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Abstract: As China’s “Dual Carbon” strategy is implemented and the new urbanization advances,
balancing economic development, emission reduction, and carbon sequestration has become an
important issue during the growth of emerging metropolitan areas, and it is also important for
achieving high-quality urban development. Therefore, this study had three major objective functions:
economic growth, carbon emission reduction, and increased carbon storage. The multi-objective
land use quantity structure was solved using the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), and the best solution in the solution set was introduced using the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) for evaluation. Finally, combined with the
Future Land Use Simulation (FLUS) model, the low-carbon evolution of the metropolitan area was
predicted on a spatial scale. The trade-off plan results show that by 2035, the economic benefits will
reach CNY 7.65 trillion, carbon emissions will be kept under 99.24 million tons, and carbon storage
will steadily increase by 15.2 million tons. Therefore, optimizing land use from the perspective of
balancing carbon emissions, carbon sequestration, and economic development can provide valuable
references for planning low-carbon development and the rational use of spatial resources in future
metropolitan areas.

Keywords: multi-objective optimization; low-carbon development; multi-model composite;
Zhengzhou metropolitan area; China; Land use-cover change

1. Introduction

Since the Industrial Revolution, the continuous advancement of urbanization and the
use of fossil fuels to drive large-scale economic growth have led to the massive release
of greenhouse gases, primarily carbon emissions, into the environment, exacerbating the
global climate crisis [1,2]. To curb global warming and fulfill its commitment to the Paris
Agreement, China has pledged to “achieve carbon peak by 2030 and strive for carbon
neutrality by 2060”. In March 2021, the “14th Five-Year Plan and Long-Range Objectives for
National Economic and Social Development of the People’s Republic of China and the 2035
Vision Goal Outline” proposed key special tasks to achieve the goals of “carbon peak and
carbon neutrality”, as well as the new urbanization pattern of “developing and strengthen-
ing city clusters and metropolitan areas”. As concentrated areas of carbon emissions [3],
city clusters and metropolitan areas are also key regions responsible for China’s dual car-
bon strategy [4,5]. In practice, city clusters, as spatial carriers with large scales and high
coordination difficulty, present challenges. Metropolitan areas, as an inevitable stage in
the development of city clusters and a strategic cornerstone, are undoubtedly the core
spatial units for spatial carbon emission reduction and enhancement of carbon sinks [6,7].
Therefore, it is necessary to carry out low-carbon spatial evolution in metropolitan areas
and to optimize and upgrade the national territorial spatial pattern.
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In recent years, numerous scholars have conducted extensive research on how to
reduce carbon in the atmosphere and curb climate change [3,8–10]. Regarding the sources of
carbon emissions, from the perspective of the inflow and outflow of carbon elements, carbon
sources and carbon sequestration are decisive factors that determine carbon emissions.
Carbon sources attributable to human activities can be divided into two aspects: On the
one hand, they stem from the consumption of energy sources such as fossil fuels [11],
which is closely linked to economic development [12,13]. On the other hand, Land Use
and Cover Changes (LUCCs) play a role, where land uses with strong carbon absorption
capabilities, such as forests and grasslands, are converted into urban construction land
with a negative effect on carbon absorption, releasing carbon sequestered in the soil [14–17].
Carbon sequestration primarily occurs in terrestrial ecosystems [18]. In the field of land
use carbon emissions, domestic and international scholars have mainly focused on the
effects and influencing factors of carbon emissions [16,19,20], accounting for carbon revenue
and expenditure, carbon compensation [21–23], and the carbon trading market [24–26].
Studies, such as those by Chen Jingsong on the Beijing–Tianjin–Hebei region [16] and by
Wang Guibo and Chenxu Zhao on Shaanxi Province [27,28], highlight the pivotal role
of land conversion in carbon emissions. The establishment of carbon trading markets
and the implementation of sensible carbon compensation mechanisms can effectively
mitigate regional carbon imbalances arising from global labor division and reduce the
costs associated with managing the overall emissions of carbon dioxide [29–32]. Achieving
a win-win situation for carbon emission reduction and economic growth has become
a consensus among developing countries worldwide [33]. The aforementioned studies
elaborated on the relationship between economic growth and carbon emissions, with fewer
studies focusing on the path of synergistic promotion of economic growth and reduced
carbon emissions [34]. Such synergy only occurs at a low level. Balancing carbon emissions
and economic development remains a challenge in current land use optimization [35].
Therefore, the focus of this study was on minimizing carbon emissions and increasing
carbon storage while maintaining healthy economic growth.

