

  land-13-01514




land-13-01514







Land 2024, 13(9), 1514; doi:10.3390/land13091514




Article



Driving the Evolution of Land Use Patterns: The Impact of Urban Agglomeration Construction Land in the Yangtze River Delta, China



Duanqiang Zhai 1,2, Xian Zhang 3,4, Jian Zhuo 1,2,* and Yanyun Mao 5





1



School of Architecture and Urban Planning, Tongji University, No. 1239 Siping Rd., Shanghai 200092, China






2



Key Laboratory of Spatial Intelligent Planning Technology, Ministry of Natural Resources of the People’s Republic of China, No. 1239 Siping Rd., Shanghai 200092, China






3



School of Architecture and Urban Planning, Huazhong University of Science and Technology, No. 1037 Luoyu Rd., Wuhan 430074, China






4



The Key Laboratory of Urban Simulation for Ministry of Natural Resources, No. 1037 Luoyu Rd., Wuhan 430074, China






5



Urban Mobility Institute, Tongji University, No. 1239 Siping Rd., Shanghai 200092, China









*



Correspondence: jian.zhuo@tongji.edu.cn







Citation: Zhai, D.; Zhang, X.; Zhuo, J.; Mao, Y. Driving the Evolution of Land Use Patterns: The Impact of Urban Agglomeration Construction Land in the Yangtze River Delta, China. Land 2024, 13, 1514. https://doi.org/10.3390/land13091514



Academic Editor: Jianjun Zhang



Received: 11 August 2024 / Revised: 7 September 2024 / Accepted: 13 September 2024 / Published: 18 September 2024



Abstract

:

The rapid increase in population and economic activities has greatly influenced land use and spatial development. In urban agglomerations where socioeconomic activities are densely concentrated, the clash between ecological protection and economic growth is becoming more evident. Therefore, a thorough quantitative assessment of spatial changes driven by land use dynamics, alongside an examination of temporal and spatial driving factors, is crucial in offering scientific backing for the long-term and sustainable growth of urban agglomerations. This paper focuses on the major urban agglomerations in China’s Yangtze River Delta region, examining the spatiotemporal evolution of land use and landscape patterns from 2000 to 2020. By employing the standard deviation ellipse technique, coupled with multiple linear regression and the geographical detector model, we conduct a quantitative assessment of the directional trends in urban construction land expansion as well as the diverse impacts of temporal and spatial factors on this expansion across various periods and regions. The findings indicate that over the past 20 years, construction land in the Yangtze River Delta Urban Agglomeration expanded in concentrated patches, showing significant scale effects with relatively intact farmland and forest land being increasingly encroached upon. Landscape-type transitions predominantly occurred in cities around Taihu Lake and Hangzhou Bay, with the most significant transition being farmland converted to construction land, resulting in a greater number of patches and more pronounced land fragmentation. Throughout the 20 years, the standard deviation ellipse of construction land in the Yangtze River Delta Urban Agglomeration expanded and shifted, with the predominant expansion trending from the northwest toward the southeast, and the EN orientation being the most intense expansion area, covering 1641.24 km2. The influence of temporal and spatial driving factors on the expansion of urban construction land differed across various periods and regions. This study thoroughly examines the driving factors that affect the evolution of urban construction land in the region, offering valuable scientific evidence and references for future planning and development of the Yangtze River Delta Urban Agglomeration, aiding in the formulation of more precise and efficient urban management and land use strategies.
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1. Introduction


Land use and spatial evolution have always been the focus of urban research [1,2]. According to United Nations projections, by 2050, almost 70% of the world’s population is expected to live in urban areas [3,4]. Economic growth has driven urban expansion and the redistribution of land resources. In economically advanced regions such as Europe, North America, and parts of Asia, urbanization has converted traditional agricultural land into residential, commercial, and industrial uses. This shift encompasses alterations in land cover as well as modifications in land ownership, usage intensity, and management policies. Consequently, with the development of global cities, identifying land changes and their prudent use have emerged as critical concerns in spatial planning [5,6].



Currently, the harmonious coexistence of land development and ecological environment has become a significant focus in disciplines such as urban planning, geography, and landscape ecology within the background of spatial planning. Optimizing the spatial development and conservation patterns is a key strategic objective in advancing ecological civilization [7,8]. Large ecological patches and corridors in urban and rural ecological spaces are key for species migration and are areas of high ecological risk, but they are also the most vulnerable to encroachment during rapid urban development [9,10]. Agricultural spaces, especially those near towns and roads, are often encroached upon, and the “land compensation balance” policy often suffers from severe “taking the best and giving the worst” issues in its implementation [11]. In China, the primary goal of agricultural space protection, the control and protection of arable land, faces new challenges in the new era, such as the separation of land use and quality construction, singularity of protection measures, and contradictions in territorial space control [12]. As the interaction between human activities and natural ecosystems becomes more intricate, the differentiation in the coupled dynamics of human and natural systems intensifies over time. Additionally, the temporal variations in the coupling process become more evident with increasing complexity in the human–land system [13]. Hence, recognizing the significance of the interplay between natural resources and the macroeconomy, aligning human activities with natural, ecological, climatic, and hydrological factors, and overseeing these interactions across spatial and temporal dimensions are essential for sustaining a cohesive regional framework in territorial planning [14,15].



China’s swift urbanization and industrialization, as the world’s most populous developing nation, have drawn significant international focus. As urbanization continues in China, the Yangtze River Delta Urban Agglomeration (hereinafter referred to as “YRDUR”), a prime example of regions with dense populations and intense socioeconomic activities in the eastern coastal areas, encounters substantial conflicts between the needs for ecological conservation and economic growth. Issues such as conflicts among ecological, urban, and agricultural spaces threaten the region’s sustainable development [16,17,18]. With the increasing trend of regional integration, the interconnections between urban spaces have intensified, exacerbating the “fragmentation” risks facing ecological and agricultural spaces in the Yangtze River Delta (hereinafter referred to as “YRD”). This necessitates enhanced demands for the integrity, systematicness, differentiation, and dynamism of regional spatial planning and control [19,20]. With the ongoing regional integration in China, the growth of urban areas has entered a stock phase, necessitating an urgent transformation and deepening of the logic and methods of spatial control.



Current research on key urban agglomerations in the YRD emphasize carbon emissions [21,22,23], land use efficiency [24,25,26], and landscape patterns (hereinafter referred to as “LSP”) [27,28,29]. For example, Luo Haizhi developed a novel model for characterizing and predicting carbon emissions, which combines explainable machine learning techniques with land use data to project emissions in the YRD [22]. Yang Changyong investigated the mechanisms promoting the synergistic development between population and land by implementing effective green urban land management practices in the area [25]. Zhou Zhechen examined LSP changes in the YRD from 2000 to 2020 using landscape dynamics and pattern indices [29]. Nonetheless, within the background of ecological civilization, there is a research gap regarding the evolution patterns of territorial space and their driving factors in the region, where intensive land use has triggered various environmental and social issues [29,30]. Hence, our research intends to use the core urban agglomerations in the YRD as empirical subjects to accomplish two primary goals: firstly, to utilize remote sensing data to investigate the land use changes and LSPs from 2000 to 2020, elucidating land evolution trends in the developed region; secondly, to explore the patterns of urban construction land (hereinafter referred to as “CTL”) expansion and the driving factors behind its spatiotemporal evolution in major urban agglomerations.



By employing the standard deviation ellipse (hereinafter referred to as “SDE”) method, multiple linear regression (hereinafter referred to as “MLR”), and the geographical detector (hereinafter referred to as “GD”) model, our approach involves measuring the directional growth of urban CTL and categorizing the primary urban agglomerations in the YRD into three distinct types of expansion areas. This uncovers the spatiotemporal driving factors of these three types of areas (27 cities) at three different time points—2000, 2010, and 2020—providing fresh perspectives and references for global urban cluster studies.




2. Materials and Methods


2.1. Overview of the Study Area


This study focuses on key urban agglomerations in the YRD for empirical analysis (Figure 1), including 27 cities. These cities and their subordinate county-level cities exhibit significant diversity in size and type.



Within the context of regional integration, spatial conflicts are especially acute in the YRD. On one hand, this region is densely populated and economically active with cities that are not only geographically adjacent but also interconnected through frequent exchanges of elements [31,32]. On the other hand, there are apparent resource and environmental constraints with severe overdevelopment and pronounced human–land conflicts. Human activities have intensified mismatches and disruptions among agricultural production, urban construction, and natural ecosystems. The “fragmentation” of patch types that partially characterize ecological and agricultural spaces is worsening, severely impacting the integrity of ecosystems in the YRD. This poses serious challenges to the security of territorial space development within the integrated regional development framework.




2.2. Data Sources and Processing


The primary data sources for this article are as follows: (1) land use data, which mainly includes land use type data for the YRDUR from the years 2000, 2005, 2010, 2015, and 2020, each having a spatial resolution of 30 M; (2) geospatial data, comprising administrative division vector data, digital elevation data, slope data, hydrographic data, and other natural geographic data; (3) fundamental planning data, which includes statistical yearbook data from various years for the YRDUR, regional planning data, various economic panel data, POI data, and data related to transportation infrastructure, with specific data sources detailed in Table 1. Given the complexity and diversity of the data used in this study, some of the data need to be vectorized. To ensure spatial data consistency, ArcGIS 10.8 spatial analysis software is employed to construct the basic database. The spatial geographic coordinate system used is CGCS2000, with a Gauss–Kruger projection, and the raster data accuracy is 30 M × 30 M.




2.3. Research Methods


	(1)

	
Degree of Land Use Dynamics







Land use dynamics measures the extent of changes in land utilization, reflecting both the speed and magnitude of shifts in how land resources are used in a given area [33,34,35]. This concept encompasses the single land use dynamic degree K and the comprehensive land use dynamic degree S. During the study period, K measures the change rate in the absolute area of a particular type of land use, while S evaluates the overall land use change. The specific formulas are as follows:


    K   i   =      U   b   −   U   a       U   a      ×    1     T   b   −   T   a      × 100 %  



(1)






  S =      ∑  i = 1   n        U   j   −   U   i         2   ∑  i = 1   n      U   i        ×    1   T    × 100 %  



(2)







In the formula,     K   i     denotes the dynamic degree of change for the     i   t h     type of land use between the time points     T   b     and     T   a    , where     U   a     and     U   b     represent the land use areas during the periods     T   b     and     T   a    , respectively.   S   stands for the comprehensive land use dynamic degree,   n   indicates the number of land use types,     U   i     and     U   j     are the areas of the     i   t h     type of land use at the start and end of the study period, and   T   is the duration of the study. The classification is specifically based on the calculated results and is divided using the natural breaks method.



	(2)

	
Land Use Transition Matrix







The Land Use Transition Matrix (hereinafter referred to as “TM”) is used to depict the structural and quantitative aspects of changes in land use types within a given period, emphasizing both the direction and magnitude of these changes. This technique measures both the states of the system and the transitions between them [23,36,37]. Its mathematical expression is


    S   i j   =        S   11       S   12     ⋯     S   1 n         S   21       S   22     ⋯     S   21       ⋯   ⋯   ⋯   ⋯       S   n 1       S   n 2     ⋯     S   n n         



(3)







In the formula,   S   represents various land use types area,   n   indicates the number of these land use types, and   i  ,   j   represent the starting and ending time intervals of the study period, respectively. This study utilizes ArcGIS software for cross-analysis of land use data, and it utilizes Excel for pivot table processing, ultimately deriving the TM from 2000 to 2020.



