascending and descending orbits were then processed using an open-source
procedure that combines SNAP, the Stanford Method for Persistent Scatterers (StaMPS) [78],
and the MATLAB routines [79]. The processing strategy aims to compute the displacement
history of selected stable targets from a large set of SAR data, achieving a high level of
accuracy (1–2 mm/year) using the PS theory presented in Hooper et al., 2004 [35]. In
more detail, the SNAP-StaMPS workflow used in the present study is briefly presented in
Figure 2. The interferometric processing performed in SNAP included the selection of the
master images, the coregistration of images, the interferograms formation and the removal
of the topographic component to the phase. Then, the PS processing performed in StaMPS
and complemented by MATLAB routines was performed: the PS candidates were selected
using an amplitude dispersion value of 0.50; the phase stability of the candidates was
evaluated, estimating the phase noise, and the noisy scatterers were discarded accordingly;
the phase was unwrapped and corrected; and, finally, the displacement time series was
computed. The last step of the SAR processing included the calibration of both orbits
exploiting the 3D velocity field of a GNSS station. In particular, the GNSS velocity field was
projected along the ascending and descending slant range directions, then the PSs near the
station were aligned to the computed GNSS slant-projected velocity value and the entire
dataset was then calibrated. For the CSK dataset, the velocity field of the permanent GNSS
station BOR2 located in Lama Mocogno (Modena, Italy) from the service provided by the
Nevada Geodetic Laboratory [80] has been employed.

3.4. Geomorphological Assessment and Statistical Analysis of Multi-Temporal SAR Data

In a GIS environment, a visual interpretation of digital orthophotos and optical satellite
imagery was performed as they proved their ability to retrieve information related to the
extension and state of activity of landslides, together with the integration of thematic maps,
DEM, and derived hillshade models [81,82].

The Sentinel-1 EGMS and COSMO-SkyMed products available for the study area were
retrieved and imported into a GIS project for successive analysis. In addition, a polygon
shapefile containing the active and dormant landslides of the Emilia-Romagna Region
was also uploaded and the landslides belonging to the Scoltenna catchment were selected.
The landslides’ location and state of activity were retrieved from the IFFI inventory. The
inventory identifies slow-moving earth slides and earth flows (with velocities ranging
from mm/year to cm/year) as the most frequent phenomena occurring in the study area.
Subsequently, permanent scatterers processed from the data provided by different satellites
and orbits, falling into polygons representing active and dormant landslides, were counted.
A spatial and statistical analysis based on the density of PSs was performed. Then, an
analysis of the state of activity of each landslide was conducted for S1 data only. In
particular, the detected landslides for each orbit were grouped according to the state of
activity reported in the IFFI inventory (i.e., active and dormant), and for each landslide,
the mean velocity of PSs and its standard deviation were computed to evaluate the state of
activity. To avoid the effect of isolated and unstable reflectors, only landslides including
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a minimum of 3 PSs and an average velocity higher than 2 mm/year were considered.
The cited threshold was selected for two main reasons. Firstly, this work investigates
landslides characterized by very small displacements, which are common in the study area;
secondly, the accuracy achieved by the multi-temporal interferometric technique, and thus
the detectability threshold of the technique, is on the order of 1–2 mm/year; therefore,
the detected displacements can be considered as meaningful. The results obtained by the
described analysis were compared to the state of activity reported by the IFFI inventory. This
procedure allows us to assess the potential of the multi-temporal interferometric technique
in the investigations of slow moving landslides and updating of the existing inventories.

