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Abstract: Thermal comfort is a key determinant ruling the quality of urban park visits that is mainly
evaluated by equivalent meteorological factors and lacks evidence about its relationship with emo-
tional perception. Exposure to green space was believed to be an available approach to increase
thermal comfort, but this argument still needs verification to confirm its reliability. In this study, about
~15,000 streetscapes were photographed at stops along sidewalks and evaluated for green view index
(GVI) and plant diversity index in five urban parks of Changchun, Northeast China. The faces of visitors
were captured to analyze happy, sad, and neutral scores as well as two net positive emotion estimates.
Meteorological factors of temperature, relative humidity, and wind velocity were measured at the same
time for evaluating thermal comfort using equivalent variables of discomfort index (DI), temperature
and humidity index (THI), and cooling power index (CP). At stops with higher GVI, lower temperature
(slope: from −0.1058 to −0.0871) and wind velocity (slope: from −0.1273 to −0.0524) were found,
as well as higher relative humidity (slope: from 0.0871 to 0.8812), which resulted in positive relation-
ships between GVI and thermal comfort evaluated as DI (R2 = 0.3598, p < 0.0001) or CP (R2 = 0.3179,
p < 0.0001). Sad score was positively correlated with THI (R2 = 0.0908, p = 0.0332) and negatively
correlated with CP (R2 = 0.0929, p = 0.0294). At stops with high GVI, more positive emotions were shown
on visitors’ faces (happy minus sad scores, 0.31 ± 0.10). Plant diversity had varied relationships with
GVI in parks depending on age. Overall, our study demonstrated that using imagery data extracted
from streetscapes can be useful for evaluating thermal comfort. It is recommended to plan a large
amount of touchable nature provided by vegetation in urban parks so as to mitigate micro-climates
towards a trend with more thermal comfort that evokes more positive emotions.

Keywords: thermal comfort; urban park tourism; cooling effect evaluation; emotional perception;
quality of life

1. Introduction

It is nearly agreed that we are living in a warming world, which is worsening thermal
comfort conditions and increasing days with thermal discomfort [1]. This impedes the
achievement of sustainable development goal (SDG) 3 as it heavily impairs “good health
and well-being” [2]. Under poor thermal conditions, experiencers can suffer discomfort-
caused mental stress and even illness originating from heat stroke or hypothermia. In
SDG 7, “Affordable and Clean Energy”, thermal comfort is involved, as a poor-comfort
environment is usually associated with high power consumption for cooling or heating in
a built environment [3]. It is also tied into SDG 11, “Sustainable Cities and Communities”,
as urban heat islands are the most perceived threat against urban sustainability [4]. Land
use/land cover (LULC) is determinative of land surface temperature (LST) and outdoor
thermal comfort, involved in both triggering urban heat events and mitigating them [5].
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To establish an available strategy to cope with thermal discomfort conditions, land use
planning is important to improve the environment with better thermal comfort. The
evaluation of LST is necessary on specific given land, where more quantitative results
should be documented based on critical driving mechanisms and reliable parameters.

Exposure to green space ties into a high probability of thermal comfort perception,
which has generally broad applicability, being more probable on urbanized lands than
on barrens with sparse vegetation [6,7]. Abundant vegetative reserves embedded in
green space landscapes contribute to the adjustment of thermal comfort by means of heat
absorption, water transpiration, and canopy shading [6,8,9]. As a biotic element in the
landscape of a city, urban forest vegetation accounts for the majority of the mitigation of
thermal comfort, especially on built-up lands. The canopy is the main organ of a vegetative
plant that functions to induce a thermal comfort environment. This is because the canopy
ties with foliage at the highest relevance across all organs, and leaves have a higher rate
of transpiration than any other tissues [10]. Aboveground vegetative parts of lawns and
grasslands are also commonly seen greenery, accounting for GVI in urban green space [11].
Stomatal openness brings about the gas exchanges that carry out transpiration, which allows
cool air to flow into the micro-environment immediately around the canopy [12]. This
phenomenon alters thermal comfort by dually modifying air temperature and humidity,
which are two key variables that are used for evaluating thermal comfort [13,14]. Wind
flow is also a concomitant variable that is involved in the evaluation of thermal comfort
according to the rule of power loss [15,16]. Hence, a high occupation of walkable space
by vegetative canopies can impede wind flow and theoretically reduce thermal comfort,
but lawns do not. These, together, suggest an uncertain relationship between GVI and
thermal comfort on municipal lands with green space using data from streetscape photos.
The facticity of this relationship still cannot be fully confirmed due to the insufficiency of
direct evidence on urban lands.

The enrichment of plant species in green space has been identified as a key factor that
can evoke perceived well-being by urban park visitors [17,18]. This effect was suspected to
be accompanied by a cooling and moist atmosphere on lands near green space trees [19–21].
It was suggested that plant diversity may have at least partly contributed to the mitigation
of the cooling effect provided by vegetation [22,23]. For example, a study across four
seasons in Changzhou, China, indicated that both the Shannon–Wiener diversity index
and tree species richness were positively correlated with the magnitude of temperature
drop amplitude [22]. However, it was also found that tree diversity was not so predictive
against LST in comparison with disturbance level [23]. In theory, community transpiration
should have a strong reliance on tree diversity in spite of the fact that tree physiology and
local climate are two forcible drivers [24]. Even if all known factors are controlled, it is
still hard to draw the conclusion that plant species diversity has any solid relationship
with environmental cooling. This needs to be identified in newly conducted studies for the
purpose of increasing green space through urban land management.