	(3)

	
The Landscape Pattern (LSP) Index







The Landscape Pattern (LSP) index captures the structural and spatial features of landscapes in the study area, providing a comprehensive summary and robust statistical insights. Utilizing multiple LSP indices can improve the thoroughness of the analysis results and mitigate the adverse effects of subjective factors and technical limitations [38,39]. Landscape patches are analyzed on a type-by-type basis, allowing LSP indices to describe both individual landscape patch types and overall landscape characteristics at two levels [27,40]. FRAGSTATS 4.3 software is capable of calculating over 60 different LSP indices; however, some indices do not fully capture pattern characteristics and may be correlated. The selection of indices should adhere to principles of comprehensiveness, summarization, and simplification. The indicators for quantitative analysis of YRDUR LSP changes include the Number of Patches (NP), Patch Density (PD), Edge Density (ED), Largest Patch Index (LPI), Mean Patch Size (MPS), Percent of Landscape (PLAND), Landscape Shape Index (LSI), Mean Shape Index (MSI), Aggregation Index (AI), Interspersion and Juxtaposition Index (IJI), Contagion Index (CONTAG), Shannon’s Diversity Index (SHDI), Shannon’s Evenness Index (SHEI) (Appendix A).



	(4)

	
The Standard Deviation Ellipse (SDE)







The Standard Deviation Ellipse (SDE), initially introduced by Lefever in 1926 [41], relies primarily on spatial statistical techniques to accurately describe the distribution features of spatial elements [42]. This technique has found applications across a range of disciplines, including geology, ecology, and criminology [43,44,45]. The SDE employs parameters such as the center, major axis, and minor axis to evaluate the centrality, dispersion, directionality, and spatial form of studied subjects. The center indicates the relative position within the geographic area, the major axis shows the direction of data spread, and the minor axis measures the extent of distribution. A greater flattening ratio (the difference between the major and minor axes in relation to the major axis) signifies a more pronounced directionality in the data; conversely, when the axes are equal and the shape approximates a circle, it suggests minimal directionality. Additionally, a longer minor axis denotes greater data dispersion [46]. The mathematical expression details are as follows:



Weighted Mean Center:


      X   ω    ¯  =      ∑  i = 1   n      ω   i     x   i         ∑  i = 1   n      ω   i         



(4)






      Y   ω    ¯  =      ∑  i = 1   n      ω   i     y   i         ∑  i = 1   n      ω   i         



(5)







Ellipse Orientation Angle:


    tan  ⁡  θ   =        ∑  i = 1   n      ω   i   2       x  ¯    i   2     −   ∑  i = 1   n      ω   i   2       y  ¯    i   2       +        ∑  i = 1   n      ω   i   2       x  ¯    i   2     −   ∑  i = 1   n      ω   i   2       y  ¯    i   2         2   + 4   ∑  i = 1   n      ω   i   2       x  ~    i   2       y  ~    i   2        2   ∑  i = 1   n      ω   i   2       x   i    ~        y   i    ~      



(6)







Standard Deviation of the X-axis:


    σ   x   =       ∑  i = 1   n          ω   i       x   i    ~    cos  ⁡  θ −   ω   i       y   i    ~    sin  ⁡  θ         2         ∑  i = 1   n      ω   i   2          



(7)







Standard Deviation of the Y-axis:


    σ   y   =       ∑  i = 1   n          ω   i       x   i    ~      sin  ⁡  θ    ⁡  −   ω   i       y   i    ~      cos  ⁡  θ       2         ∑  i = 1   n      ω   i   2          



(8)







In the formula, (    x   i    ,     y   i    ) represents the study location, (      X   ω    ¯   ,       Y   ω    ¯   ) refers to the weighted mean center,     ω   i     signifies the weight of the spatial element   i  , and       x   i    ~   ,       y   i    ~    are the coordinates’ deviations from the weighted mean center. By integrating multiple time slices, the SDE analysis method can assess the spatial evolution trend of element distributions and exact direction.



	(5)

	
The Expansion Scale and Intensity of Urban CTL Based on Indicators







To further investigate the expansion scale and intensity of urban CTL, we introduce indicators such as the expansion area, the average annual expansion area, and the expansion intensity. These indicators allow us to examine the variations in CTL within the YRDUR over different time periods. By utilizing these three indicators, we can compare the magnitude, pace, and trends of urban CTL expansion across various periods [47,48]. The specific calculation formulas are as follows:


    S   i   =   S   i   t + n   −   S   i   t    



(9)






      S  ¯    i   =     S   i   t + n   −   S   i   t     / n  



(10)






    K   i   =        S   i   t + n   −   S   i   t     / n     Z   i       



(11)







In the formula,     S   i     represents the expansion area of CTL for spatial unit   i  ,       S  ¯    i     denotes the average annual expansion area for spatial unit   i  ,     K   i     indicates the expansion intensity of CTL for spatial unit   i  ,     S   i   t + n     and     S   i   t     refer to the CTL areas of unit   i   in years   t + n   and   t  , respectively, and     Z   i     stands for the total area of spatial unit   i  .



	(6)

	
Time-Driven Factor Analysis—Multivariable Linear Regression (MLR)







Using MLR to examine the correlation between temporal factors and the extent of urban CTL in the YRDUR, the study considers independent variables such as technological advancement, socioeconomic conditions, industrial structure, environmental and cultural factors, and transportation infrastructure. The dependent variable in this analysis is the urban CTL area. Initially, 28 influencing factors are chosen, and stepwise regression analysis is utilized to perform collinearity diagnostics for the years 2000, 2010, and 2020. Factors with a Variance Inflation Factor (VIF) value exceeding 7.5 are eliminated to ensure that the selected variables for all three years meet the collinearity criteria. Ultimately, 17 influencing factors are identified for inclusion in the study, resulting in the development of an optimized linear regression model. The mathematical formula is as follows [49]:


  y =   β   0   +   β   1     x   1   +   β   2     x   2   +   β   3     x   3   +   β   4     x   4   + ⋯ +   β   p     x   p   +   ε   i    



(12)







In the formula,     β   0     represents the regression constant,     β   p     denotes the regression coefficient,   p   is the count of explanatory variables, and     ε   i     is an unobservable random variable with a mean of 0 and a variance of     σ   2     > 0, indicating the random error term. MLR is employed to investigate the relationship between the urban CTL area in the YRD from 2000 to 2020 and various factors including technology, economy, industry, environment, and transportation, across three regional categories. This analysis examines how these factors interact with the dependent variable, focusing on their quantitative relationships. Table 2 presents the 17 time-driven factors considered in this study.



	(7)

	
Analysis of Spatial Driving Factors—GeoDetector (GD)







The GD, proposed by Wang Jinfeng, integrates GIS spatial analysis techniques and introduces the “factor detection” metric. This method can be applied to analyze the spatial variation in variables, thus revealing possible causal connections between them [50,51]. By employing the GD, the determinant power   q   is utilized to assess how different factors influence the spatial differentiation of urban CTL. The calculation formula for   q   is as follows:


  q = 1 −    1   n   σ   2        ∑  i = 1   m      n   i     σ   i   2      



(13)







In the formula,     σ   i   2     represents the variance of the different spatial elements,     n   i     denotes the sample size,   i   indicates the number of spatial variables, and     σ   2     refers to the total variance within the region. To facilitate the calculation of the spatial distance relationships among these factors, all spatial elements are uniformly converted into 1 km × 1 km grids, and spatial proximity calculations are performed for these factors. The value range of   q   is [0, 1]. The six spatial driving factors are presented in Table 3.





3. Results and Analysis


3.1. Analysis of Spatiotemporal Evolution of Land Use


3.1.1. Changes in Spatial Scale


Analyzing the spatial distribution, the land use type for YRDUR from 2000, 2005, 2010, 2015, and 2020 highlight significant shifts in land use patterns over the last twenty years. The most notable trends are the ongoing CTL expansion and the continuous Cultivated Land (hereinafter referred to as “CVL”) reduction, while the areas and proportions of other land use types have remained relatively stable. CVL, which is the largest land use type in the YRD, is extensively distributed in the northeastern plains of the region. Its spatial distribution closely aligns with the spread of CTL. Over the 20-year period, the concentration and contiguity of CVL were gradually encroached upon by CTL, significantly weakening its degree of concentration and contiguity. Forest land (hereinafter referred to as “FL”) experienced a slight decrease, whereas grassland (hereinafter referred to as “GL”), water body (hereinafter referred to as “WB”), and other land use types were dispersed spatially and showed no significant changes.



From a quantitative standpoint, the ranking of land use types by area shifted continuously between 2000 and 2020 (Table 4). In 2005, the types hierarchy by area from largest to smallest was CVL > FL > WB > CTL > GL > unused land (hereinafter referred to as “UL”). By 2020, CTL had climbed from fourth to third place, indicating consistent positive growth, while CVL experienced notable negative growth. The areas of other land types exhibited minor fluctuations. Over the two decades, CVL saw the most significant reduction, with its proportion decreasing from 50.87% to 45.08%. The declines in FL and GL were less pronounced, with their proportions dropping from 29.51% and 3.67% to 28.98% and 3.57%, respectively. The WB area initially rose and then fell, leading to a slight overall increase from 8.44% to 8.84%. CTL exhibited the largest increase, with its proportion rising from 7.50% in 2000 to 13.38% in 2020, reaching a total area of 29,855.01 km2. Although the area of UL experienced significant fluctuations, its overall scale was limited, resulting in only a slight influence on the general land use pattern. Overall, the urbanization in the YRDUR continuously encroached upon agricultural and ecological spaces, underscoring the significant human–land conflict.




3.1.2. Degree of Dynamic Change


From the standpoint of the single land use dynamic degree (Table 5), between 2000 and 2020, there was a continuous decrease in CVL and FL. The rate of decline in CVL initially increased before declining, while the reduction rate for FL first rose, then fell, and later rose once more. CTL as a whole exhibited growth, though the growth rate steadily diminished, which was a trend associated with the YRDUR’s focus on ecological civilization and the ongoing restriction of CTL expansion. The dynamic shifts in GL and WB did not present clear patterns, showing varying rates of increase and decrease over the 20-year period. UL showed the most pronounced fluctuations due to its smaller area, where even minor changes resulted in significant proportional shifts. From the perspective of comprehensive dynamic change degree, except for the period between 2005 and 2010, when land use structure fluctuations were relatively severe, reaching 0.610, other periods maintained levels around 0.3 or lower.




3.1.3. TM Analysis


From 2000 to 2020, notable shifts occurred in the land use structure, as detailed in Table 6 and Table 7. Over 10% of the regions designated as CVL, GL, WB, and UL saw transitions. FL exhibited the least change, with 96.89% of its area remaining constant, preserving its overall integrity. Among the changes, 11.29% of CVL transitioned into CTL, indicating significant urban expansion encroaching on agricultural territory. FL was primarily converted to CVL and CTL but in minimal scales. GL mainly shifted to WBs, CVL, and FL, leading to a substantial overall decline in area. WBs were predominantly replaced by CTL and CVL, highlighting significant human activity encroaching on ecological spaces. The majority of CTL was transformed into CVL and WBs, while UL showed significant variability.





3.2. Analysis of LSP Spatiotemporal Evolution


3.2.1. Spatiotemporal Distribution Patterns of Landscape Type Transitions


Building on the land use TM analysis, we determine the 10 most prevalent types of landscape transitions by volume from 2000 to 2020 and depict these transitions within the YRDUR, as illustrated in Figure 2. Over the two-decade span, landscape type transitions predominantly occurred in cities surrounding Taihu Lake and Hangzhou Bay. The most significant transition was from CVL to CTL, severely impacting agricultural areas. Further investigation reveals that the urban transition area northeast of Taihu Lake was considerably larger than that around Hangzhou Bay, particularly in cities like Shanghai, Suzhou, and Wuxi. Additionally, Hefei saw a massive scale of landscape type transition during this period, indirectly corroborating Hefei’s rapid economic growth over the 20 years, which was characterized by the persistent growth of its central urban zone and the continual encroachment into its ecological and agricultural areas. It is evident that landscape type transitions were predominantly focused in regions with advanced economic development. Conversely, the northern parts of the YRD, which had lower levels of economic development, experienced landscape transitions primarily as scattered points without forming continuous transition areas. In the southern mountainous and hilly cities of the YRD, some ecological spaces were affected by urban expansion. Ensuring the preservation and continuity of ecological areas would continue to be a significant concern for the YRDUR moving forward.