4. Results

In the study area, the Sentinel-1 EGMS dataset belonging to the ascending orbit
(Figure 3) overlaps with 317 landslides of the IFFI inventory. This value represents the 25.6%
of the total number of landslides inside the Scoltenna catchment (1239), corresponding
to the 58.2% of the total landslides area in the catchment. The remaining 922 landslides
(74.4%) do not match with the PSs obtained by the ascending Sentinel-1 EGMS dataset.
Among the mentioned 317 landslides, 12.0% are classified by the IFFI inventory as active
(38 of the 317) and the remaining 88.0% as dormant (279). It was noted that 22.1% of the
landslides contain fewer than 3 PSs (70 of the 317), 32.8% contain 3 to 10 PSs (104 of the
317), 30.3% contain 11 to 50 PSs (96 of the 317), 8.8% contain 51 to 100 PSs (28 of the 317),
5.4% contain 101 to 500 PSs (17 of the 317), and only 0.6% contain more than 500 PSs (2 of
the 317) (Figure 4a).
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Similarly, data from the descending orbit (Figure 3) overlap with 295 landslides, i.e.,
the 23.8% of the total mapped inside the catchment (1239), corresponding to the 58.0% of
the catchment landslides area; the remaining 944 landslides (76.2%) are not represented.
The 10.2% of the represented landslides (30 of the 295) are classified as active and the 89.8%
(265) as dormant in the IFFI inventory. Moreover, 19.3% of the landslides include fewer
than 3 PSs (57 of the 295), 30.3% contain 3 to 10 PSs (89 of the 265), 34.6% contain 11 to
50 PSs (102 of the 265), 10.5% contain 51 to 100 PSs (31 of the 265), 4.7% contain 101 to
500 PSs (14 of the 265), and only 0.6% are represented by more than 500 PSs (2 of 265)
(Figure 4a). The distribution of the number of landslides with respect to the PSs density is
presented in the graph of Figure 4b for both the S1 orbits, from which it can be noted that the
majority of the detected landslides present a density of PSs in the ranges 10–100 PS/km2

and 100–500 PS/km2 for both the ascending and descending orbits.
The processing of the COSMO-SkyMed dataset from the ascending orbit (Figure 5)

produced PSs that overlap with 140 landslides, corresponding to the 11.3% of the total
number of landslides mapped within the Scoltenna catchment (1239). The other 88.7% of
the landslides (1099) do not show corresponding PSs based on the processing of ascending
COSMO-SkyMed data. The IFFI inventory classifies 14.3% of the landslides as active (20 of
the 140) and the remaining 85.7% as dormant (120). The analysis of PS numerosity within
the landslides’ boundary shows 24.3% with fewer than 3 PSs (34 of the 140), 34.3% with
3 to 10 PSs (48 of the 140), 27.9% with 11 to 50 PSs (39 of the 140), 6.4% with 51 to 100 PSs
(9 of the 140), 7.1% with 101 to 500 PSs (10 of the 140), and none including more than 500
PSs (Figure 6a).

PSs detected from the analysis of data collected along the descending orbit (Figure 5)
relate to 162 landslides, corresponding to the 13.1% of the whole number of landslides
(1239). As was also evidenced by results obtained from the ascending orbit, most of the
landslides detected by descending orbit (1077) representing the 86.9% of the total have no
corresponding PSs. In particular, the inventory classifies the 15.4% of the landslides as
active (25 of the 162) and the 84.6% as dormant (137). The numerosity analysis shows 55.5%
of the landslides including fewer than 3 PSs (90 of 162), 27.2% including 3 to 10 PSs (44 of the
162), 14.8% with 11 to 50 PSs (24 of the 162), 1.9% with 51 to 100 PSs (3 of the 162) and none
of them with more than 500 PSs (Figure 6a). The distribution of the number of landslides
with respect to the PSs density is presented in the graph of Figure 6b for both the CSK
orbits. Most of the detected landslides present a density of PSs in the range 10–100 PS/km2

and another consistent number of landslides have a density of 100–500 PS/km2, for both
the ascending and descending orbits.
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Figure 6. Results of COSMO-SkyMed ascending and descending data spatial analysis: (a) Range of
PSs number and (b) Density of PSs inside the detected landslides.