In an urban streetscape, the vegetative parts of canopies can be totally explained
as greenery visible to the public. This can be evaluated using a parameter called the
green view index (GVI), which is used for evaluating the visibility of green elements in
a pedestrian’s visible view [25]. It is measured by extracting pixels of greenery elements
from canopies and calculating their ratio to the total in an image [26]. The extraction of
foliar elements is the key process, which is achieved by training a machine to recognize
a prepared dataset and summing up their number in an image [25,27]. Thus, the green
elements of botanic issues are mostly derived from canopies of urban forest trees and
occasional leaves attached to stems and branches can hardly be recognized [28]. The use
of GVI was proven to be a flexible instrument for evaluating the occupation of canopies
in walkable spaces on municipal lands and tracking geographical changes [27,28]. It was
suggested to be an instrument for measuring the dose of nature that pedestrians can be
exposed to along a sidewalk or a road [29]. As a visibility-dependent parameter, GVI
was proven to gauge green space exposure according to individuals’ green space usage
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behaviors [30]. The bulk of streetscapes used for GVI extraction and analysis include
visual hybrids of buildings and greenery, which precondition measurements for touchable
green space at the community scale [31]. Continuous to these essential uses, GVI-based
measurement was also to be a meter of the spatially heterogeneous distribution of green
space across a city [32]. Its close relationship with canopy has been used for detecting heat
mitigation effects by urban trees [33]. Depending on high-resolution images, GVI-derived
streetscapes can also be taken as a source from which plant diversity can be recognized and
assessed artificially [34]. These together demonstrate the merits of using streetscapes to
dually evaluate canopy shade and plant diversity, which can further be used for assessing
the meteorological process to perceive thermal comfort. The relationship between GVI
and thermal comfort has been proven to be essential [35], which dually changed in a joint
variation of 7.9–23.0% [36]. The key determinant of achievement depends on the accuracy
of the dependent thermal comfort assessment.

Currently, thermal comfort is mainly evaluated using equations against equivalent
meteorological factors [37]. Air temperature and humidity at touchable height are the two
most concerned factors given their key contributions to human perceptions about thermal
comfort. Using these two parameters, thermal comfort was initially evaluated through a
variable assessing discomfort in high temperature but low humidity conditions, namely
the discomfort index (DI) [38], which is evaluated as [13]:

DI = T − 0.55 × (1 − 0.01 × RH)× (T − 58) (1)

where T is the air temperature and RH is relative humidity. People found that DI has a
limit that cannot indicate thermal comfort ranges, hence it was modified to two further
hybrid formulas, namely, temperature and humidity index (THI), which can be evaluated
with either Equation (2) [39,40] or Equation (3) [41,42]:

THI = T − 0.55 × (1 − RH)× (T − 14.50) (2)

THI = T + 0.36 × T + 41.5 (3)

Both of these two equations were suggested being limited in defining thermal comfort
temperature ranges due to not considering LST and waterbody areas assessed in the nor-
malized difference moisture index (NDMI), hence it was suggested to be further modified to
a new, updated parameter, namely, modified THI (MTHI) [13,43–45], which can be modeled
by Equation (4) [45] and Equation (5) [13,43,44]:

MTHI = 0.10 × [T − 0.55 × (1 − RH)× (T − 14.50)]× (2.25 + 0.67 × LST) (4)

MTHI = 1.80 × LST + 32 − 0.55 × (1 − NDMI)× (1.80 × LST − 26) (5)

Given that TC is a type of perception of humans towards the thermal environment,
the meteorological and land variables involved in Equations (1)–(5) are equivalent to this
perception, but this does not mean the equivalent models are the most matching reflections
of human perceptions. For a better evaluation of thermal comfort, these equivalent variables
need to be challenged by new and more accurate parameters.

For urban green space visitors, their perceptions of the thermal environment have
long been investigated through questionnaire surveys [46–49]. This methodology has
been discouraged by several scholars due to its inevitable biases caused by subjective
fatigue and social manners [50,51]. As an alternative approach, it has been recommended
to capture visitors’ perceptions and rate them with facial expression scores [52,53]. Its
theoretical base comes from an objective rule that people can disclose real-time emotions
on their faces if environmental factors are perceived as a driving hint [54–56]. This novel
methodology has been identified to be flexible to predict responsive emotional perceptions
of urban park environments, including exposure to green space landscape [19,57–59], air
quality [60,61], micro-climate [19,20,57,62], and plant diversity [17,34]. These together
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suggest a probability that facial expression scores can also be taken as an instrument for
detecting emotional perceptions of urban green space visitors towards the thermal comfort
environment in urban parks. It will be more confirmative to detect thermal comfort in
urban park environments through variable detection involving facial expression scores
than any equivalent parameters.