3.2.2. Changes in Overall Landscape Level


By utilizing FRAGSTATS 4.3 software, we analyze the land use landscape type maps and obtained the overall landscape-related indices for the five time intervals spanning from 2000 to 2020 (Table 8). The following discussion integrates the LSP indices to scrutinize the progression of the overall landscape level from four dimensions: the fragmentation, heterogeneity, aggregation, and diversity of landscape. The detailed analysis is as follows:



	(1)

	
Landscape Fragmentation Analysis







Landscape fragmentation refers to the process in which a landscape transitions from a single, homogeneous, and continuous whole to a complex, heterogeneous, and discontinuous mosaic of patches due to interference from natural or human factors. Higher values of NP, PD, and ED, along with lower MPS values, indicate increased landscape fragmentation. As shown in Table 8 and Table 9, from 2000 to 2020, the number of patches (NP) and patch density (PD) experienced a slow and gradual decline, suggesting a steady improvement in the overall landscape integrity of the YRDUR. This positive trend was primarily attributed to frequent human activities in the area, which merged some fragmented landscapes and enhanced the overall landscape cohesion. The edge density (ED) initially saw a slight increase followed by a steady decrease, with minor overall fluctuations, reflecting typical variations in national land development over the past two decades. The mean patch size (MPS) gradually rose from 161.49 ha to 168.09 ha, further indicating the integration of fragmented landscapes. In summary, over the last 20 years, the landscape fragmentation degree in the YRDUR progressively decreased. Nevertheless, the ongoing transformation of agricultural land into various other uses, particularly for construction, exacerbated fragmentation. These changes indicate that the agricultural space and related ecological space dominated by CVL were affected and squeezed by urban construction space largely driven by human development activities.



	(2)

	
Landscape Heterogeneity Analysis







Lower LPI values, along with higher LSI and MSI values, suggest increased landscape heterogeneity. As illustrated in Table 8 and Table 9, the Largest Patch Index (LPI) initially declined and then rose from 2000 to 2020, hitting its lowest point around 2015, which indicates the peak of landscape heterogeneity, before climbing back to levels seen around 2010. Both the Landscape Shape Index (LSI) and Mean Shape Index (MSI) followed a similar pattern, peaking around 2015 and then slightly decreasing. This pattern was the inverse of the LPI changes with all three indices highlighting that landscape heterogeneity was at its highest around 2015. This transition heralded a new focus on ecological civilization and the end of ineffective land development methods. Subsequently, in May 2016, the state council’s executive meeting approved the development plan of the YRDUR, which further stressed the importance of ecological civilization construction, placing greater emphasis on protecting natural ecosystems and the environment, effectively controlling urban sprawl and curbing disorderly urban expansion. This indicates that around 2015, there was a significant shift from a relatively rough land development model to a more orderly development approach.



	(3)

	
Landscape Aggregation Analysis







Higher AI values indicate a greater level of patch aggregation, while higher CONTAG values indicate that a leading patch type in the landscape shows significant connectivity and clustering. As depicted in Table 8 and Table 9, the AI gradually dropped from 82.60% to 81.87% between 2000 and 2020, reflecting a minor decline in patch aggregation. This demonstrates that despite relatively frequent types transitions in land use within the YRDUR, the overall aggregation of landscape patches remained largely unchanged, and the general spatial relationships of land use stayed relatively stable. Meanwhile, the Contagion Index (CONTAG) fell from 49.35% to 45.25%, reflecting a minor decline in the connectivity of patches. The relevant patches were mainly concentrated and developed in large towns in the YRD. This reduction in the connectivity and aggregation of patches was mainly linked to urban sprawl, which disrupted the flow of energy and information among species in ecological and agricultural spaces.



	(4)

	
Landscape Diversity Analysis







Higher SHDI and SHEI values signify greater landscape type diversity and a more even spatial distribution. As illustrated in Table 8 and Table 9, the Shannon Diversity Index (SHDI) and Shannon Evenness Index (SHEI) displayed comparable evolutionary patterns from 2000 to 2020, both trending upward gradually. This reflects a continuous improvement in the balance of landscape type distribution in the YRDUR. It also implies that human development activities consistently expanded CTL, altering the LSP structure and progressively narrowing the distribution gap between landscape types.





3.3. Analysis of Evolution in Urban CTL Expansion


By examining the land use patterns evolution and LSP analysis results mentioned earlier, it is evident that the most prominent feature of land spatial evolution in the YRDUR is the relentless conversion of CVL into CTL. CTL has consistently expanded, while CVL has decreased, with other land categories experiencing only slight variations. The significant growth of CTL emerges as the primary driver of spatial changes in the region. Moving forward, it is essential to implement strict controls on the unchecked expansion of urban CTL, protect the ecological baseline, and maintain the overall balance of CVL. To establish effective spatial management strategies, the analysis of urban CTL expansion patterns and driving factors is necessary. Therefore, this study seeks to identify the patterns regarding the direction, scale, and intensity of urban CTL expansion, as well as to explore the underlying driving factors, which will inform future research on spatial conflicts and the development of a comprehensive spatial management framework.



3.3.1. Direction of Urban Construction Space Expansion


	(1)

	
Results of SDE Analysis







Based on the calculations above, we derive the SDE for urban CTL for the years 2000, 2005, 2010, 2015, and 2020 (Figure 3). During these years, the weighted mean center of the ellipses representing urban CTL in the YRDUR consistently positioned itself to the northwest of Changzhou. The lengths of the major axes were 207.69 km, 210.91 km, 217.29 km, 216.08 km, and 220.24 km, respectively, while the lengths of the minor axes were 167.27 km, 167.59 km, 168.74 km, 168.90 km, and 170.62 km, respectively. The azimuth angles were 125.19°, 126.18°, 130.35°, 130.53°, and 132.47°, respectively. Overall, the SDE for these five periods exhibited slight movements, mainly in the northwest–southeast direction, encompassing a broad area that included most cities in the YRD. However, some southern cities, such as Wenzhou, Taizhou, and Jinhua, were not covered, clearly indicating that urban construction conditions in the central and eastern areas of the YRD were markedly superior to those in the southern region.



	(2)

	
Subdivision of Urban CTL Expansion Directions Based on Equal Sector Analysis







The previous text has generally elucidated that the main direction of CTL expansion in the YRD has been oriented from the northwest to the southeast. To further clarify the expansion details, this study employs equal sector analysis to subdivide the expansion direction. Equal sector analysis is based on the core of the study area, using the furthest point as the radius to segment the region into sectors with equal areas. It then calculates the CTL expansion area within each sector to characterize the land expansion direction [52,53]. As illustrated in Figure 4, the CTL in the YRDUR reveals a fan-wing expansion pattern across four stages, predominantly oriented toward the south and southwest. Specifically, from 2000 to 2005, the expansion directions were mainly in the EN, ES, EES, and SSE sectors; from 2005 to 2010, the expansion was concentrated in the NE, NNE, EEN, and EN sectors; from 2010 to 2015, the expansion was primarily in the EN, ES, EES, and SSE sectors, with a notable trend toward the WN sector; from 2015 to 2020, the expansion continued predominantly in the EN, ES, EES, and SSE sectors.



Analyzing the results from the aforementioned four periods, it becomes clear that from 2000 to 2020, the EN direction experienced the most notable growth with CTL steadily increasing across nearly every period. The EN direction primarily encompasses Shanghai and Suzhou, which are central to the YRDUR. Throughout this 20-year span, urban CTL expansion was predominantly centered in the EEN, EN, ES, EES, and SSE directions (Figure 5). The cities in these regions, including Nantong, Suzhou, Shanghai, Jiaxing, Hangzhou, Ningbo, Taizhou, and Wenzhou, all adopt outward-oriented economic development models, exhibit high economic levels, and are continually attracting migrants. These cities face strong demands for economic development, and balancing economic growth, ecological protection, and agricultural production remains a significant challenge for them. Importantly, aside from these areas, the WN direction saw rapid CTL expansion during the 2010–2015 period, mainly including Hefei, Wuhu, and Ma’anshan, which was largely attributed to rapid urbanization and industrial upgrading in these cities.




3.3.2. Scale and Intensity of Urban CTL Expansion


Through introducing indicators such as expansion area, annual average expansion area, and annual average expansion intensity, the CTL area in 16 subdivided expansion zones are assessed across different directions for each period to compare the strength, speed, and trend. This assessment reveals the scale and intensity of land expansion in these regions from 2000 to 2020. Using the natural fracture method and referring to relevant literature and planning policies, the classification of expansion intensity is represented by the annual average expansion intensity index over a span of 20 years. The classifications are defined as follows: 0–0.15% for low-intensity expansion, 0.15–0.36% for medium-intensity expansion, and 0.36–0.87% for high-intensity expansion with specific calculation details provided in Table 10.



For visual representation of the expansion, the study area is segmented into 16 sectors, each with equal angles and areas. Radar charts (Figure 6 and Figure 7) are used to calculate and depict the actual expansion area and intensity for each sector. Between 2000 and 2005, the most notable expansion occurred in the SSE direction, covering 637.95 km2 with an annual growth of 127.59 km2, which was followed by the EES direction. The overall expansion trend decreased counterclockwise from the SSE direction. The EN sector exhibited the highest expansion intensity at 1.01% with the western region of the YRDUR showing significantly greater expansion intensity compared to other sectors. From 2005 to 2010, the EEN and NNE directions had the largest expansion areas, measuring 803.90 km2 and 712.45 km2, respectively, with annual expansions of 160.78 km2 and 142.49 km2. The EEN sector also had the highest expansion intensity at 1.40%, the peak level over the 20-year period, indicating a strong correlation between expansion area and intensity with the overall trend more pronounced in the northeast of the YRDUR. During 2010 to 2015, the southeast direction demonstrated a notable expansion trend with the SSE direction having the most extensive expansion area, though at a lower intensity. Additionally, the WN direction saw explosive growth, marking the fastest increase in CTL area over the 20 years. From 2015 to 2020, the expansion areas in the SSE, EES, ES, and EN directions of the YRDUR were roughly the same and at a higher level but with notable differences in expansion intensity. The EN direction had an intensity of 0.68%, which was significantly higher than the ES, EES, and SSE directions.



Analyzing the radar charts that illustrate the scale and intensity of CTL expansion across four distinct periods (Figure 8) reveals that the urban CTL growth in the YRDUR from 2000 to 2020 can be categorized into phases of rapid expansion and periods of slower growth.



The rapid expansion phases occurred in 2000–2005 and 2005–2010 with both the extent and intensity of CTL growth markedly surpassing those observed in 2010–2015 and 2015–2020. During 2000–2005, the expansion scale in the SSE and EES directions was notably greater than in other directions, whereas the highest expansion intensities were primarily in the EN and ES directions. However, the high expansion scale in EES and SSE did not correspond to high intensity. From 2005 to 2010, the overall scale and intensity of CTL expansion in the YRDUR peaked over the 20 years, particularly in the northeast directions, including NNE, EEN, and EN, with the EEN direction showing the most pronounced expansion. The slow development periods spanned from 2010 to 2015 and 2015 to 2020. From 2010 to 2015, while the intensity of land expansion reduced, the directions of expansion diversified. Although the expansion area was relatively uniform across different directions, EN, ES, and NNE directions exhibited higher expansion intensities. From 2015 to 2020, there was a clear trend of parallel expansion in multiple areas toward the southwest, with a significant slowdown in land expansion in the northwest region of the YRDUR, and the overall expansion intensity was markedly below the average level over the 20 years, although the EN direction maintained a higher intensity level.