In current research, land use optimization models are divided into two parts: quan-
titative structure models and spatial structure models. Quantitative structure prediction
models, such as Markov models [36,37], gray models [38], and system dynamics (SD)
models [39,40], predict future land use demand based on historical and present land use
change trends and their relationships with influencing factors. However, as research
progresses, it often encounters multiple objectives that are inherently in conflict, such as
food security, ecological service value, and the minimization of carbon emissions [41–44].
These models typically discuss these objectives across various scenarios, and the original
quantitative prediction models cannot balance these goals, making it difficult to explore
more valuable solutions. Traditional models for handling multi-objective problems, such
as the Linear Programming Model (LPM), ideal-point multi-objective linear programming
(IMLP), and nonlinear models [45,46], have shown good performance. During the solution
process, multiple objectives are assigned weights and transformed into a single objective for
resolution. Essentially, this does not optimize multiple objectives to improve land benefits.
With the advent of heuristic algorithms that boast enhanced search capabilities and can
automatically coordinate multiple objectives without preset weights, genetic algorithms in
particular have attracted attention [47–49]. At the same time, NSGA-II has been fully tested
and can effectively achieve low-carbon spatial optimization [49,50]. Therefore, for this
study, NSGA-II was selected to quantitatively structure the trade-offs of multiple objectives,
striving to achieve the optimal land use plan.

Currently, spatial structure models based on Cellular Automata (CA) are dominant,
including the CA–Markov model [51–53], CLUE-S models [54,55], PLUS models [56,57],
and FLUS models [58–60]. These models each have their characteristics and applications
in the simulation of land use and land cover change (LULC) [61]. The CA–Markov model
combines the spatial explicitness of Cellular Automata with the probabilistic prediction
capabilities of Markov models to forecast regional land use changes and their impacts
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on carbon storage [62]. The CLUE-S model utilizes remote sensing data to predict future
land use scenarios and assesses the implications of these changes for county-level carbon
dioxide emissions [63]. The PLUS model, supported by the Land Expansion Analysis
Strategy (LEAS) module, explores the response relationship between urban construction
land expansion and carbon emissions at the patch level [64]. The FLUS model is an effective
and widely used model for simulating and predicting land use changes and is commonly
employed in calculations related to carbon storage [65]. In general, models such as PLUS
and CLUE-S predict future spatial patterns based on the transformation rules of various
types of land use between two periods of land use data [66]. In contrast, the FLUS model
uses single-period data sampling, which reduces error propagation and is more suitable
for dealing with the uncertainties and complexities of land use changes [60,66]. Therefore,
for this study, the FLUS model was selected to simulate and predict the future spatial
optimization evolution of the study area.

This study utilized Python 3.9 to implement the Non-dominated Sorting Genetic
Algorithm (NSGA-II), effectively balancing the objectives of maximizing economic benefits,
minimizing carbon emissions, and enhancing carbon sequestration. The Pareto optimal
solution set was obtained for the future quantitative structure of land use, and the TOPSIS
was employed to identify the most balanced solution. Finally, the FLUS model’s ANN and
CA modules were deployed to simulate the spatial optimization of future land use, align-
ing economic growth with carbon emissions reduction and carbon storage enhancement.
Therefore, this study provides the following insights: (1) The Multi-Objective Optimiza-
tion Framework integrates these three key objectives into a cohesive strategy, providing
innovative insights for land use planning in metropolitan areas and enabling synchronized
optimization of multiple goals. (2) This approach enhances the efficiency and precision of
selecting optimal solutions from a Pareto front, ensuring a comprehensive strategy for land
use planning and revealing the best trade-offs among various objectives.

2. Materials and Methods
2.1. Study Area

The Zhengzhou Metropolitan Area is located at the center of Henan Province, in
the middle of China. This area, which is the focus of this study, includes nine cities
(Zhengzhou, Kaifeng, Luoyang, Xuchang, Pingdingshan, Luohe, Jiaozuo, Xinxiang, and
Jiyuan) and covers a total area of approximately 58,800 km2, which accounts for 35.49%
of the province’s total land area, as shown in Figure 1a. In March 2021, the Central Plains
Urban Agglomeration was explicitly mentioned in the “14th Five-Year Plan and Long-
Range Objectives for National Economic and Social Development of the People’s Republic
of China and 2035 Vision” for growth and development. As the core of the Central Plains
Urban Agglomeration, the Zhengzhou Metropolitan Area was approved by the National
Development and Reform Commission in October 2023 and officially became a national-
level metropolitan area. The spatial relationship between the two is shown in Figure 1b.
Xinxiang City was selected in the first batch of national pilot cities for carbon emission
peaking, and Jiyuan City is one of the key construction targets of the national low-carbon
city pilot project.