In this study, meteorological factors were monitored in the micro-climates of five urban
parks in Changchun, which were used for evaluating thermal comfort. Facial expression
scores were also employed as a variable for detecting thermal comfort against micro-
climates. Streetscapes were used as a source of data, which can result in data extraction
about canopy shade and diversity recognition. Our goal was to examine the emotional
perception of thermal comfort by rating facial expression scores against meteorological
factors and vegetative variables extracted from streetscapes. We also aimed to compare this
type of thermal comfort evaluation with results derived from equivalent meteorological
evaluation. It was hypothesized that (1) the scenario in a park with high canopy shade and
vegetative diversity can lead to a higher thermal comfort, (2) due to perceptions towards
combined low temperature, moist air, and high wind velocity. It was also assumed that
(3) thermal comfort evaluated by two different methodologies shared a common mechanism
against meteorological factors in the same relationship.

2. Materials and Methods
2.1. Study Site and Plots

This study was conducted in temperate regions of China and Changchun was cho-
sen as the city for data collection. Changchun is the capital city of Jilin province, which
is located in areas of Northeast China [52]. Locally, the annual temperature was 4.6 ◦C
averaged from a historical range between −36.5 ◦C and 40 ◦C. Annual rainfall ranged
between 600 and 700 mm with frost-free days on 140–150 d per year. Local spring
(March–May) is windy and dry continuously into a long wintertime (previous
December–current February) starting from the previous year’s autumn (September–November).
Summer (June–August) is short because of cooling effects caused by late-spring frost [63]
and early autumn chill [64]. Even so, summer is a comfortable season in Changchun due to
cool nights and frequent rain events. The local resident population was about 4.45 million
as of 2020, dwelling on construction lands in an area of 537 km2 [65]. Changchun was one
of four top-tier “Landscape Garden Cities in China” with the largest area of LULCs with
artificial forests scattered in urban parks, public gardens, and street GSs [65].

Five urban parks were chosen as study sites in Changchun (Table 1). They are all
recommended for visiting by professional agencies over three rating-star levels. Although
Nanchu Park has not been recommended with any rating stars, it is one of the oldest parks
in China, with local forests established over 80 years ago [66]. Nanhu Park, located in the
center of Changchun, attracts visits from a large population during the daytime [49,53,67].
The locations of parks in the municipal regions of Changchun are shown in Figure 1.

Table 1. Basic information and areal quantifications in selected parks of Changchun.

Park Built Year Star Rating 1 Rating Date Total Area
(ha)

Green Space
(ha)

Blue Space
(ha)

Beihu Wetland Park 2012 4A 29 May 2014 792.18 0.54 113.76

World Sculpture Park 2003 5A 25 February
2017 356.86 158.31 124.74

Zoo and Botanic Park 1938 4A 15 September
2007 237.86 31.41 73.62

Jingyue Pool Park 1934 5A 14 January 2011 87.09 0.09 5.31
Nanhu Park 1935 - - 73.58 4.95 0.72

1 Stars are provided by ratings of recommendation for visit.
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Figure 1. The spatial distributions of the five chosen urban parks for this study in Changchun. “Lines”
in every park map are drawn by assembling stop positions, which are marked in red and black colors
representing the first and the second days’ visits, respectively.

2.2. Study Design and Layout

The time during June was chosen as the study period for data collection. This month
accounts for the largest population of annual tourists and visitors in the parks of Changchun;
hence, during this month, many opportunities to photograph facial photos of pedestrians
in parks can be expected. Ten volunteers were recruited as data collection technicians. They
were randomly separated into five pairs who were in charge of field investigations in five
parks. Five pairs of technicians made investigations at the same time on the same two
days, which were chosen as 12 and 25 June 2023 because they had sunny and windless
weather. On the first investigating day, a technician walked from the entrance, away from
which, every 5 m of walking was chosen as a stop, and streetscape photos were taken in
four orientations. The other technician monitored meteorological factors at the same time
as when every photo was taken. On the other day, five pairs of volunteers were rearranged
to change their visits to different parks from the first day. The design and the layout of the
whole experiment are shown in a technical roadmap in Figure 2.
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2.3. Meteorological Factor Monitoring

To evaluate thermal comfort using meteorological factors in micro-climates, tem-
perature, relative humidity, and wind velocity were monitored at the same time as pho-
tographing. Wind velocity was measured using a mini LCD digital anemometer (GM8908,
Benetech, Shenzhen, China) with a wind speed range of 0.1 to 30 m s−1 at an accuracy of
±5%. Although the anemometer can also monitor temperature, a replacement was used
at a higher accuracy (−40 ◦C–+70 ◦C, ±0.2 ◦C) using HOBO UX100-014M (Onset Brands,
Bourne, MA, USA). This can also measure RH at an accuracy of 0–100%, ±2.5%.

2.4. Photographing at Stops in Parks

Photos were taken by cellphone cameras that were uniformed to present watermarks
with information about the order of the photo, time, location, elevation, orientational angle,
and coordinates. All photos were taken at a standard proportion of 16:9 (width to length)
and a resolution of 4k. These processes were repeated at stops every 5 m by walking
along sidewalks. Real-time meteorological factors were recorded by handheld devices at
the same time of every orientation’s photographing. Micro-climates were characterized
by equivalent factors of air temperature, relative humidity, and wind velocity. When a
pedestrian’s face was photographed, the volunteer asked for consent to use it for this study.
Photos were deleted immediately if the consent was denied. Stops were chosen one by one
at a walking pace. The stop could not be employed under any of the following conditions:

(i) Fully crowded by visitors in all four orientations;
(ii) The stop’s location suffers unwalkability for reasons such as lane maintenance;
(iii) Excessively close to an adjacent building at a distance < 1 m;
(iv) Accessibility was impeded by the occupation of pets, which were mostly puppies.