During the last two decades, the primary expansion directions of CTL in the YRDUR were toward the east and southeast, including the NNE, EEN, EN, ES, EES, and SSE directions. Among these, the EN direction accumulated the largest expansion area of 1641.24 km2, which is the core area of the YRD with substantially higher economic development levels than other regions. In the southwest of the YRDUR, an important ecological conservation area, economic activities were strictly limited, resulting in minimal land expansion. In contrast, the northwest and northern regions of the YRDUR saw more restrained land expansion, which was largely because the central area attracted economic, population, and other influences away from these surrounding areas.





3.4. Analysis of Driving Factors of CTL Evolution in the YRDUR


3.4.1. Regional Division of Urban CTL Expansion Types


From the preceding analysis, a pivotal conclusion surfaces: the growth of urban CTL stands as the most significant indication of territorial space evolution in the YRDUR, and it serves as its primary driving force. This study examines the patterns of territorial space evolution in the YRD by focusing on urban CTL expansion, bearing both scientific and practical relevance. It should be highlighted that there is a notable spatial heterogeneity in the economic development levels within the region; the eastern areas surpass the western ones, and the southern regions outperform the northern ones, with certain internal areas having strong economic ties that form various metropolitan areas, including the Shanghai and Hangzhou metropolitan regions to the east, the Nanjing metropolitan area in the north–central part, and the Hefei metropolitan area to the west. This study’s regional classification method deviates from conventional studies that regroup and classify all cities within a region based on each city’s expansion intensity. Such methods often neglect the socioeconomic connections between cities within the same spatial direction. Therefore, this study suggests that the division of regions with varying expansion intensities should be considered from an integrated regional perspective, categorized by spatial direction, emphasizing the differences among various spatial directions in the YRD, while considering the interactions between cities within the same directional region. This indicates that the expansion intensity is not uniform across all cities within the region, and disparities still exist among cities within the same type of area, such as Shaoxing and Zhoushan in the high-intensity expansion area, where the CTL expansion intensity is lower than that of Hefei in the medium-intensity expansion area.



Based on the aforementioned classification approach, this study incorporates the results from the analysis of expansion intensity indices for each spatial direction previously discussed. It divides the YRDUR into areas of high, medium, and low expansion intensity, specifying their spatial locations. Figure 9 illustrates the spatial classification of 27 cities within the YRD.



The high-intensity expansion zone encompasses nine cities, primarily situated around the Yangtze River Estuary, excluding Hangzhou and Shaoxing, which are all part of the Shanghai Metropolitan Area. Serving as the central node of the premier urban agglomeration in the YRD, Shanghai boasts advanced economic development and frequent human activities, leading to significant scale effects in CTL. The medium-intensity expansion zone comprises 12 cities, which are mainly provincial capitals or economically robust cities in Anhui, Jiangsu, and Zhejiang. These cities possess stable economic foundations and vibrant commercial environments, making them attractive to large corporations and exceptional talent. Meanwhile, the low-intensity expansion zone includes six cities within Anhui Province, which are primarily tasked with agricultural production and ecological conservation. The emphasis here is on coordinating agricultural spatial patterns and maintaining ecosystem functions. Due to geographical constraints, these cities mainly adopt an inward-looking economic model, resulting in less pronounced land expansion.




3.4.2. Analysis of Spatiotemporal Driving Factors in CTL Expansion


The previous sections have already clarified that from 2000 to 2020, the YRDUR was categorized into three types of CTL evolution areas: high expansion, moderate expansion, and low expansion. Preliminary tests on the data indicate that changes over five-year intervals were not significantly noticeable. Hence, this study further simplifies the five time slices from 2000 to 2020 into three time slices: 2000, 2010, and 2020, for examining the spatiotemporal driving forces. Consequently, the adopted approach for assessing the spatiotemporal drivers of land space evolution in the YRD involves categorizing the area into three distinct CTL expansion types, and the study separately identifies the spatiotemporal driving factors for these three categories (27 cities) at the three time slices of 2000, 2010, and 2020.



In examining the spatiotemporal driving factors of CTL expansion in the YRD, we discard the traditional method of discussing spatiotemporal factors on the same dimension, which tends to obscure the distinctions between time and space and ignores the spatial heterogeneity of spatial factors. This study innovatively proposes the division of driving factors into temporal driving factors and spatial driving factors, conducting categorized analyses accordingly. Temporal driving factors are highly dynamic and include technological level, socioeconomic status, industrial structure, environmental and cultural factors, and transportation facilities. These factors showed significant variations across different time slices. Spatial factors exhibited considerable spatial heterogeneity and primarily include slope, elevation, ruggedness, distance from major roads, railways and rivers. These factors remained largely unchanged across different time slices. Consequently, the upcoming sections will first present individual quantitative analyses of temporal and spatial drivers, and then it will offer an in-depth qualitative discussion to examine the patterns influencing CTL expansion.



	(1)

	
Analysis of Temporal Factor-Driven Results







In this study, multivariate linear stepwise regression is employed to remove collinear factors from an initial set of 28 factors, ultimately identifying 17 key drivers influencing urban construction space expansion in the YRD. Regression analysis is conducted on nine scenarios, covering high, medium, and low expansion intensity areas for the years 2000, 2010, and 2020. The findings reveal that all 17 selected temporal driving factors had significant correlations with urban CTL expansion, resulting in the formation of nine regression models (Table 11). Table 12 displays the key driving factors for each model along with their correlation coefficients with all p-values indicating significance at below 0.05. One adjusted R2 value is measured at 0.551, while the others are approximately 0.8 or higher, indicating a strong alignment between the regression models and the actual sample data.



In 2000, the dominant temporal driving factor in low-intensity expansion regions was technological advancement. The corresponding driving factor was the percentage of green inventions in the total annual patent applications in the region (X1), which showed a positive correlation and was influenced by a single factor. In medium-intensity expansion regions, the dominant temporal driving factor was the industrial structure. The key driving factor was the proportion of added value (2nd Industry) to GDP (X8), which showed a negative correlation and was impacted by a singular element. In high-intensity expansion regions, the dominant temporal driving factors were socioeconomic and environmental–humanistic conditions. The corresponding driving factors were the number of large-scale industrial enterprises (X6) and the forest coverage rate (X14), with the former being positively correlated and the latter negatively correlated, driven by dual factors.



In the context of the YRD’s development in 2000, areas with low-intensity expansion were mainly found in the southwestern hilly and mountainous parts of the delta, emphasizing green development concepts, with urban CTL expansion largely supporting ecological and green industries. Medium-intensity expansion areas in the YRD included both economically developed regions and economically lagging regions in the north. The former was transitioning from secondary to tertiary industries during this period, while the latter were in a phase of secondary industry expansion, albeit at a lower scale than the former, resulting in an overall negative correlation. Additionally, due to ecological protection requirements, there was a negative correlation with forest coverage rates.



In 2010, the dominant temporal driving factors in regions of low-intensity expansion were socioeconomic, illustrated by local fiscal general budget expenditures (X4) and the land area requisitioned that year (X5), both showing positive correlations, thus forming a dual-factor drive. For medium-intensity expansion regions, the dominant temporal driving factors included technological development, socioeconomic status, and industrial structure, which were represented by the percentage of green inventions in the total annual patent applications (X1), the land area requisitioned that year (X5), and the proportion of secondary industry employees (X10). These factors had positive, positive, and negative correlations, respectively, indicating a multifactorial drive. In high-intensity expansion regions, the dominant temporal driving factors were socioeconomic and environmental–humanistic, which were depicted by the forest coverage rate (X14). The first factor showed a positive correlation, whereas the second exhibited a negative correlation, suggesting a dual-factor influence.



Taking into account the real development in the YRD in 2010, the expansion of urban CTL in low-intensity growth areas saw a significant increase. This was linked to the rise in local fiscal general budget expenditures and the land requisitioned by various cities that year with economic growth becoming a primary development objective during this period. Within the medium-intensity expansion areas, urban development exhibited notable variation. The southern region had largely completed its industrial transformation, emphasizing ecological protection. Conversely, northern cities were in the early stages of their industrial transformation, with a general decline in the proportion of secondary industry employees and rapid economic growth, as evidenced by a significant increase in the area of land requisitioned. In high-intensity expansion areas, the factors driving the urban CTL expansion remained consistent, showing a strong correlation with the number of large-scale industrial enterprises and forest coverage rates.



In 2020, the dominant temporal driving factors in low-intensity expansion areas included industrial structure, environmental–humanistic factors, and transportation facilities. In medium-intensity expansion areas, the dominant temporal driving factor was technological development, represented by the percentage of green inventions in the total annual patent applications in the region (X1), with a positive correlation, indicating a single-factor drive. In high-intensity expansion areas, the dominant temporal driving factors were socioeconomic and environmental–humanistic conditions, indicating a multifactorial drive.



Drawing from the actual development in the YRD as of 2020, regions with low-intensity expansion experienced notable improvements in transportation infrastructure and a significant rise in highway freight volumes, which led to a boost in urban economic growth in the area. Additionally, the share of the secondary industry grew, and per capita green park space increased, as enhanced transportation conditions unlocked the development potential of the region. After two decades of growth, the medium-intensity expansion areas in the YRD essentially completed their industrial transformation, emphasizing the development of green technology industries and promoting green development principles, which significantly minimized the disparities in development models across the region. In high-intensity expansion areas, the urban CTL expansion was strongly linked to the presence of large-scale industrial enterprises and forest coverage rates. Compared to the previous periods, there was a rise in the total retail sales of consumer goods, indicating that higher economic development levels further improved the quality of urban CTL expansion.



	(2)

	
Analysis of Spatial Factor-Driven Results







In this study, urban CTL scales for the years 2000, 2010, and 2020 are employed as the dependent variable, which are spatially discretized for each of the specified time periods. Furthermore, variables including distance from major railways (X18), distance from major highways (X19), distance from major rivers (X20), ruggedness (X21), slope (X22), and elevation (X23) are spatially classified and visualized (Figure 10). These factors are then spatially associated with the discretized urban CTL data. The calculations are executed using GD software in Excel, following the procedures outlined in the relevant literature [54,55], to derive results from both factor detection and interaction detection.



Factor Detection Results: All variables meet the 0.05 significance level requirement. A static analysis of the factor detection outcomes for distinct time slices (Table 13, Figure 11) indicates that the influence of factors in 2000, 2010, and 2020 is consistently distributed across various types of areas. In low-intensity expansion areas, the primary influencing factors are ruggedness (X21), elevation (X22), and slope (X23), significantly surpassing other factors. This highlights that geographic features such as terrain play a crucial role in urban CTL in these regions. In medium-intensity expansion areas, the main influencing factors are ruggedness (X21), elevation (X23), and slope (X22). The geographic environment’s influence remains substantial with the factors of distance from major railways (X18) and major rivers (X20) showing a considerable increase compared to low-intensity expansion areas. In high-intensity expansion areas, the primary influencing factors are distance from major railways (X18), ruggedness (X21), and elevation (X23).