To verify the consistency between the classification of landslides as provided by
the IFFI inventory and the displacements available from the processing of SAR data, an
analysis based on the PSs mean velocity has been conducted. For each landslide with
a minimum of 3 PSs, the basic statistical parameters and their numerosity have been
computed and distinguished between active and dormant landslides. Moreover, given
the higher number of landslides detected by the EGMS S1 data in comparison to those
detected by the CSK data, the outlined analysis was performed exclusively on the S1 data.
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The results obtained are presented in Figures 7–10 for both the ascending and descending
orbit. In the figures, the term “moving” landslide indicates landslides for which the sum
between the mean of the PSs mean velocities and its standard deviation is greater than
a selected threshold of 2 mm/year [81], given an accuracy of 1–2 mm/year of the multi-
temporal techniques. Similarly, “non-moving” refers to landslides where such a term is
less than 2 mm/year. In the figures, the ID used corresponds to the code reported in
the attribute table of the shapefile containing all of the landslides located in the Emilia
Romagna Region. The shapefile is provided by the Geoportale of Emilia Romagna Region
(https://geoportale.regione.emilia-romagna.it/, accessed on 17 July 2024 [60]). Figures 7
and 8 represent the totality of the landslides detected during the ascending and descending
satellite passes and classified by the IFFI inventory as active, while Figures 9 and 10 present
only a subset of the landslides detected by both orbits classified as dormant due to the large
number of them. The analysis of the totality of the detected dormant landslides is reported
in the Supplementary Materials. Considering the active landslides detected by the S1
ascending data (Figure 7), 72% are classified as moving and 28% as non-moving; for the S1
descending data (Figure 8), 58.8% are classified as moving and 41.2% as non-moving. When
the analysis of the dormant landslides is considered, for the S1 ascending data (Figure 9),
79.3% are moving and 20.7% are non-moving; for the S1 descending data (Figure 10), 54.3%
are moving and 45.7% are non-moving. Along with the representation of the mean velocity
and standard deviation, a pie chart presenting the global consistency between the IFFI
classification and the SAR-based results is reported. The consistency between the IFFI
classification and SAR results is verified whenever the sum of the mean velocity of the
landslide and its standard deviation is greater than the selected threshold whereas the
opposite holds for dormant landslides.
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Figure 10. Analysis of the landslides’ motion from S1 descending EGMS data performed for a
representative subset of landslides classified as dormant by the IFFI inventory. The totality of the
analyzed landslides can be found in the Supplementary Materials.

The results presented in Figures 7–10 have been mapped to provide a geographical
representation of the achieved performances and possible responses linked to the main
terrain properties, dominant coverages and slope exposure. Figures 11 and 12 show
landslides classified according to the consistency between the IFFI inventory classification
and the state of activity retrieved from the SAR ascending and descending data, respectively.
The classification was performed according to five classes: landslides classified as active
both by the IFFI inventory and the SAR state of activity, landslides classified as dormant
both by the IFFI inventory and the SAR state of activity, landslides classified as active by the
IFFI inventory and dormant by the SAR state of activity, landslides classified as dormant
by the IFFI inventory and active by the SAR state of activity, and landslides non detected
by SAR products (i.e., landslides for which fewer than 3 PSs have been detected).

To exemplify the multidisciplinary approach and to better demonstrate the poten-
tialities of SAR interferometry for slow-moving landslide monitoring, in the following, a
relevant case study is presented along with the obtained results. The proposed approach
is specifically based on orthophoto visualization and geomorphological and satellite SAR
analysis. More in detail, regarding the PS analysis, both the S1 and CSK data have been
employed to perform a cross-validation between the datasets; moreover, a time series
analysis has been conducted to monitor the landslide evolution through time.
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The Gaiato landslide, a 390,000 m2 wide and 2.3 km long earth flow with an elevation
difference of 540 m (see Figure 1 for the location of the landslide), has been chosen as the
test site for the proposed methodology. The cross-validation between the independent
SAR dataset considered in this work (i.e., S1 EGMS products and CSK data processed and
calibrated by the authors) is presented. In particular, Figure 13 presents the extension of
the landslides and the SAR products from the ascending and descending orbit for both
satellites. As illustrated in the PSs maps of Figure 13, S1 data are more suited to describe the
phenomenon occurring at the Gaiato landslide, particularly in vegetated areas, than CSK
data. However, a comparison of the mean PSs velocities from the two datasets (considered
independent from each other), performed as a cross-validation, demonstrated that both
datasets can retrieve and describe the phenomenon as evidenced by the differences at the
mm level in the mean velocity values. It is important to keep in mind that the S1 EGMS
and CSK products were calibrated separately, following distinct procedures and exploiting
different GNSS networks.
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A deeper examination of the processes occurring at the Gaiato landslide was con-
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evolution of the landslide over time. To this end, three independent datasets were consid-
ered: the S1 EGMS products, the CSK products processed by the authors (referring to the 
period 2012–2022) and the CSK products processed by the TRE Telerilevamento in the 
frame of the “Piano Straordinario di Telerilevamento” (PST), covering the period 2011–
2014 (more information related to the PST can be found at [83]). In Figure 14, the time 
series of the three PSs nearest to the location identified by the white star of Figure 13 are 
presented. The point selected for subsequent time series analysis was identified as a key 
area of interest as it demonstrates the ability of the integrated method to study slow 