Finally, a total of 14,949 photos were taken from five urban parks in two days and
554 of them contained visitors’ facial photos with personal consent.
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2.5. Facial Expression Recognization and Rating

FireFACE version 1.0 software (Hainan Guanzhong A&F Ltd., Sanya, China) was used
to recognize facial expressions and rate scores of happy, sad, and neutral emotions. This
approach has been used several times in previous studies and has proven to be sensitive
for assessing visitors’ emotions toward perceptions of urban park environments [34,59,60].
No technical thresholds were set to distinguish scores for happy, sad, and neutral emotions
as they were recognized by a deep learning network pretrained by machine learning using
30,000 inputs [68] and tested to pass the matching-accuracy validation [69]. Thereafter, the net
positive emotion in a photo was further calculated as a positive response index (PRI) [52,55]:

PRI = SHappy − SSad (6)

where SHappy and SSad are emotional scores for happiness and sadness, respectively. As PRI
cannot cover the effects of a neutral score, which is an inevitable part of facial expression,
another synthesized variable, namely, the emotional nonparametric relation index (ENRI),
was also involved and calculated as [70]:

ENRI = log
j

∑
i=1

(
SHappy

SSad + SNeutral

)
(7)

where SNeutral is the neutral score of the ith visitor in a photo, which was totaled by the
sum of that for the jth visitor.

2.6. Thermal Comfort Evaluation

Thermal comfort was evaluated using equivalent meteorological factors in temperature
and humidity perception models and a power consumption model. Temperature and
humidity perception models were put forth as instances such as those in Equation (1) (DI)
(scale: 350–1000) and Equation (2) (THI) (scale: 50–90). We did not choose to evaluate
MTHI [13,43–45] because its estimate needs inputs of LST, which had to rely on 30 m
resolution remote evaluation using satellite imageries, such as Landsat OLI or Sentinel
products. The power consumption model can be employed using a variable, namely, the
cooling power index (CP), which was also used and was estimated using temperature and
wind velocity (WV, m s−1) [15]:

CP = 1.163 ×
(

10.45 + 10 × WV0.5 − WV
)
× (33 − T) (8)

With the increase in the levels of DI and THI, the thermal environment was perceived
from the comfortable range through to discomfort (Figure 3A). The scale for CP was between
−270 and 1100, within which the thermal environment was perceived as uncomfortable
when it was lower than 175 or higher than 1050 (Figure 3B).
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2.7. Data Extracted from Streetscapes

Streetscape photos were used for extracting GVI data for vegetative elements in
canopies, lawns, and grasslands (Figure 2). In this study, greenery was recognized using
an existing DeepLabV3+ model run through deep learning in Python ver. 3.6 (Python
Software Inc., Beaverton, ON, USA). This model was established in a study by Sun et al.
(2023) [34] and was trained by groups of 2000 streetscape photos downloaded from online
maps using the Pycharm project (Pycharm, Praha, Czech Republic) and validated across
groups (initially over 5000 photos added to 5000 newly inputted ones from this study). It
was validated to have a high recovery of the matching rate at 93.75% [34], which is higher
than many other GVI projects [72,73].

For photos already evaluated for GVI, an academic group of professionals in botanic
science was invited to identify the vegetative species therein [34]. The five volunteers were
recruited again to check plant species in the field if they were not sure from reading the photo.
Genera and species names were recorded for all plants that can be seen in a photo, and their
numbers were totaled by the four photos per stop. Overall, tree species mainly included Betula
platyphylla Sukaczev (1911), Fraxinus mandschurica Rupr., Juglans mandshurica Maxim., Populus
davidiana Dode, P. alba var. pyramidalis Bunge, Picea jezoensis var. microsperma (Lindl.) Cheng
et L. K. Fu, P. koraiensis Nakai, Pinus koraiensis Sieb. et Zucc., P. sylvestris var. mongolica Litv.,
P. tabuliformis Carr., 1867, Prunus sibirica L. 1753, P. davidiana (Carr.) C. de Vos ex Henry, P. padus
L. 1753, and Salix alba L. Shrubs were mainly Acer ginnala Maxim., Berberis ferdinandi-coburgii
Schneid., Cornus alba L., Liriodendron tulipifera L., and Ulmus pumila “jinye”. Herbaceous plants
included Carex hirta L., Cynodon dactylon (L.) Pers., Hosta plantaginea (Lam.) Aschers., Lolium
perenne L., Trifolium repens L., Plantago asiatica L.

Plant diversity was evaluated by equations of the Simpson index [74] and Shannon–
Wiener models [22]:

Simpson index =
j

∑
i=1

ni × (ni − 1)
Ni × (Ni − 1)

(9)

Shannon–Wiener index = −1 ×
j

∑
i=1

pi × ln(pi) (10)

where ni is the number of the ith species in photos of a stop and Ni is the number of all
species, and pi is their ratio of ni to Ni per photo. Both indexes were evaluated across
photos per stop up to a total number of j. The Simpson index is flexible in indicating
diversity driven by changes in dominant species, and the Shannon–Wiener index is more
precise in predicting the evenness of diverse species [75].