This study modifies statistical methods to further investigate the dynamic evolution of regions with varying expansion intensities from 2000 to 2020 (Figure 12). In areas of low-intensity expansion, over the past 20 years, the impact of all spatial driving factors grew with the distance from major railways showing the most significant increase (X18). Conversely, the increase in geographic environmental factors such as ruggedness (X21), elevation (X23), and slope (X22) was relatively minor, suggesting a stable state. It is evident that for regions constrained by geographical environments, enhancing external transportation is vital for improving urban construction levels. In medium-intensity expansion areas, the influence of all spatial driving factors grew over the 20 years, with the most substantial increase in the factor of distance from major highways (X19), which was followed by the distance from major railways (X18). In high-intensity expansion areas, all spatial driving factors saw an increase in influence over the 20 years, with significant increases in all factors except for the factor of distance from major rivers (X20).



Interaction Detection Results: The main role of the interaction detector is to analyze how different risk factors interact, determining whether their joint impact increases or decreases the explanatory power, or if they influence it separately [50]. The interaction determinative power of two factors is denoted as q(X1∩X2) with the decision relationship illustrated in Figure 13. This research utilizes GD software to calculate factor interactions across different types of areas for the years 2000, 2010, and 2020.



In 2000, within the YRD’s low-intensity expansion areas, the leading three interaction determinative power (q) values for spatial driving factors influencing urban CTL were elevation (X23) ∩ ruggedness (X21), ruggedness (X21) ∩ distance from major rivers (X20), and ruggedness (X21) ∩ distance from major railways (X18), all exhibiting dual-factor enhancement relationships (Figure 14). For medium-intensity expansion areas, the top three interaction determinative power (q) values were ruggedness (X21) ∩ distance from major rivers (X20), ruggedness (X21) ∩ distance from major highways (X19), and ruggedness (X21) ∩ distance from major railways (X18). In high-intensity expansion areas, the foremost interaction determinative power (q) values were ruggedness (X21) ∩ distance from major railways (X18), distance from major rivers (X20) ∩ distance from major railways (X18), and elevation (X23) ∩ distance from major railways (X18).



In 2010, within low-intensity expansion areas, the top three interaction determinative power (q) values for spatial driving factors of urban CTL were ruggedness (X21) intersecting with distance from major railways (X18), elevation (X23) intersecting with ruggedness (X21), and ruggedness (X21) intersecting with distance from major rivers (X20), all exhibiting dual-factor enhancement (Figure 15). For medium-intensity expansion regions, the top three interaction determinative power (q) values were ruggedness (X21) intersecting with distance from major railways (X18), ruggedness (X21) intersecting again with distance from major railways (X18), and ruggedness (X21) intersecting with distance from major highways (X19), all showing dual-factor enhancement. In high-intensity expansion areas, the top three interaction determinative power (q) values were ruggedness (X21) intersecting with distance from major railways (X18), elevation (X23) intersecting with distance from major railways (X18), and slope (X22) intersecting with distance from major railways (X18) with all interactions demonstrating dual-factor enhancement.



In 2020, within the low-intensity expansion regions of the YRD, the top three interaction determinative power (q) values for spatial driving factors for urban CTL were ruggedness (X21) intersecting with distance from major railways (X18), ruggedness (X21) intersecting with distance from major highways (X19), and elevation (X23) intersecting with distance from major railways (X18), all exhibiting dual-factor enhancement (Figure 16). In medium-intensity expansion regions, the top three interaction determinative power (q) values were ruggedness (X21) intersecting with distance to major railways (X18), ruggedness (X21) intersecting with distance from major rivers (X20), and ruggedness (X21) intersecting with distance from major highways (X19), all demonstrating dual-factor enhancement. In high-intensity expansion regions, the top three interaction determinative power (q) values were ruggedness (X21) intersecting with distance from major railways (X18), elevation (X23) intersecting with distance from major railways (X18), and slope (X22) intersecting with distance from major railways (X18), all showing dual-factor enhancement.






4. Discussion


This study clarifies that the main impetus for the evolution of territorial land space is the urban CTL expansion. Numerous studies on core urban agglomerations in the YRD have concentrated on carbon emissions, land use efficiency, and LSPs [21,22,23,24,25,26,27,28,29]. Despite this, there is a lack of exploring the factors driving the urban CTL evolution. Thus, this study zeroes in on core urban agglomerations in the YRD, innovatively categorizing and analyzing driving elements into temporal and spatial factors for separate quantitative research. Ultimately, the study employs a thorough qualitative analysis to explore the factors driving CTL expansion, improving the precision of the research results.



The research contributes theoretically at both practical and methodological levels as evidenced by the following aspects:



Practically, this study examines the patterns of national spatial evolution in the YRD from the standpoint of urban space CTL expansion, bearing both scientific and practical significance. Globally, urban agglomerations, as complex spatial formations at a certain stage of urbanization, are not only centers of human economic activity but also sensitive zones where the ecological environment is at risk [16,17,18,31,32]. At present, as economic development and international cooperation continue to progress in China’s eastern region, the YRD faces challenges related to ecological environmental pressure and resource limitations [56].



On one hand, the expansion of urban space disrupts the connectivity of existing ecological and agricultural spaces, hindering the flow of energy and information among biological species. This disruption directly affects the ecosystem’s service functions, leading to a strong negative impact on ecological service resources. On the other hand, while the expansion of urban space impedes the contiguous development of agricultural areas, increasing their fragmentation, it also provides certain benefits to agricultural development through technology and funding. Urban agglomeration supports the advancement of efficient technological agriculture. Thus, the expansion of urban space has both negative and positive effects on agricultural production resources and should be considered from a dialectical perspective.



The YRD is crucial in driving agricultural supply-side structural reforms and fostering the revitalization of rural industries. The findings of this study help identify and address key resource constraints in regional development. For example, we have found that in expansion areas of different intensities, driving factors such as road freight volume, the percentage of green inventions in the total number of annual applications in the region, and the total retail sales of consumer goods are more dominant. In future planning strategies, emphasis can be placed on developing multimodal transportation, creating spatial layouts that attract innovative industries and high-quality capital, etc., in order to strengthen the management of urban CTL. Furthermore, the research supports the formulation of rural industry revitalization policies in the YRD. For example, we have identified through quantitative data analysis that the cultivated land in the YRD region suffered significant damage and occupation in the past 20 years, offering a strong scientific basis for the ongoing advancement of regional agriculture and rural development. These results are not only crucial for the sustained development of the YRD but also offer valuable insights and strategies for urban agglomerations worldwide facing similar challenges.



At the methodological level, this research introduces a novel approach to examining the patterns of spatial expansion and the temporal and spatial drivers of urban CTL. Unlike previous studies that categorized cities solely by the intensity of urban expansion, this study adopts a regional integration perspective, categorizing different expansion areas by spatial orientation. It emphasizes the unique characteristics of various areas in the YRD and considers the interactions among cities within the same region. This innovative method not only differentiates the traits of each area but also examines the interplay among cities within the urban agglomeration, providing an in-depth examination of urban CTL expansion dynamics and introducing a novel methodological framework for future studies. Furthermore, when analyzing the spatiotemporal driving factors of CTL expansion in the YRD, this study innovatively divides these factors into temporal and spatial elements and categorizes them for analysis. Temporal driving factors show significant dynamic characteristics, with clear differences across time slices, while spatial driving factors exhibit stable spatial heterogeneity, which is consistent across different time slices. This method enhances traditional analysis by clearly distinguishing between time and space, avoiding the blending of spatiotemporal elements into a single dimension, and accurately capturing spatial heterogeneity. This methodological innovation not only precisely identifies and analyzes the spatiotemporal driving factors of land expansion but also contributes to a scientific understanding of land development dynamics, providing robust theoretical support for urban planning and policy formulation.



In conclusion, this study categorizes urban CTL growth into periods of rapid expansion and slower development, providing a scientific foundation for crafting region-specific development policies.



This study has its limitations. Although this study offers a basis for managing land resources in urban agglomerations by analyzing the evolution patterns and driving factors in the YRD, it depends on a large amount of data and requires further validation. This is a common issue faced by scholars, and future analyses of national spatial evolution will integrate remote sensing imagery with field measurements.




5. Conclusions


This study scrutinizes the evolution characteristics of land use and LSPs in major urban agglomerations within the YRD from 2000 to 2020. By employing methods such as the SDE, MLR, and the GD model, it quantitatively assesses the expansion direction and the varying spatiotemporal driving factors’ impacts across different periods and regions. The findings reveal that over the two decades, the expansion of urban construction areas in the YRD became more concentrated in patches, and the rapid growth of MPS and AI values in CTL showed significant expansion effects. The MPS values of relatively unspoiled CVL and FL were continuously decreasing over the past 20 years, progressively showing a trend of encroachment, resulting in an increased number of patches and heightened land fragmentation. Concurrently, the SDE of CTL in the YRD expanded and slightly shifted, predominantly from northwest to southeast, with the most intense expansion in the EN direction, spanning an area of 1641.24 km2. This expansion direction roughly pointed toward the direction of the Shanghai Metropolitan Area, which is similar to mainstream cognition. The expansion of urban CTL was influenced differently by temporal and spatial driving factors across various periods and regions. This underscores the complexity and variability of urban land expansion in terms of direction and intensity. The uneven expansion of urban land is caused by different driving factors and their varying degrees of impact, thus demonstrating its dynamic spatiotemporal nature. These findings lay a vital scientific foundation and offer key information for the planning and development of urban agglomerations in the YRD moving forward, enabling the creation of more accurate and effective strategies for urban management and land use.
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Table A1. Details and indices for calculating landscape patterns.






Table A1. Details and indices for calculating landscape patterns.





	
Index Type

	
Index Name

	
Calculation Formula

	
Ecological Explanation

	
Index Level

	
Unit






	
Scale Index

	
Number of Patches (NP)

	
  N P = m  

In the formula,   n   represents the number of patches.

	
At the class level, NP corresponds to the total count of patches of a certain type in the landscape, while at the landscape level, it represents the total number of patches present. A higher NP indicates a greater degree of fragmentation.

	
Class/Landscape

	
Count




	
Density Index

	
Patch Density (PD)

	
  P D =    N   A     

In the formula,   N   represents the total number of patches, and   N   represents the total area of the landscape type.

	
PD reflects the density characteristics of landscape patches, indicating landscape heterogeneity and fragmentation. A higher PD value signifies an increased level of landscape fragmentation.

	
Class/Landscape

	
Count/100 ha




	
Edge Density (ED)

	
  E D =    E   A     

In the formula,   E   represents the total length of all patch boundaries, and   A   represents the total area of the landscape type.   E D ≥ 0   with no upper limit.

	
ED characterizes the degree of landscape patches being divided by edges, indicating the complexity of patch edges and the degree of landscape fragmentation.

	
Class/Landscape

	
m/ha




	
Area Index

	
Largest Patch Index (LPI)

	
  L P I =    M a x     a   1   , ⋯ ,   a   n       A     

In the formula,     a   n     represents the area of the   n  th patch, and   A   represents the total area of the landscape type.

	
LPI represents the proportion of the largest patch in a specific patch type to the total area of the landscape. The magnitude of the LPI value determines ecological characteristics, such as dominant species and internal species abundance in the landscape. A lower LPI value indicates greater landscape heterogeneity.

	
Class/Landscape

	
%




	
Mean Patch Size (MPS)

	
  M P S =    A   N     

In the formula,   A   represents the total area of the landscape type, and   N   represents the total number of patches.

	
At the patch level, the MPS is calculated by dividing the total area of a specific patch type by the number of patches of that type. At the landscape level, it is determined by dividing the total landscape area by the total count of all patch types. A lower MPS value indicates a greater degree of landscape fragmentation.