Historical experience has shown that the rapid and uncontrolled expansion of urban
agglomerations formed in the early stages of urbanization, along with unbalanced land
use patterns, has led to many serious “urban diseases”, which, in turn, have restricted the
development process of metropolitan areas [67,68]. The Zhengzhou Metropolitan Area
is currently in a rapid growth phase. With the increase in population and the expansion
of the economic scale, this region faces significant pressure in terms of land resource
utilization and ecological and environmental protection. At the same time, the development
achievements of the Zhengzhou Metropolitan Area are directly related to the rise of the
central region of China and the coordinated development of this region. It is necessary
to make scientific decisions, optimize the spatial structure within the “circle”, build an
ecological security barrier, and guide the metropolitan area towards sustainable and high-
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quality development. The study area is located at the junction of the Loess Plateau and
the Huang-Huai Plain, and the terrain is mainly high in the west and low in the east.
It is situated in the warm temperate zone, crossing the subtropical zone in the south,
and has a continental monsoon climate characterized by distinct seasons, which is quite
suitable for agricultural development. Affected by national macro-strategic positioning,
the proportion of arable land in the entire Zhengzhou Metropolitan Area is significantly
higher than those of other types of land use, as shown in Figure 1c. Referring to “Land
Use Current Classification” (GB/T 21010-2017), based on the research content and the
original classification system of the CLCD, data from each period were reclassified to
ultimately obtain six first-level land categories (arable land, forest land, grassland, water
areas, construction land, and unused land) as the spatial carriers for the research objects.

Figure 1. Location of the study area. (a) The Zhengzhou Metropolitan Area is located in China.
(b) The spatial relationship between the Zhengzhou Metropolitan Area, the Central Plains Urban
Agglomeration, and Henan Province. (c) Land Use Status Classification Map of 2022.

2.2. Data Sources

The data used in this study (Table 1) mainly included elevation data (DEM) sourced
from the Geospatial Data Cloud (www.gscloud.cn, accessed on 5 May 2024) that were
merged, masked, and extracted in ArcGIS; slope and aspect data derived from the DEM
data; annual precipitation data from the ERA5-Land dataset published by the European
Union and the European Centre for Medium-Range Weather Forecasts (https://cds.climate.
copernicus.eu/, accessed on 4 July 2024); population distribution data from the Oak Ridge
National Laboratory (ORNL) of the U.S. Department of Energy; GDP, energy consumption,
and other economic and social data from the “Henan Province Statistical Yearbook” and
the statistical yearbooks of various cities; and distance data related to water systems, main
roads, and railways, all sourced from OpenStreetMap (https://www.openstreetmap.org,
accessed on 5 May 2024) and calculated using the Euclidean distance method. This study

www.gscloud.cn
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://www.openstreetmap.org
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utilized land use status data (China Land Cover Dataset, CLCD) from 2015, 2020, and
2022 obtained from a dataset published by [69]. In ArcGIS, land cover data were pro-
cessed to remove black edges, merged, and clipped. All data were resampled to a resolu-
tion of 100 m × 100 m using ArcMap 10.8, and the coordinate system was unified with
WGS_1984_UTM_Zone_50N with a grid of 3969 rows × 3357 columns.

Table 1. Data sources.

Data Sources Description

Land use type CLCD Dataset 30 m × 30 m tiff
DEM www.gscloud.cn 90 m × 90 m tiff
Slope Calculated from DEM data 90 m × 90 m tiff

Aspect Calculated from DEM data 90 m × 90 m tiff
Average annual

precipitation ERA5-Land Dataset 1 km × 1 km tiff

Population density https://www.ornl.gov/ 100 m × 100 m tiff

GDP
Statistical Yearbook of Henan

Province and Statistical Yearbooks
of Various Cities

Number

Energy consumption
Statistical Yearbook of Henan

Province and Statistical Yearbooks
of Various Cities

Number

Distance to river https://www.openstreetmap.org Vector
Distance to railway https://www.openstreetmap.org Vector

Distance to road https://www.openstreetmap.org Vector
NDVI http://www.nesdc.org.cn 30 m × 30 m tiff

Night light data https://www.noaa.gov/ 500 m × 500 m tiff

2.3. Methods

Carbon emissions from energy consumption and economic benefits were calculated
for the years 2015 to 2022 and assigned to the corresponding land use types, as shown
in Figure 2.
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In this research, we employed a multi-model approach that incorporated NSGA-II,
the TOPSIS, and the FLUS model, and the specific implementation path is illustrated in
Figure 3. The gray model was used to predict the growth in energy consumption carbon
emissions and economic benefits for the target years. Subsequently, the genetic algorithm
NSGA-II was applied to optimize land use allocation with three objectives (maximizing
economic benefits, minimizing carbon emissions, and maximizing carbon sequestration),
resulting in a series of optimized solution sets. The TOPSIS multicriteria method was
utilized to evaluate potential solutions and identified the best solution that balanced these
three aspects [48]. Finally, the plans were incorporated into the FLUS model as quantitative
units for each type of future land use for spatial optimization, and the specific process is
detailed in Figure 3.
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2.3.1. Land Use Allocation and Various Coefficients