2.8. Data Processing and Statistics

Data were analyzed using SAS ver. 9.4 software (SAS Statistics Inc., Cary, NC, USA).
The total data pool comprised two sets of data, which were detailed to be data from all
stops (n = 14,949) and those from selected stops with visitors’ faces (n = 554). All meteoro-
logical and equivalent thermal comfort evaluation data passed normal distribution with
homogeneous variance. Pearson correlation was used to detect relationships between pairs
of parameters among meteorological and equivalent thermal comfort variables. An initial
examination indicated that neither plant diversity indexes showed significant relationships
with any of the meteorological factors, but GVI can be related to most of them. Hence,
relationships between GVI and meteorological factors were plotted by observed data and
fitted by curves to reveal correlation details. These correlations were detected separately
by data variation among parks to detect common responses. For data from selected stops,
however, the abovementioned data plus facial expression scores (happy, sad, and neutral
scores and PRI and ENRI values) were all pooled together for correlation detection among
any pairs of variables, summing data together across five parks. As the data of facial ex-
pression scores all failed to pass normal distribution, they were all transformed by ranking
to generate distribution-free patterns [19,53]. Multivariate linear regression was used to
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detect combined driving forces of meteorological factors plus GVI and diversity indexes
on thermal comfort evaluation values (DI, THI, CP), using data separately for all stops
and selected stops. In addition, multivariate linear regression was also employed to detect
driving forces for facial expression scores.

3. Results
3.1. Data Characteristics

DI data from all stops were averaged to 631.69 ± 105.50 (mean ± standard deviation)
ranging from 357.72 to 1005.22 with a coefficient of variance of 0.17 (Figure 4A). For DI
from selected stops, the mean was 625.46 ± 104.35 with a coefficient of variance of 0.16.
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Figure 4. Histograms of thermal comfort evaluations by equivalent meteorological factors (DI (A);
THI (B); CP (C)) for data from all stops or selected stops, where visitors were recorded for their happy
(D), sad (E), and neutral (F) scores. Data categories are listed as raw records from the lowest level of
observation to the highest level.

Data of THI from all stops ranged between 58.49 and 89.01 with an average of
73.34 ± 4.41 and a coefficient of variance of 0.06 (Figure 4B). When data were extracted from
selected stops, THI had a mean of 73.62 ± 4.30, ranging between 61.43 and 89.01. During
these changes, the increase in THI indicated perceptive changes from thermal comfort to
thermal discomfort with the increase in temperature (Figure 3A).

Data of CP from all stops ranged from −272.41 to 650.96 with an average of
148.06 ± 118.55 and a coefficient of variance of 0.80 (Figure 4C); CP data from selected stops
ranged between −212.95 and 490.52 with a mean of 135.02 ± 123.07 and a coefficient of
variance of 0.91. These changes in CP indicated perceptions from thermal discomfort to
thermal comfort (Figure 3B).

Happy, sad, and neutral emotions had the highest scores of 99.94%, 97.88%, and
97.41%, respectively (Figure 4D–F). Their means were 12.91 ± 25.34%, 39.92 ± 31.01%,
and 32.62 ± 27.15% with coefficients of variance of 1.96, 0.78, and 0.83, respectively. Data
of PRI ranged between −97.78% and 99.92% with an average of −27.00 ± 46.65% and a
coefficient of variance of −1.73. ENRI ranged between −3.99 and 3.70 with an average of
−1.05 ± 1.41 and a coefficient of variance of −1.35.
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3.2. Correlation Using Data from All Stops

For data from all stops, none of the equivalent thermal comfort evaluation variables
had significant correlations with diversity indexes (Figure 5). Both DI and THI had positive
relationships with temperature and humidity but negative relationships with wind velocity.
CP had a negative relationship with temperature but a positive relationship with humidity
and wind velocity. The Simpson index had a negative relationship with temperature and a
positive relationship with relative humidity, but the Shannon index did not correlate with
either of them. Wind velocity did not correlate with either diversity index, but it had a
positive relationship with temperature and a negative relationship with humidity.
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Figure 5. Heat map of Pearson correlations between pairs of variables among plant diversity index
(Simpson and Shannon), meteorological factors (temperature, T; relative humidity, RH; wind velocity,
WV), and equivalent thermal comfort evaluations (DI, THI, CP) at all stops across all five parks.
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Data of GVI showed no relationships with THI for data from all stops. Instead, GVI
showed positive relationships with equivalent thermal comfort evaluation variables
(Figure 6). Data from all stops also showed that GVI had negative relationships with tempera-
ture (Figure 7A–E) and wind velocity (Figure 7K–O) in all five parks. However, GVI showed
positive relationships with relative humidity in the five parks (Figure 7F–J). However, relation-
ships between GVI and diversity indexes varied among different parks (Figure 8). In detail,
GVI had negative relationships with Simpson and Shannon indexes in Beihu Wetland and
World Sculpture parks (Figure 8A,B,F,G), but it had positive relationships with two diversity
indexes in Jingyue Pool Park (Figure 8D,I). In addition, GVI had a positive relationship with
the Simpson index in the Zoo and Botanic Park (Figure 8C). No relationship was detected to
be significant between GVI and diversity in Nanhu Park (Figure 8E,J).
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3.3. Correlation Using Data from Selected Stops