	
Class/Landscape

	
ha




	
Percent of Landscape (PLAND)

	
  P L A N D =      ∑  j = 1   n      a   i j       A     

In the formula,     a   i j     represents the area of the   j  th patch, and   A   represents the total area of the landscape type.

	
The PLAND value represents the percentage of the total area occupied by a specific patch type in relation to the total landscape area. A higher PLAND value for a patch type signifies greater dominance within the landscape.

	
Class/Landscape

	
%




	
Shape Index

	
Landscape Shape Index

(LSI)

	
  L S I =    0.25 E    A      

In the formula,   E   represents the total length of all patch boundaries, and   A   represents the total area of the landscape type.

	
LSI reflects the overall shape complexity of the landscape. A higher LSI value signifies that the landscape is more irregular or less square-like, which indicates a more intricate composition.

	
Class/Landscape

	
-




	
Mean Shape Index (MSI)

	
  M S I =      ∑  i = 1   m      ∑  j = 1   n        0.25   E   i j        a   i j              N     

In the formula,   m   is the total number of patch types,   n   is the   n  th patch, and     E   i j     represents the total length of all patch boundaries.

	
The MSI value indicates the complexity of patch shapes. A higher MSI value signifies greater complexity in the shapes of the patches.

	
Class/Landscape

	
-




	
Aggregation Index

	
Aggregation Index

(AI)

	
  A I =      g   i i     M a x   g   i i       

In the formula,     g   i i     represents the number of connections between patches of the   i  th landscape type;   M a x   g   i i     represents the maximum number of similar adjacent patches for the   i  th landscape type.

	
AI is calculated based on the extent of the shared boundaries among pixels of the same patch type. When there are no shared boundaries among all pixels of a specific type, then that type’s aggregation level is considered to be at its lowest.

	
Class/Landscape

	
%




	
Interspersion and Juxtaposition Index

(IJI)

	
  I J I =    −   ∑  k = 1   m            e   i k       ∑  k = 1   m      e   i k         l n       e   i k       ∑  k = 1   m      e   i k               l n   m − 1       

In the formula,   m   is the total number of patch types,     e   i k     is the edge length of randomly selected adjacent grids belonging to types   i   and   k  .   I J I   calculates the overall distribution and juxtaposition of each patch type at the landscape level.

	
IJI effectively illustrates the distribution patterns of ecosystems that are heavily constrained by specific natural factors. A lower IJI value suggests that a patch type is only neighboring a limited number of other types, while an IJI of 100 signifies that the edges between patches are of equal length, indicating a uniform probability of adjacency among the patches.

	
Class/Landscape

	
%




	
Contagion Index

(CONTAG)

	
  C O N T A G = 1 +   ∑  i = 1   m      ∑  j = 1   n         P   i j   l n     P   i j       2 l n   m           

In the formula, m is the total number of patch types;     P   i j     is the probability that two randomly selected adjacent grids belong to types   i   and   j  . The aggregation index usually measures the aggregation degree of the same type of patches, but its value is also affected by the total number of types and their evenness.

	
CONTAG measures how clustered or dispersed various patch types are in a landscape. A greater CONTAG value indicates that a dominant patch type in the landscape exhibits strong connectivity and aggregation.

	
Landscape

	
%




	
Diversity Index

	
Shannon’s Diversity Index

(SHDI)

	
  S H D I = −    ∑  i = 1   m         P   i   × l n   P   i        

In the formula,   m   is the total number of patch types,     P   i     is the probability of occurrence of type   i   patches.   S H D I ≥ 0   with no upper limit.

	
SHDI reflects landscape heterogeneity and is particularly sensitive to the uneven distribution of various patch types in the landscape. A higher SHDI value indicates a greater variety of land use types.

	
Landscape

	
-




	
Shannon’s Evenness Index

(SHEI)

	
  S H E I =    −   ∑  i = 1   m        P   i   × l n   P   i         l n m     

In the formula,   m   is the total number of patch types,     P   i     is the probability of occurrence of type   i   patches.

	
SHEI is calculated by taking the Shannon diversity index and dividing it by the maximum possible diversity for the specific landscape abundance, which occurs when all patch types are evenly distributed. An SHEI value of 0 signifies that the landscape consists of only one type of patch, indicating a lack of diversity, while an SHEI value of 1 represents a uniform distribution of all patch types, denoting the highest level of diversity.

	
Landscape

	
-
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Figure 1. Location and research scope map of the YRDUR. 
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Figure 2. Dynamic evolution of major landscape types in the YRDUR (2000–2020). 
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Figure 3. Analysis of overlay evolution in SDE for CTL in the YRDUR (2000–2020). 
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Figure 4. Results of subdivision of CTL expansion directions in the YRDUR over four periods from 2000 to 2020. ((a) from 2000 to 2005, (b) from 2005 to 2010, (c) from 2010 to 2015, (d) from 2015 to 2020). 
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Figure 5. Results of subdivision of CTL expansion directions in the YRDUR from 2000 to 2020. 
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Figure 6. Radar chart illustrating distribution of CTL expansion scale in the YRDUR over four periods from 2000 to 2020. ((a) from 2000 to 2005, (b) from 2005 to 2010, (c) from 2010 to 2015, (d) from 2015 to 2020). 
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Figure 7. Radar chart illustrating distribution of CTL expansion intensity in the YRDUR over four periods from 2000 to 2020. ((a) from 2000 to 2005, (b) from 2005 to 2010, (c) from 2010 to 2015, (d) from 2015 to 2020). 






Figure 7. Radar chart illustrating distribution of CTL expansion intensity in the YRDUR over four periods from 2000 to 2020. ((a) from 2000 to 2005, (b) from 2005 to 2010, (c) from 2010 to 2015, (d) from 2015 to 2020).



[image: Land 13 01514 g007]







[image: Land 13 01514 g008] 





Figure 8. Radar chart comparing CTL expansion scale (a) and intensity (b) in the YRDUR from 2000 to 2020. 
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Figure 9. Distribution map of CTL expansion types in the YRDUR from 2000 to 2020. 
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Figure 10. Visualization results of spatial driving factors for CTL in the YRD (2000–2020). ((a) Distance from major railways (X18), (b) Distance from major highways (X19), (c) Distance from major rivers (X20), (d) Ruggedness (X21), (e) Slope (X22), (f) Elevation (X23)). 






Figure 10. Visualization results of spatial driving factors for CTL in the YRD (2000–2020). ((a) Distance from major railways (X18), (b) Distance from major highways (X19), (c) Distance from major rivers (X20), (d) Ruggedness (X21), (e) Slope (X22), (f) Elevation (X23)).



[image: Land 13 01514 g010]







[image: Land 13 01514 g011] 





Figure 11. Distribution of the determinative power (q) of spatial driving factors in different types of areas in the YRD (2000–2020). ((a) Year 2000, (b) Year 2010, (c) Year 2020). 
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Figure 12. Evolution of the distribution of determinative power (q) of spatial driving factors in different types of areas in the YRD. ((a) Low-intensity expansion type, (b) Medium-intensity expansion type, (c) High-intensity expansion type). 
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Figure 13. Types of interactions between two independent variables and the dependent variable in a GD. 
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Figure 14. Results of the interaction detection of spatial driving factors in different types of areas in the YRD in 2000. ((a) Low-intensity expansion type, (b) Medium-intensity expansion type, (c) High-intensity expansion type). 
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Figure 15. Results of the interaction detection of spatial driving factors in different types of areas in the YRD in 2010. ((a) Low-intensity expansion type, (b) Medium-intensity expansion type, (c) High-intensity expansion type). 
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Figure 16. Results of the interaction detection of spatial driving factors in different types of areas in the YRD in 2020. ((a) Low-intensity expansion type, (b) Medium-intensity expansion type, (c) High-intensity expansion type). 
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Table 1. Information about data sources.
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Data Category

	
Data Name

	
Data Source and Processing

	
Data Type






	
Land Use Data

	
2000 Land Use Data

	
Chinese Academy of Sciences Resource and Environment Data Center (www.resdc.cn)

	
Raster




	
2005 Land Use Data

	
Chinese Academy of Sciences Resource and Environment Data Center (www.resdc.cn)

	
Raster




	
2010 Land Use Data

	
Chinese Academy of Sciences Resource and Environment Data Center (www.resdc.cn)

	
Raster




	
2015 Land Use Data

	
Chinese Academy of Sciences Resource and Environment Data Center (www.resdc.cn)

	
Raster




	
2020 Land Use Data

	
Chinese Academy of Sciences Resource and Environment Data Center (www.resdc.cn)

	
Raster




	
Geospatial Data

	
Administrative Divisions of YRD

	
National Geographic Information Resource Catalog Service System

	
Vector




	
Digital Elevation Model (DEM) Data

	
Geospatial Data Cloud

	
Raster




	
Slope Data

	
Geospatial Data Cloud

	
Raster




	
Normalized Difference Vegetation Index (NDVI)

	
Landsat8 Remote Sensing Image Library

	
Raster




	
Basic Planning Data

	
Population, GDP Data

	
Statistical Yearbooks

	
Text (Vectorized)




	
Other Economic Panel Data

	
Planning Documents, Statistical Bulletins, etc.

	
Text (Vectorized)




	
YRD Regional Planning and Provincial and Municipal Master Planning Texts

	
Natural Resource Departments, Government Websites

	
Text (Vectorized)




	
Water Bodies

	
National Geographic Information Resource Catalog Service System

	
Vector




	
Transportation Facilities Data

	
Obtained via Python Web Scraping

	
Vector




	
Spatial Distribution of Nature Reserves, Scenic Spots, etc.

	
Obtained via Python Web Scraping

	
Vector




	
POI Data

	
Obtained via Python Web Scraping

	
Vector











 





Table 2. Temporal driving factors of urban CTL in the YRDUR.






Table 2. Temporal driving factors of urban CTL in the YRDUR.





	
Category

	
Temporal Driving Factors

	
Interpretation Variable Code






	
Technological Development

	
Percentage of Green Inventions in Annual Patent Applications in the Region (%)

	
X1




	
Percentage of Green Inventions in Annual Patents Granted in the Region (%)

	
X2




	
Socioeconomic Indicators

	
Population Density (people/km2)

	
X3




	
Local Government Fiscal Expenditure (100 million yuan)

	
X4




	
Land Area Used in the Current Year (km2)

	
X5




	
Number of Large-Scale Industrial Enterprises

	
X6




	
Total Retail Sales of Consumer Goods (100 million yuan)

	
X7




	
Industrial Structure

	
Proportion of Secondary Industry Added Value to GDP (%)

	
X8




	
Proportion of Tertiary Industry Added Value to GDP (%)

	
X9




	
Proportion of Employment in Secondary Industry (%)

	
X10




	
Proportion of Employment in Tertiary Industry (%)

	
X11




	
Environmental Humanities

	
Per Capita Park Green Area (m2)

	
X12




	
Green Coverage Rate of Built-up Areas (%)

	
X13




	
Forest Coverage Rate (%)

	
X14




	
Transportation Facilities

	
Per Capita Road Area (m2)

	
X15




	
Highway Passenger Traffic (10,000 People)

	
X16




	
Highway Freight Traffic (10,000 Tons)

	
X17











 





Table 3. Spatial driving factors of urban CTL in the YRDUR.
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Category

	
Spatial Driving Factors

	
Interpretation Variable Code






	
Location Space

	
Distance from Main Railway (km)

	
X18




	
Distance from Main Highway (km)

	
X19




	
Distance from Main River (km)

	
X20




	
Geographic Space

	
Ruggedness (°)

	
X21




	
Slope (°)

	
X22




	
Elevation (m)

	
X23











 





Table 4. Land use area by type in the YRDUR from 2000 to 2020.
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Type

	
2000

	
2005

	
2010

	
2015

	
2020




	
Area (km2)