Figure 13. The extension of the Gaiato landslide (left); PSs from ascending S1 and CSK orbits (center);
PSs from descending S1 and CSK orbits (right). The used orthophoto (year 2018) can be accessed
through the Geoportal of the Emilia Romagna region (available online: https://geoportale.regione.
emilia-romagna.it/, accessed on 17 July 2024). The white star indicates the point relevant to the
successive time series analysis.

A deeper examination of the processes occurring at the Gaiato landslide was conducted
by analyzing the time series of displacement of the selected PSs to monitor the evolution
of the landslide over time. To this end, three independent datasets were considered: the
S1 EGMS products, the CSK products processed by the authors (referring to the period
2012–2022) and the CSK products processed by the TRE Telerilevamento in the frame of
the “Piano Straordinario di Telerilevamento” (PST), covering the period 2011–2014 (more
information related to the PST can be found at [83]). In Figure 14, the time series of the three
PSs nearest to the location identified by the white star of Figure 13 are presented. The point
selected for subsequent time series analysis was identified as a key area of interest as it
demonstrates the ability of the integrated method to study slow landslides and update the
inventory. Indeed, the time series show that the area exhibits a well-defined deformative

https://geoportale.regione.emilia-romagna.it/
https://geoportale.regione.emilia-romagna.it/
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trend and significative displacement values, with a slight increase of the mean velocity
from the year 2018.
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Figure 14. Time series of the 3 nearest PSs to the location identified by the white star of Figure 13.
The time series of the CSK descending dataset from the “Piano Straordinario di Telerilevamento” [83]
(top), the CSK descending dataset processed by the authors (middle), and the S1 EGMS descending
products (bottom).

The multitemporal analysis comprised the mapping of the evolution of the extent of
the Gaiato landslide, as observed through the orthophotos available from the Regional Web
Map Service, and the changes in land use. The selected time span was aligned with the PSs
time series.

In 2008, about half of the surface of the Gaiato landslide was covered by bare soil (56%)
and the remaining part was covered in woods (32%), high density bushes (3%) and low
density bushes (9%) (Figure 15a). In 2011, the woods and bushes increased: woods reached
41% of the surface, high density bushes 14%, and low density bushes 8%. Moreover, 12%
of surface was covered by grass, leaving only 25% covered by bare soil (Figure 15b). In
2018, the grass increased (reaching 24% of the surface) at the expense of woods and low
density bushes: 35% of the surface was covered by woods and 5% by low density bushes;
the high density bushes maintained the same extension (14%) and the bare soil occupied
22% (Figure 15c). In 2020, the woods extension remained more or less stable (34%), while
16% of the surface was covered by high density bushes, 7% by low density bushes, 23% by
grass, and bare soil decreased to 20% of the surface (Figure 15d). It can be observed that
the vegetated areas in the upper part correspond to the calcarenite formations where the
crown of the landslide is situated. Conversely, the bare soil, which makes the more active
areas of the landslides easily recognizable, is concentrated in clay terrains, characterized by
sparser bushes.



Land 2024, 13, 1505 17 of 24
Land 2024, 13, x FOR PEER REVIEW 18 of 25 
 

 
Figure 15. Evolution of the Gaiato landslide through time outlined by a comparison of orthophotos 
from 2008 (a), 2011 (b), 2018 (c), and 2020 (d). 

5. Discussion 
This research allowed us to assess the potential of multi-temporal SAR interferome-

try for the investigation of slow-moving landslides in the Scoltenna catchment (Northern 
Apennines, Italy). Specifically, the analysis of the dual-orbit (i.e., ascending and descend-
ing) and dual operational frequency C-band EGMS S1 and X-band CSK dataset processed 
by the authors over the study area enabled us to highlight the strengths and shortcomings 
of the use of PSI for such an investigation and to discuss the influence of the band of the 
signal and the geometry of acquisition on the obtained results. 