Both the Simpson and Shannon indexes showed positive relationships with sad score
(Figure 9). In contrast, GVI showed no relationship with sad score, but GVI had positive
relationships with happy, PRI, and ENRI scores. Temperature showed a positive relation-
ship with sad score, and it had negative relationships with PRI and ENRI. RH had no
relationship with sad score, but it had positive relationships with happy score, PRI, and
ENRI. Wind velocity had no relationship with any facial expression scores.
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Figure 9. Heat map of Pearson correlations between pairs of variables among facial expression scores
(happy, sad, neutral, PRI, and ENRI), plant diversity index (Simpson and Shannon), meteorological
factors (temperature, T; relative humidity, RH; wind velocity, WV), and equivalent thermal comfort
evaluations (DI, THI, CP) at selected stops across all five parks. Colors of dots indicate correlation
results according to R values: positive (R > 0) and negative (R < 0) correlations are marked by red
and green colors, respectively. Only significant correlations are fitted by curves (red full lines) over
raw data (dots in cyan color).

Both GVI and diversity indexes had positive relationships with DI and GVI had a positive
relationship with CP. Temperature and relative humidity had positive relationships with DI
and THI and their relationships with wind velocity were negative. In contrast, temperature
had a negative relationship with CP and wind velocity had a positive relationship with CP.
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Temperature and wind velocity had negative relationships with GVI. In contrast, air
humidity had positive relationships with GVI and two diversity variables. GVI also showed
positive relationships with the Simpson and Shannon indexes.

3.4. Driving Force Analysis Using Multivariate Linear Regression

For data from all stops, the GVI and Simpson index showed no contributions to three
thermal comfort equivalent parameters (Table 2). Temperature showed strong positive
contributions to DI and THI, while relative humidity showed tiny positive contributions to
these two parameters. Wind velocity and Shannon index showed negative contributions
to these two parameters with parameter estimates higher from the Shannon index than
that from wind velocity. In contrast, temperature and relative humidity showed negative
contributions to CP with a positive contribution provided by wind velocity.

Table 2. Multivariate linear regression of equivalent meteorological variables for thermal comfort
evaluation parameters against combined independent variables for data collected from all stops or
from selected stops.

Variable DI 1 THI 2 CP 3

All stops
Intercept −167.49 ± 2.27 *** 4 35.68 ± 0.12 *** 895.76 ± 6.22 ***
GVI - 5 - -
Shannon −1.09 ± 0.53 * −0.06 ± 0.03 * -
T 6 22.36 ± 0.07 *** 1.19 ± 0.00 *** −28.67 ± 0.20 ***
RH 7 4.76 ± 0.01 *** 0.13 ± 0.00 *** −0.13 ± 0.04 **
WV 8 −0.23 ± 0.06 *** −0.01 ± 0.00 *** 9.34 ± 0.16 ***

Selected stops
Intercept −122.82 ± 6.41 *** 38.06 ± 0.34 *** 944.64 ± 16.12 ***
GVI −0.15 ± 0.05 *** −0.01 ± 0.00 *** −0.21 ± 0.10 *
Shannon - - -
T 20.82 ± 0.19 *** 1.11 ± 0.01 *** −29.87 ± 0.46 ***
RH 4.89 ± 0.05 *** 0.13 ± 0.00 *** -
WV - - 8.47 ± 0.40 ***

1 DI, discomfort index; 2 THI, temperature and humidity index; 3 CP, cooling power index; 4 results are means ±
standard error with significance at critical values: *, p < 0.05; **, p < 0.01; ***, p < 0.001; 5 -, no detected driving
parameters; 6 T, temperature; 7 RH, relative humidity; 8 WV, wind velocity.

Again, temperature and relative humidity also showed positive contributions to DI
and THI for data from selected stops (Table 2). Wind velocity showed a positive contribution
to CP, which received a negative contribution from temperature.

Among all physical factors, only relative humidity, GVI, and Shannon index showed
significant contributions to facial expression scores (Table 3). Relative humidity showed
positive contributions to happy score and ENRI. GVI generated a negative contribution to
sad score and its contribution to PRI was positive.

Table 3. Multivariate linear regression of facial expression scores of visitors against physical factors
and greenery variables in selected stops at parks.

Variables Happy Sad PRI ENRI

Intercept 8.00 ± 2.08 45.19 ± 3.81 −42.41 ± 5.37 −1.34 ± 0.12
RH 0.14 ± 0.05 - - 0.01 ± 0.00
GVI - −0.20 ± 0.07 0.31 ± 0.10 -
Shannon - 7.12 ± 2.64 - -
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4. Discussion
4.1. The Estimate of Thermal Comfort Using Facial Emotion Scores