	
Proportion (%)

	
Area (km2)

	
Proportion (%)

	
Area (km2)

	
Proportion (%)

	
Area (km2)

	
Proportion (%)

	
Area (km2)

	
Proportion (%)






	
CVL

	
1.13 × 105

	
50.87

	
1.09 × 105

	
49.27

	
1.04 × 105

	
46.59

	
1.02 × 105

	
45.57

	
1.00 × 105

	
45.08




	
FL

	
6.55 × 104

	
29.51

	
6.53 × 104

	
29.42

	
6.49 × 104

	
29.15

	
6.48 × 104

	
29.1

	
6.46 × 104

	
28.98




	
GL

	
8.15 × 103

	
3.67

	
8.05 × 103

	
3.63

	
7.61 × 103

	
3.42

	
7.53 × 103

	
3.38

	
7.94 × 103

	
3.57




	
WB

	
1.87 × 104

	
8.44

	
1.91 × 104

	
8.59

	
2.07 × 104

	
9.3

	
2.05 × 104

	
9.18

	
1.97 × 104

	
8.84




	
CTL

	
1.65 × 104

	
7.5

	
2.00 × 104

	
9.07

	
2.55 × 104

	
11.45

	
2.82 × 104

	
12.67

	
2.99 × 104

	
13.38




	
UL

	
4.14 × 101

	
0.02

	
4.26 × 101

	
0.02

	
2.33 × 102

	
0.11

	
2.06 × 102

	
0.09

	
3.46 × 102

	
0.16











 





Table 5. Analysis of land use dynamics in the YRDUR from 2000 to 2020.
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Land Use Types

	
Land Use Dynamic Degree




	
2000–2005

	
2005–2010

	
2010–2015

	
2015–2020

	
2000–2020






	
CVL

	
−0.632

	
−1.012

	
−0.439

	
−0.218

	
−0.553




	
FL

	
−0.057

	
−0.109

	
−0.035

	
−0.084

	
−0.071




	
GL

	
−0.266

	
−1.075

	
−0.209

	
1.083

	
−0.130




	
WB

	
0.371

	
1.725

	
−0.247

	
−0.752

	
0.258




	
CTL

	
4.203

	
5.333

	
2.131

	
1.131

	
3.960




	
UL

	
0.556

	
90.063

	
−2.526

	
13.803

	
36.762




	
Comprehensive Dynamic Degree

	
0.347

	
0.610

	
0.246

	
0.193

	
0.316











 





Table 6. TM of land use type areas in the YRDUR from 2000 to 2020.
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2000

	
2020




	
CVL

	
FL

	
GL

	
WB

	
CTL

	
UL






	
CVL

	
97,663.48 km2

	
850.88 km2

	
139.88 km2

	
1490.72 km2

	
12,743 km2

	
28.28 km2




	
FL

	
821.92 km2

	
63,424.92 km2

	
223.92 km2

	
114.12 km2

	
846.2 km2

	
32.32 km2




	
GL

	
245.72 km2

	
183.16 km2

	
7081.28 km2

	
463.68 km2

	
173.52 km2

	
4.64 km2




	
WB

	
754.8 km2

	
42.40 km2

	
327.64 km2

	
16,611.60 km2

	
731.12 km2

	
224.64 km2




	
CTL

	
844.12 km2

	
46.48 km2

	
20.48 km2

	
622.08 km2

	
15,068.8 km2

	
7.44 km2




	
UL

	
0.72 km2

	
2.92 km2

	
0.12 km2

	
1.48 km2

	
5.16 km2

	
30.52 km2











 





Table 7. TM of proportion for land use type area in the YRDUR from 2000 to 2020.
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2000

	
2020




	
CVL

	
FL

	
GL

	
WB

	
CTL

	
UL






	
CVL

	
86.49%

	
0.75%

	
0.12%

	
1.32%

	
11.29%

	
0.03%




	
FL

	
1.26%

	
96.89%

	
0.34%

	
0.17%

	
1.29%

	
0.05%




	
GL

	
3.01%

	
2.25%

	
86.87%

	
5.69%

	
2.13%

	
0.06%




	
WB

	
4.04%

	
0.23%

	
1.75%

	
88.87%

	
3.91%

	
1.20%




	
CTL

	
5.08%

	
0.28%

	
0.12%

	
3.75%

	
90.72%

	
0.04%




	
UL

	
1.76%

	
7.14%

	
0.29%

	
3.62%

	
12.61%

	
74.58%











 





Table 8. LSP index and calculation details.






Table 8. LSP index and calculation details.





	
Year

	
Landscape Fragmentation Index

	
Landscape Heterogeneity Index

	
Landscape Aggregation Index

	
Landscape Diversity Index




	
NP

/Count

	
PD

/Count/100 ha

	
ED/

m/ha

	
MPS

/ha

	
LPI

/%

	
LSI

/-

	
MSI

/-

	
AI

/%

	
CONTAG/%

	
SHDI

/-

	
SHEI

/-






	
2000

	
137,432

	
0.619

	
17.25

	
161.49

	
18.43

	
208.24

	
1.24

	
82.60

	
49.35

	
1.23

	
0.686




	
2005

	
135,766

	
0.611

	
17.57

	
163.47

	
18.14

	
211.98

	
1.25

	
82.29

	
48.09

	
1.26

	
0.702




	
2010

	
134,279

	
0.603

	
18.08

	
165.95

	
17.98

	
218.39

	
1.26

	
81.78

	
46.17

	
1.31

	
0.729




	
2015

	
133,538

	
0.599

	
18.07

	
166.86

	
16.80

	
218.27

	
1.27

	
81.79

	
45.73

	
1.32

	
0.736




	
2020

	
132,784

	
0.595

	
17.98

	
168.09

	
17.90

	
217.59

	
1.27

	
81.87

	
45.25

	
1.33

	
0.744











 





Table 9. LSP index in different land use types and calculation details.






Table 9. LSP index in different land use types and calculation details.





	
Land Use Types

	
Year

	
Landscape Fragmentation Index

	
Landscape Heterogeneity Index

	
Landscape Aggregation Index




	
NP

/Count

	
PD

/Count/100 ha

	
ED/

m/ha

	
MPS

/ha

	
LPI

/%

	
LSI

/-

	
AI

/%

	
CONTAG/%






	
CVL

	
2000

	
21,482

	
50.88

	
14.96

	
525.67

	
14.21

	
248.36

	
85.27

	
70.70




	
2005

	
22,248

	
49.28

	
15.11

	
491.58

	
13.32

	
254.88

	
84.63

	
70.62




	
2010

	
23,408

	
46.58

	
15.38

	
443.46

	
12.67

	
267.18

	
83.47

	
70.34




	
2015

	
23,804

	
45.57

	
15.29

	
426.59

	
12.43

	
268.52

	
83.20

	
70.21




	
2020

	
23,656

	
45.01

	
15.03

	
424.66

	
12.31

	
265.87

	
83.27

	
70.56




	
FL

	
2000

	
10,042

	
29.51

	
7.47

	
652.12

	
18.43

	
165.65

	
87.12

	
48.32




	
2005

	
10,043

	
29.42

	
7.47

	
650.24

	
18.14

	
165.83

	
87.09

	
51.05




	
2010

	
10,202

	
29.15

	
7.54

	
636.70

	
17.98

	
168.53

	
86.84

	
53.96




	
2015

	
10,208

	
29.11

	
7.48

	
635.33

	
16.80

	
167.38

	
86.92

	
55.059




	
2020

	
9938

	
28.98

	
7.54

	
650.74

	
17.90

	
169.12

	
86.76

	
56.21




	
GL

	
2000

	
9969

	
3.68

	
2.06

	
81.82

	
0.12

	
129.78

	
71.39

	
59.88




	
2005

	
9644

	
3.63

	
2.04

	
83.53

	
0.11

	
128.98

	
71.40

	
60.44




	
2010

	
9836

	
3.42

	
2.01

	
77.46

	
0.11

	
131.21

	
70.09

	
60.25




	
2015

	
9845

	
3.38

	
1.99

	
76.59

	
0.11

	
130.35

	
70.12

	
60.63




	
2020

	
10,031

	
3.57

	
2.06

	
79.46

	
0.11

	
132.18

	
70.54

	
63.26




	
WB

	
2000

	
17,711

	
8.43

	
2.79

	
105.68

	
2.13

	
117.32

	
82.96

	
51.21




	
2005

	
18,121

	
8.59

	
2.92

	
105.23

	
2.07

	
121.49

	
82.52

	
52.95




	
2010

	
18,777

	
9.30

	
3.04

	
110.37

	
2.09

	
122.11

	
83.15

	
55.82




	
2015

	
19,289

	
9.19

	
3.08

	
106.18

	
2.05

	
124.19

	
82.75

	
56.42




	
2020

	
19,365

	
8.88

	
3.07

	
102.31

	
1.86

	
125.46

	
82.29

	
59.29




	
CTL

	
2000

	
78,010

	
7.48

	
7.20

	
21.29

	
0.26

	
310.51

	
51.89

	
22.37




	
2005

	
75,483

	
9.06

	
7.58

	
26.64

	
0.40

	
297.20

	
58.14

	
25.79




	
2010

	
71,611

	
11.44

	
8.12

	
35.60

	
0.62

	
284.20

	
64.47

	
29.79




	
2015

	
69,944

	
12.66

	
8.23

	
40.32

	
0.94

	
274.10

	
67.42

	
31.40




	
2020

	
69,269

	
13.39

	
8.17

	
43.15

	
1.14

	
265.45

	
69.37

	
34.42




	
UL

	
2000

	
218

	
0.02

	
0.02

	
18.77

	
0.00

	
17.45

	
46.87

	
68.52




	
2005

	
227

	
0.02

	
0.02

	
18.45

	
0.00

	
17.63

	
46.72

	
68.38




	
2010

	
445

	
0.11

	
0.06

	
52.69

	
0.02

	
22.35

	
71.58

	
88.79




	
2015

	
448

	
0.09

	
0.06

	
45.54

	
0.02

	
22.66

	
69.20

	
86.22




	
2020

	
525

	
0.17

	
0.07

	
74.22

	
0.04

	
22.92

	
77.50

	
89.35











 





Table 10. Analysis of scale and intensity of CTL expansion in the YRDUR (2000–2020).
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Sector

	
Time Period

	
Expansion Area (km2)

	
Annual Average Expansion Area (km2/Year)

	
Annual Average Expansion Intensity (%)