The statistical analysis of the numerosity of PSs revealed that, despite the higher spa-
tial resolution characterizing the CSK dataset, only 12% of the mapped landslides were 
detected using the CSK dataset compared to the 25% using S1 EGMS data. Furthermore, 
the enhanced sensitivity of the S1 data was also confirmed by the PS density analysis re-
ported in Figures 4b and 6b, where a consistent number of landslides exhibited a density 
greater than 100 PS/km2. The increased capability of the S1 C-band data to detect these 
phenomena could be due to its lower sensitivity to changes in vegetation covers during 
the investigated period and a short revisit time between acquisitions (6 days when the 
ensembled constellation of the S1A and S1B satellites is considered in comparison to the 
average 40 days of revisit time for the CSK dataset) (see Table 1). From the analysis of the 
PSs numerosity and density, it can be noted that the number of landslides detected by 
SAR is slightly different from ascending and descending geometry for the S1 and CSK 
datasets. The performance of the SAR data in detecting different slopes is mainly related 
to the acquisition geometry (i.e., the incidence and heading angle) of the orbit, the local 
topography, the steepness and aspect of the slope, the land cover, and its variation during 
the seasons. Consequently, the differences in the number of slopes detected by SAR data 
can be attributed to the orbit geometry. Some methodologies for the a priori estimation of 
the SAR orbits to landslide detection have been recently proposed to provide preliminary 
knowledge on the suitability of the selected dataset for a specific area before the pro-
cessing of a large amount of data [84–86]. 

In view of the better suitability shown by C-band data for the purposes of this re-
search, the following analysis, oriented to the study of the state of the activity of the land-
slide, was performed for S1 data only. The choice of a minimum number of 3 PSs allowed 
poorly represented landslides (22% of the S1 ascending data and 19% of the S1 descending 
data) to be ignored. The combination of mean velocity and standard deviation (Figures 7–

Figure 15. Evolution of the Gaiato landslide through time outlined by a comparison of orthophotos
from 2008 (a), 2011 (b), 2018 (c), and 2020 (d).

5. Discussion

This research allowed us to assess the potential of multi-temporal SAR interferometry
for the investigation of slow-moving landslides in the Scoltenna catchment (Northern
Apennines, Italy). Specifically, the analysis of the dual-orbit (i.e., ascending and descending)
and dual operational frequency C-band EGMS S1 and X-band CSK dataset processed by
the authors over the study area enabled us to highlight the strengths and shortcomings
of the use of PSI for such an investigation and to discuss the influence of the band of the
signal and the geometry of acquisition on the obtained results.

The statistical analysis of the numerosity of PSs revealed that, despite the higher
spatial resolution characterizing the CSK dataset, only 12% of the mapped landslides were
detected using the CSK dataset compared to the 25% using S1 EGMS data. Furthermore,
the enhanced sensitivity of the S1 data was also confirmed by the PS density analysis
reported in Figures 4b and 6b, where a consistent number of landslides exhibited a density
greater than 100 PS/km2. The increased capability of the S1 C-band data to detect these
phenomena could be due to its lower sensitivity to changes in vegetation covers during
the investigated period and a short revisit time between acquisitions (6 days when the
ensembled constellation of the S1A and S1B satellites is considered in comparison to the
average 40 days of revisit time for the CSK dataset) (see Table 1). From the analysis of
the PSs numerosity and density, it can be noted that the number of landslides detected
by SAR is slightly different from ascending and descending geometry for the S1 and CSK
datasets. The performance of the SAR data in detecting different slopes is mainly related
to the acquisition geometry (i.e., the incidence and heading angle) of the orbit, the local
topography, the steepness and aspect of the slope, the land cover, and its variation during
the seasons. Consequently, the differences in the number of slopes detected by SAR data
can be attributed to the orbit geometry. Some methodologies for the a priori estimation of
the SAR orbits to landslide detection have been recently proposed to provide preliminary
knowledge on the suitability of the selected dataset for a specific area before the processing
of a large amount of data [84–86].