As a novel approach, facial expressions were employed in this study as an instrument
to estimate thermal comfort. This was achieved based on the theoretical basis that ther-
mal comfort is a perception of humans towards experiences in a thermal environment.
Humans have a nature to perceive more negative emotions in accordance with declines
in psychological well-being when thermal discomfort is experienced [76,77]. In contrast,
when a comfortable environment is perceived, most people will stop or reduce the exhi-
bition of negative emotion, but rare few of them will replace perceptions about negative
emotions with positive sentiments. In the context of human emotions of environmental
perceptions, the face shows a mixture of expressions from positive, negative, and indifferent
emotions [67,69,78]. The decline in negative emotions was usually accompanied by the
switch of more neutral emotions than visible smiles. Hence, a mixed model synthesizing
multiple emotional scores is more recommended than any monocultural model for the
estimate of thermal comfort. The variable PRI is a commonly used mixed model that equals
the difference between happy and sad scores [63,69,78]. This model concerns net changes
between positive and negative emotions, but it fails to involve the indifferent emotion. The
variable ENRI is also a mixed model, which covers multiple changes in happy, sad, and
neutral emotions [70]. Thus, ENRI may have a lower prediction than PRI for estimating the
net difference between positive and negative emotions. That is why both PRI and ENRI
were employed in this study.

4.2. Difference in Thermal Comfort Evaluations between Two Methodologies

Among all equivalent parameters, DI failed to have any relationship with facial
expression scores. Instead, THI showed a positive relationship with sad score, although the
slope was very low. CP showed a negative relationship with sad score, and its relationships
with PRI and ENRI were both positive. Increasing values in DI and THI with that in
temperature covered a range of thermal perception switching from comfort to discomfort
with results on the contrary for values in CP. Therefore, the abovementioned changes
together indicate that thermal comfort evaluation by equivalent meteorological factors can
synchronize to that evaluated by facial expression scores. This can happen only when it
is accepted that sadness disclosed on the face was the only expressional response to the
perception of thermal comfort ruled by LST. Furthermore, changes in sadness also charged
responses of net emotion expressions (PRI and ENRI) to show positive results when thermal
comfort was perceived as the lowered power loss facing a thermal environment. It can
be predicted that DI may lose its responsive sensitivity to indicate perceptive thermal
comfort as this equivalent variable was put forth as early as 1959 [38] when the general
understanding of thermal comfort evaluation was limited to an initial stage when it was
unlikely to find precise coefficients of meteorological factors [13]. It was surprising that CP
was the only equivalent variable that correlated with net positive emotional expression.
The estimate of this variable needs independent variables’ inputs of temperature and wind
velocity (Equation (8)), but it still can indicate a positive relationship with air humidity and
precisely indicate contradictions against DI and THI in our given data spectrum. From
the perspective of power loss with a thermal discomfort perception, a fluent wind flow
can take away heat from the skin, function to decrease surface temperature, and evoke the
mitigation of sadness perception [15,79]. In previous studies, wind flow was also found
to be a necessary factor that induces positive emotions of visitors in green spaces with
degraded ecological states in subtropical forests [57]. In urban green space in Japan, it was
also indicated that low wind velocity was a limit that impeded the psychological responses
of people to perceive thermal comfort [80]. Overall, we can accept our hypothesis that
thermal comfort evaluations through equivalent meteorological factors using the CP model
and facial expression scores about sadness can agree with each other.
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4.3. Vegetative Effects on Thermal Comfort for People Exposed to Green Space

It has long been found that thermal comfort can be increased in scenarios of green space
exposure with vegetative shade through field investigation and simulations [7,81]. In our
study, results were estimated as a parameter of GVI with data extracted from streetscapes.
We found that GVI showed contradictive effects on thermal comfort according to its dually
positive relationships with DI and CP for both pools of data either from all stops or in
selected stops. These were caused by negative relationships between GVI and temperature
or wind velocity and a negative relationship with relative humidity. However, for data in
selected stops, a high magnitude of GVI was detected to be a beneficial driving force that
evoked positive emotions due to positive relationships of GVI with happy score, PRI, and
ENRI. This means that green space exposure with more vegetation can generally evoke
higher thermal comfort. According to these facial expression results, it can be speculated
that the positive relationship between GVI and CP was more confirmative to the objective
thermal comfort than the relationship between GVI and DI. High GVI impeded wind flow,
which resulted in the negative relationship between GVI and wind velocity. This should
have been a resistance to increase CP, but the large decrease in temperature caused by high
GVI counteracted the deficiency of wind flow and led to a thermal comfort perception. It
was also identified that wind flow did not contribute considerably to thermal comfort as
strongly as temperature [79]. It was not the first time for our study to report that an increase
in air humidity can evoke benefits in comfort perceptions [19,20]. Overall, vegetation dose
in touchable nature during green space exposure was a precondition of thermal comfort
perception, which was achieved by temperature decline and humidity increase, although
a large canopy may decrease wind flow. This endorses the acceptance of our hypothesis
through findings that people with heavy vegetation exposure can perceive thermal comfort
through lowered power loss, which can be shown with more positive emotions on the
face. Either DI or THI were not suitable variables for evaluating thermal comfort related to
vegetation-related effects.

Data about all stops suggested that the relationship between GVI and plant diversity
was highly varied among different urban parks. It is interesting to find that high GVI
tended to predict lower species diversity in Beihu Wetland Park and World Sculpture Park.
However, high GVI may also indicate more plant species in parks with ages over 80 years
as well, such as those in the Zoo and Botanic Park, Jingyue Pool Park, and Nanhu Park.
These suggest that relatively newly built parks were built with fewer vegetative species
than those built with a longer history. It was also suggested that plant species richness
increased with urban forest establishment in China, but the increasing rate of plant species
was lower than that of urban forest expansion [82]. Lower diversity in newly built urban
green space is not a unique case in China [83,84].