	
Expansion Intensity Classification






	
NE

	
2000–2005

	
179.08

	
35.82

	
0.18

	
Medium-Intensity Expansion




	
2005–2010

	
540.75

	
108.15

	
0.54




	
2010–2015

	
218.73

	
43.75

	
0.22




	
2015–2020

	
21.37

	
4.27

	
0.02




	
2000–2020

	
959.92

	
48.00

	
0.24




	
NNE

	
2000–2005

	
265.06

	
53.01

	
0.47

	
High-Intensity Expansion




	
2005–2010

	
712.45

	
142.49

	
1.27




	
2010–2015

	
228.41

	
45.68

	
0.41




	
2015–2020

	
47.46

	
9.49

	
0.09




	
2000–2020

	
1253.37

	
62.67

	
0.56




	
EEN

	
2000–2005

	
358.40

	
71.68

	
0.62

	
High-Intensity Expansion




	
2005–2010

	
803.90

	
160.78

	
1.40




	
2010–2015

	
185.42

	
37.08

	
0.32




	
2015–2020

	
161.07

	
32.21

	
0.28




	
2000–2020

	
1508.79

	
75.44

	
0.66




	
EN

	
2000–2005

	
476.66

	
95.33

	
1.01

	
High-Intensity Expansion




	
2005–2010

	
585.74

	
117.15

	
1.24




	
2010–2015

	
259.85

	
51.97

	
0.55




	
2015–2020

	
318.99

	
63.80

	
0.68




	
2000–2020

	
1641.24

	
82.06

	
0.87




	
ES

	
2000–2005

	
445.22

	
89.04

	
0.91

	
High-Intensity Expansion




	
2005–2010

	
170.94

	
34.19

	
0.35




	
2010–2015

	
243.09

	
48.62

	
0.50




	
2015–2020

	
238.02

	
47.60

	
0.49




	
2000–2020

	
1097.27

	
54.86

	
0.56




	
EES

	
2000–2005

	
584.63

	
116.93

	
0.66

	
High-Intensity Expansion




	
2005–2010

	
240.44

	
48.09

	
0.27




	
2010–2015

	
285.17

	
57.03

	
0.32




	
2015–2020

	
232.61

	
46.52

	
0.26




	
2000–2020

	
1342.85

	
67.14

	
0.38




	
SSE

	
2000–2005

	
637.95

	
127.59

	
0.51

	
Medium-Intensity Expansion




	
2005–2010

	
163.89

	
32.78

	
0.13




	
2010–2015

	
326.51

	
65.30

	
0.26




	
2015–2020

	
340.01

	
68.00

	
0.27




	
2000–2020

	
1468.36

	
73.42

	
0.29




	
SE

	
2000–2005

	
164.41

	
32.88

	
0.20

	
Low-Intensity Expansion




	
2005–2010

	
129.78

	
25.96

	
0.16




	
2010–2015

	
86.00

	
17.20

	
0.10




	
2015–2020

	
135.04

	
27.01

	
0.16




	
2000–2020

	
515.23

	
25.76

	
0.15




	
SW

	
2000–2005

	
8.09

	
1.62

	
0.02

	
Low-Intensity Expansion




	
2005–2010

	
21.68

	
4.34

	
0.06




	
2010–2015

	
4.04

	
0.81

	
0.01




	
2015–2020

	
20.24

	
4.05

	
0.05




	
2000–2020

	
54.05

	
2.70

	
0.04




	
SSW

	
2000–2005

	
3.78

	
0.76

	
0.02

	
Low-Intensity Expansion




	
2005–2010

	
24.90

	
4.98

	
0.14




	
2010–2015

	
17.88

	
3.58

	
0.10




	
2015–2020

	
−9.35

	
−1.87

	
−0.05




	
2000–2020

	
37.21

	
1.86

	
0.05




	
WWS

	
2000–2005

	
8.74

	
1.75

	
0.01

	
Low-Intensity Expansion




	
2005–2010

	
61.48

	
12.30

	
0.10




	
2010–2015

	
26.33

	
5.27

	
0.04




	
2015–2020

	
3.90

	
0.78

	
0.01




	
2000–2020

	
100.45

	
5.02

	
0.04




	
WS

	
2000–2005

	
49.61

	
9.92

	
0.05

	
Low-Intensity Expansion




	
2005–2010

	
269.48

	
53.90

	
0.26




	
2010–2015

	
197.19

	
39.44

	
0.19




	
2015–2020

	
−72.08

	
−14.42

	
−0.07




	
2000–2020

	
444.21

	
22.21

	
0.11




	
WN

	
2000–2005

	
92.25

	
18.45

	
0.14

	
Medium-Intensity Expansion




	
2005–2010

	
330.77

	
66.15

	
0.51




	
2010–2015

	
285.77

	
57.15

	
0.44




	
2015–2020

	
116.14

	
23.23

	
0.18




	
2000–2020

	
824.93

	
41.25

	
0.32




	
WWN

	
2000–2005

	
15.93

	
3.19

	
0.02

	
Low-Intensity Expansion




	
2005–2010

	
281.24

	
56.25

	
0.35




	
2010–2015

	
130.71

	
26.14

	
0.17




	
2015–2020

	
−15.72

	
−3.14

	
−0.02




	
2000–2020

	
412.16

	
20.61

	
0.13




	
NNW

	
2000–2005

	
115.09

	
23.02

	
0.19

	
Medium-Intensity Expansion




	
2005–2010

	
425.97

	
85.19

	
0.70




	
2010–2015

	
130.97

	
26.19

	
0.21




	
2015–2020

	
197.90

	
39.58

	
0.32




	
2000–2020

	
869.94

	
43.50

	
0.36




	
NW

	
2000–2005

	
92.38

	
18.48

	
0.11

	
Medium-Intensity Expansion




	
2005–2010

	
613.01

	
122.60

	
0.70




	
2010–2015

	
84.10

	
16.82

	
0.10




	
2015–2020

	
−44.69

	
−8.94

	
−0.05




	
2000–2020

	
744.80

	
37.24

	
0.21











 





Table 11. Regression model analysis results of temporal driving factors of urban CTL in the YRDUR.
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Year

	
Type

	
Factor Type

	
p Value

	
Correlation Coefficient

	
Regression Model

	
Driving Type






	
2000

	
Low-Intensity Expansion Area

	
Technological Development

	
0.000

	
0.952 ***

	
Y = 171.497 + 18.746 × 1

	
Single Factor




	
Medium-Intensity Expansion Area

	
Industrial Structure

	
0.000

	
−0.900 ***

	
Y = 4541.619 − 74.298 × 8

	
Single Factor




	
High-Intensity Expansion Area

	
Socioeconomic, Environmental Humanities

	
0.001

	
0.897 **/−0.564 *

	
Y = 410.722 + 0.134 × 6 − 474.532 × 14

	
Dual Factors




	
2010

	
Low-Intensity Expansion Area

	
Socioeconomic

	
0.003

	
0.908 **/0.773 *

	
Y= −240.819 + 52.685 × 5 + 4.570 × 4

	
Dual Factors




	
Medium-Intensity Expansion Area

	
Technological Development, Socio-economic, Industrial Structure

	
0.000

	
0.793 ***/−0.773 ***/0.472 *

	
Y = 1905.551 + 12.890 × 1 − 41.705 × 10 − 25.539 × 5

	
Multiple Factors




	
High-Intensity Expansion Area

	
Socioeconomic, Environmental Humanities

	
0.000

	
0.919 ***/−0.577 *

	
Y = 301.941 + 0.121 × 6 − 857.297 × 14

	
Dual Factors




	
2020

	
Low-Intensity Expansion Area

	
Industrial Structure, Environmental Humanities, Transportation Facilities

	
0.000

	
0.988 ***/0.462 */0.512 *

	
Y= −2537.241 + 0.099 × 17 + 40.429 × 8 + 19.952 × 12

	
Multiple Factors




	
Medium-Intensity Expansion Area

	
Technological Development

	
0.003

	
0.769 ***

	
Y= −560.616 + 169.980 × 1

	
Single Factor




	
High-Intensity Expansion Area

	
Socioeconomic, Environmental Humanities

	
0.000

	
0.896 ***/0.884 ***/−0.598 *

	
Y = 376.045 + 0.095 × 7 + 0.114 × 6 − 544.779 × 14

	
Multiple Factors








Note: *, **, *** indicate significance levels of 0.1, 0.05, and 0.01, respectively.













 





Table 12. Temporal dominant driving factors and correlation coefficients of urban CTL in the YRDUR.
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Year

	
Region Type

	
Dominant Driving Factor

	
Correlation Coefficient

	
Constant

	
Unstandardized Coefficient

	
Standardized Coefficient

	
Adjusted R2

	
D-W Test






	
2000

	
Low-Intensity Expansion Area

	
Percentage of Green Inventions in Total Annual Regional Invention Applications

	
0.952 ***

	
171.497

	
18.746

	
0.982

	
0.957

	
2.734




	
Medium-Intensity Expansion Area

	
Proportion of Secondary Industry Value Added to GDP

	
−0.900 ***

	
4541.619

	
−74.298

	
−0.9

	
0.790

	
1.956




	
High-Intensity Expansion Area

	
Number of Large-Scale Industrial Enterprises

	
0.897 **

	
410.722

	
0.134

	
0.800

	
0.870

	
2.060




	
Forest Coverage Rate

	
−0.564 *

	
−474.532

	
−2.455




	
2010

	
Low-Intensity Expansion Area

	
Area of Land Requisitioned in the Current Year

	
0.908 **

	
−240.819

	
52.685

	
0.699

	
0.963

	
1.733




	
Local Fiscal General Budget Expenditure

	
0.773 *

	
4.570

	
0.444




	
Medium-Intensity Expansion Area

	
Percentage of Green Inventions in Total Annual Regional Invention Applications

	
0.793 ***

	
1905.551

	
127.890

	
0.834

	
0.867

	
2.387




	
Proportion of Secondary Industry Employment

	
−0.773 ***

	
−41.705

	
−0.597




	
Area of Land Requisitioned in the Current Year

	
0.472

	
−25.539

	
−0.463




	
High-Intensity Expansion Area

	
Number of Large-Scale Industrial Enterprises

	
0.919 ***

	
301.941

	
0.121

	
0.820

	
0.926

	
0.773




	
Forest Coverage Rate

	
−0.577

	
−857.297

	
−0.330




	
2020

	
Low-Intensity Expansion Area

	
Highway Freight Volume

	
0.988 ***

	
−2537.241

	
0.099

	
0.892

	
1.000

	
1.821




	
Proportion of Secondary Industry Value Added to GDP

	
0.462

	
40.429

	
0.175




	
Per Capita Park Green Area

	
0.512

	
19.952

	
0.075




	
Medium-Intensity Expansion Area

	
Percentage of Green Inventions in Total Annual Regional Invention Applications

	
0.769 ***

	
−560.616

	
169.980

	
0.769

	
0.551

	
2.388




	
High-Intensity Expansion Area

	
Total Retail Sales of Consumer Goods

	
0.896 ***

	
376.045

	
0.095

	
0.556

	
0.994

	
1.991




	
Number of Large-Scale Industrial Enterprises

	
0.884 ***

	
0.114

	
0.432




	
Forest Coverage Rate

	
−0.598 *

	
−544.779

	
−0.193








Note: *, **, and *** indicate significance levels of 0.1, 0.05, and 0.01, respectively.













 





Table 13. Single-factor determinant q-value of spatial driving factors of urban CTL in the YRDUR.
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Spatial Element

	
2000

	
2010

	
2020




	
Low-Intensity Expansion Area

	
Medium-Intensity Expansion Area

	
High-Intensity Expansion Area

	
Low-Intensity Expansion Area

	
Medium-Intensity Expansion Area

	
High-Intensity Expansion Area

	
Low-Intensity Expansion Area

	
Medium-Intensity Expansion Area

	
High-Intensity Expansion Area






	
Distance from Major Railway (X18)

	
0.002

	
0.009

	
0.051

	
0.007

	
0.026

	
0.086

	
0.01

	
0.038

	
0.115




	
Distance from Major Highway (X19)

	
0.003

	
0.005

	
0.023

	
0.006

	
0.017

	
0.052

	
0.01

	
0.027

	
0.064




	
Distance from Major River (X20)

	
0.007

	
0.015

	
0.007

	
0.011

	
0.026

	
0.012

	
0.012

	
0.027

	
0.012




	
Relief Degree (X21)

	
0.026

	
0.030

	
0.041

	
0.030

	
0.042

	
0.080

	
0.034

	
0.046

	
0.097




	
Slope (X22)

	
0.016

	
0.022

	
0.029

	
0.019

	
0.030

	
0.058

	
0.022

	
0.033

	
0.071




	
Elevation (X23)

	
0.024

	
0.028

	
0.036

	
0.029

	
0.037

	
0.069

	
0.033

	
0.040

	
0.084
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