In view of the better suitability shown by C-band data for the purposes of this research,
the following analysis, oriented to the study of the state of the activity of the landslide, was
performed for S1 data only. The choice of a minimum number of 3 PSs allowed poorly
represented landslides (22% of the S1 ascending data and 19% of the S1 descending data)
to be ignored. The combination of mean velocity and standard deviation (Figures 7–10)
allowed validation of the active and dormant landslides (as indicated by the IFFI landslide
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inventory) by dual information derived from the ascending and descending datasets.
Moreover, the use of the standard deviation for landslides with a consistent number of
targets could inform on the variability and the spatial distribution of the phenomenon,
providing useful information for detailed geomorphological analysis. Figures 7 and 8
indicate that for landslides classified as active by the IFFI inventory (approximately the 10%
of the landslides detected by the EGMS S1 dataset) there is substantial consistency with the
SAR-based results reported in the present work. This is also evidenced by a majority of
landslides classified as a “moving landslide” after the analysis of the SAR data (72% and
59% for ascending and descending orbits, respectively). When considering the landslides
classified as dormant by the IFFI inventory, the percentage of consistency between the IFFI
and the SAR-based classification was lower. Approximately only the 28% and 46% of the
dormant landslides for the ascending and descending orbits, respectively, were classified by
the proposed method as “non-moving”. These results have been mapped and are presented
in Figures 11 and 12, where another important clue on the potential of SAR to update the
inventory is offered as it is clear that the majority of “non agreement” between the two
states of activity classifications are related to cases in which landslides are classified as
dormant by the IFFI inventory.

The presented results allow us to critically discuss the ability of SAR interferometry
in the update of landslides inventory. In particular, it is demonstrated that the multi-
temporal interferometric technique is not fully capable of detecting slope deformations
in the Scoltenna catchment, as only a fraction of the totality of landslides mapped by the
IFFI inventory were detected. However, when the total landslide area of the catchment
is considered, we demonstrated that the combination of the S1 EGMS ascending and
descending products allowed for the detection of 62.8% of the landslide area. This can
be also noted from Figures 11 and 12, which show that, as a great number of very small
landslides have not been detected by SAR products, the mere counting of the number of
detected landslides is not representative of the method’s potential. This is verified in areas
characterized by very small and distributed phenomena, such as the Northern Apennines.
Therefore, the obtained results related to the high landside area coverage by SAR data prove
that the potential of the proposed method for the investigation of slow-moving landslides
at the basin scale and toward the semi-automated update of part of the landslide inventory
is still worth noting. Indeed, the updating of the landslide inventories could represent
a very challenging task due to the large amount of manual work required, in particular
after extreme events that could trigger new phenomena or reactivate dormant landslides.
Automated or semi-automated methods to accomplish, in a complete and reliable way,
the aforementioned task would be very helpful [82]. Although methods based on multi-
temporal interferometry have already been proposed by a limited number of papers [81,87],
one of the innovations introduced by the present work is related to its contribution to the
exploration and exploitation of the potential offered by the new EGMS products.

The potential of the multidisciplinary approach using SAR data and geomorphological
analysis were further described for the case study represented by the Gaiato landslide.
The analyses carried out on the selected test site allowed three main objectives, along
with their novel features, to be achieved. The first was the cross-validation of SAR data
from sensors operating at different frequencies (i.e., S1 EGMS products and CSK products
processed for this research by the authors), from which it was found that differences of
a few millimeters could be observed between the independent datasets. Secondly, the
relevance of an integrated approach for the update of a landslide inventory has been
demonstrated, proving that the proposed methodology is able to effectively retrieve crucial
insights into the mapping, state of activity, and evolution of slow-moving landslides. The
Gaiato landslide proved to be a relevant example in the updating of the IFFI inventory
(updated to the year 2016 for the Emilia-Romagna region) and, in particular, for a deeper
understanding of the temporal and spatial evolution of the phenomenon. In fact, the joint
analysis of time series of displacements and orthophotos shows that, in recent years, the
landslide experienced a faster evolution, as the mean velocity increased and the extent of
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the grass and bare soil increased at the expense of woods and bushes. Finally, an update
of the SAR products already available for the area is offered. Indeed, the series of CSK
data from the PST, which partially overlaps with the proposed CSK processing, ends at the
beginning of 2014; therefore, the CSK processing by the authors offers a solution to fill the
gap between the time series of the PST and the EGMS products, allowing for a seamless
displacement analysis in the area from 2011 to 2022.