Unlike characteristics in relationships of GVI with equivalent variables, plant diversity
indexes only showed positive relationships with DI with no essential relationships detected
with THI and CP analyzed using data from selected stops. Slopes of correlations between
plant diversity indexes and DI were much lower than those of correlations between GVI
and DI. As was discussed in the preceding paragraph, DI changes did not show any
statistical relationship with emotional perceptions, suggesting that its relationship with
plant diversity did not supply any essential contributions to the perception of thermal
comfort. Both the Simpson and Shannon indexes failed to show any relationships with
most facial expression scores, except for sad score, which was increased at stops with high
plant diversity. Visitors in this study looked unlikely to enjoy their time at stops with
rich plant species, which cannot be explained from the perspective of thermal comfort
perception. In a previous study, it was indicated that people tended to show more sadness
on their faces when experiencing urban forests with diverse tree species, but they would
show more smiles or positive moods when shrub and herbaceous species were high [17].
Based on this, we surmise that visitors in our study showed sad faces in urban parks mostly
because they saw visible trees of diverse species, and they were judged to be unsatisfactory.
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4.4. Micro-Climate and Thermal Comfort

Air temperature was a leading factor that ruled changes in thermal comfort for vis-
itors exposed to urban GS. Its rise led to equivalent variables’ changes towards a trend
that reduced thermal comfort, which was demonstrated using data of two types. High
temperatures can also stimulate perceptions of sad moods to the extent that visitors cannot
control the sadness on their faces. This further led to overall decreases in net positive
emotions’ exhibition. These changes nearly synchronized with wind velocity by contrasting
effects evaluated using data of both evaluation types. That is, high wind velocity tended to
decrease THI and DI but increase CP as well. These changes did not evoke any responses
of facial expressions in similar trends. Thence, wind velocity is a factor that can increase
thermal comfort in theory, but it is unlikely a perceptible element. Instead, air humidity was
a factor that can be perceived as a driving force to evoke thermal comfort up to an extent
with positive emotions shown. This effect was synchronized with the control of power loss
assessed by CP. The increase in air humidity contributed to the rise of DI and THI, which
indicated a rising trend of thermal discomfort. However, these changes in highly moist
air just showed an upregulation of thermal discomfort, which was not accompanied by
exhibitions of emotional changes on faces. Overall, the coexistence of low temperature and
high air humidity were critical combined driving forces that essentially evoked thermal
comfort perceived by visitors in urban parks.

4.5. Limits of This Study

In spite of the profound results shown in our study, they can still be improved if the
existing limits are overcome. Firstly, the use of facial expressions as a tool for evaluating
thermal comfort was the key approach in this study. This has technical meaning because
it is the nature of human beings to show sadness on their face if discomfort is perceived.
Although a person may not always show smiles if thermal comfort is perceived, he/she
may be evoked to show positive emotions by experiencing really comfortable environments.
These can all make sense for most people, but serious validation is necessary to endorse the
theoretical basis. The use of facial expressions as a proxy for estimating thermal comfort
totally needs more theoretical bases to demonstrate the mathematic support for their
relationship. Secondly, the variable MTHI was not tested in our study due to the limits of
special areas in the five chosen parks. It would be better to involve this parameter as it
engages thermal comfort at a higher precision than THI; hence the employment of MTHI
may lead to more reliable results. Larger parks are suggested to enable tests using MTHI as
an estimate of LST needs at least grids of 10 × 10 m and a park’s largeness may need to be
at least 10 ha in area. Finally, the number of visitors involved in this study can be higher if
a higher accuracy of evaluation is achieved using facial expression scores. This is strongly
suggested in future works because facial expressions show many possible intentions. Only
when the number of involved subjects is large enough can the technical bias of difference
among individuals be eliminated.

5. Conclusions

In this study, facial expression scores were employed as a meter of the expressed
emotions of visitors exposed to thermal environments in urban parks. This is the major
part accounting for the novelty of this study to evaluate thermal comfort from a new
angle. Sad score was the unique variable that was shown with a similar magnitude of
thermal comfort evaluated by equivalent meteorological factors. The equivalent variable,
CP, which was evaluated by synthesizing changes in temperature and wind velocity, can
indicate thermal comfort with less sadness (−0.20 ± 0.07) and more positive emotions
(0.31 ± 0.10). Streetscape was proven to be an available instrument through which extracted
GVI (55.58 ± 20.91%) can predict dual changes in temperature and air humidity towards a
trend of increasing thermal comfort. In scenarios with high GVI, equivalent thermal comfort
was strengthened with more positive sentiments shown on visitors’ faces. Plant diversity
stimulated the presentation of sadness (7.12 ± 2.64), which was irrelevant from thermal
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comfort perceptions. Overall, our study demonstrated that using imagery data extracted
from streetscapes can be available for evaluating thermal comfort. The implicative meaning
mainly came from the use of streetscapes for analyzing the magnitude of green space
exposure and thermal comfort evaluation using facial expression scores. It is recommended
to plan a large amount of touchable nature provided by vegetation in urban parks so as
to mitigate micro-climates towards a trend with more thermal comfort that evokes more
positive emotions on visitors’ faces.
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