However, limitations in the use of MT-InSAR to update landslide inventories over
poorly urbanized areas have to be emphasized. Phenomena that are too fast to be revealed
by C-band data would not be correctly retrieved. In this regard, the perspectives offered by
L-band SAR systems require deeper considerations as a longer signal wavelength leads
to greater penetration through vegetation cover, higher coherence between image pairs,
and an increased ability to detect faster displacement. Special attention should be paid
to recent or expected satellite missions designed to acquire SAR data. Among these, the
Satélite Argentino de Observación con Microondas (SAOCOM) L-band full-polarimetric
constellation by the National Commission for Space Activities of Argentina (CONAE) could
be mentioned [88,89]. It comprises two twin radar satellites operating with a revisiting time
of 8 days and good spatial resolution (10 m × 10 m in the range and azimuth directions). In
addition, the planned ESA L-band SAR mission named Radar Observing System for Europe
(ROSE-L), expected to be launched in 2028, will ensure an enhanced continuity with the
S1 constellation (along with the S1 Next Generation) in the slope deformation monitoring
by using the same acquisition mode (S1 Interferometric Wide swath mode) [90]. In light
of the mentioned advantages and drawbacks of the use of the different data at different
bands, it is important to highlight that these data could be employed in a synergistic
way to overcome the limitations given by the use of a single band. Besides the SAR data
employed in the analysis, multi-temporal interferometric techniques demonstrated the
ability to provide accurate data for monitoring surface deformations and, in particular,
applying it to a study area prone to landslides as the one object of the present study. They
can yield valuable insights into the dynamics of slope instability and the efficiency of this
advanced technology.

6. Conclusions

The integration and synergy among geomorphological analyses, field surveys, ground
truthing and Earth Observation-based techniques are useful to detect and monitor slope de-
formations at a basin scale. Among the techniques that can provide accurate measurements
of ground displacements, multi-temporal synthetic aperture radar data is able to achieve
a millimeter-scale accuracy. This research investigated the potential of multi-temporal
SAR interferometry in a slow-moving landslide study area, the Scoltenna catchment in
the Northern Apennines (Italy). Furthermore, the use of data from dual-orbit Sentinel-1
C-band and COSMO-SkyMed X-band systems enabled the assessment of the influence of
the signal frequency and the acquisition geometry on the number of detected landslides
and on the density of the permanent targets. Regardless of the limitations of the multi-
temporal interferometric techniques, the results achieved demonstrated that the C-band
systems have an enhanced ability to detect and describe the phenomena considering both
the number of landslides and the PS density; in fact, exploiting the EGMS S1 dataset,
almost 63% of the landslide areas mapped within the inventory have been detected and
the PS density exceeded the 100 PS/km2 for a consistent number of landslides. Another
aim of the presented work was the evaluation of the landslide state of activity with the
multi-temporal SAR technique; this was achieved by retrieving the mean velocity and its
standard deviation for each of the detected landslides from the S1 EGMS products. State
of activity results by SAR were compared with those from the available inventory. The
statistical analysis demonstrated that the proposed approach could be considered a viable
solution for the exploitation of EGMS projects in the update of the landslide inventory. In
particular, this research provides useful updates of the state of activity of the IFFI inventory
for each landslide inside the Scoltenna catchment detected for at least one orbit of the S1
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EGMS dataset, verifying the consistency between the inventory and the SAR results. The
synergistic use of SAR, optical data, and geomorphological analysis demonstrated the
capabilities of the proposed approach in updating the mapping and state of activity of the
Gaiato landslide, a relevant phenomenon inside the study area.

To enhance the number of detected landslides and the reliability of the proposed
analysis, the use of satellite data at a lower frequency is advised; in this scenario, the L-
band SAOCOM and ROSE-L constellations could offer new perspectives in the investigation
of a slow-moving landslide field. These data, coupled with field inspections, could be
employed in a synergistic way to overcome the limitations of the use of a single method to
allow an automatic update of landslide inventories.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land13091505/s1, Figure S1: Dormant landslides analysis—
Ascending orbit; Figure S2: Dormant landslides analysis—Descending orbit; Table S1: IFFI
inventory links.
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