• Carbon densities of various land use types

Previous studies have shown that through land management, the carbon storage
capacity of soil can be increased, thereby enhancing its potential as a carbon sink [70].
Carbon density data for each land type were derived from four basic carbon pools: above-
ground biomass carbon (carbon in all living plant materials above the soil), belowground
biomass carbon (carbon present in the living root systems of plants), soil carbon (organic
carbon distributed in organic and mineral soils), and dead organic carbon (carbon in litter
and dead trees) [71]. The carbon sequestration of land use was calculated by multiply-
ing the carbon density of each land type by its corresponding land area according to the
following formula:

Ctotal = ∑6
n=1 An(Can + Cbn + Csn + Con) (1)

where Ctotal represents the total carbon sequestration in the study area; An is the area of
land use type n; and Can, Cbn, Csn, and Con denote the carbon densities of the aboveground
biomass carbon pool, belowground biomass carbon pool, soil carbon pool, and dead organic
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matter carbon pool for land use type n, respectively. During carbon storage estimation,
this study assumed that the carbon density remained constant [72,73] and, at the same
time, that the carbon density of highly urbanized land can generally be neglected [73]. The
average carbon density data for arable land, forest land, grassland, water areas, and unused
land in the study area mainly came from previous studies [72,74–77], and the results are
shown in Table 2.

Table 2. Carbon densities of various land use types.

Land Use Type Carbon Density (t/hm2)

Farmland 66.81
Forest land 149.95

Grassland 72.5
Water 62.1

Construction land 0
Unused land 23.1

Therefore, referring to the land coefficients in Table 2, the objective function for
maximizing carbon storage can be constructed as follows:

Maximize Fs = 66.81X1 + 149.95X2 + 72.5X3 + 62.1X4 + 23.1X6 (2)

where Fs represents the total carbon storage in the study area; X1 through X4 represent, in
sequence, farmland, forest land, grassland, and water; and X6 represents unused land.

• Carbon emissions of various land use types

Except for construction land, the coefficient method for calculating carbon emissions
was employed for the other five types of land use, with carbon emission coefficients
sourced from research findings in Henan Province. The carbon emission coefficients for
forest land, grassland, farmland, watersheds, and unused land were −0.61 t/hm2 [78],
−0.021 t/hm2 [78], 0.422 t/hm2 [79], −0.253 t/hm2 [80], and −0.005 t/hm2 [15]. Carbon
emissions from construction land mainly come from human energy consumption, and an
indirect estimation method was used based on previous research [73,81]. According to the
statistical yearbooks of various cities in Henan Province, which adhere to the ”Designated
Size Industrial Enterprises”, seven types of energy resources required for production
and daily living were considered: coal, coke, crude oil, diesel fuel, fuel oil, electricity,
and heat. The coefficients used to convert the various fossil fuels to standard coal and
their corresponding carbon emission coefficients were referenced from the “China Energy
Statistical Yearbook” and the IPCC “Guidelines for National Greenhouse Gas Inventories”,
as shown in Table 3.

Table 3. Standard coal conversion factors and carbon emission factors.

Coal Coke Crude Oil Diesel Fuel Fuel Oil Electricity Heat

Conversion coefficient of standard coal 0.7143 0.9714 1.4286 1.4571 1.4286 0.1229 0.0341
Carbon emission coefficient 0.7559 0.8550 0.5857 0.5921 0.6185 0.7935 0.2600

Note: when calculated using standard coal as the unit, the units for coal, coke, crude oil, diesel fuel, and fuel oil
are kg per kg of standard coal; the unit for electricity is kg per kWh; and the unit of the carbon emission coefficient,
when measured in terms of carbon, is t per t of standard coal.

Based on the calculation of carbon emissions from construction land from 2015 to
2022, the GM(1,1) gray model was used to predict the carbon emission coefficient for the
construction land in the study area for the year 2035, which was found to be 79.447 t/hm2.
Therefore, the objective function for minimizing carbon emissions can be constructed
as follows:

Fc = 0.422X1 − 0.61X2 − 0.021X3 − 0.253X4 + 79.447X5 − 0.005X6 (3)
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where Fc represents the total carbon emissions in the study area; and X1 through X6
represent, in sequence, farmland, forest land, grassland, water, construction land, and
unused land.

• Economic benefit coefficients of various land use types

The economic benefit coefficients for the land use types were determined according to
the Henan Provincial Statistical Yearbooks from 2015 to 2022, where the economic output
of arable land, forest land, grassland, and water areas corresponded to the output values of
the agriculture, forestry, animal husbandry, and fishery industries. Construction land was
accounted for based on secondary and tertiary industries. Since unused land has virtually
no economic activity, its economic benefit coefficient was considered to be 0, as shown in
Figure 2. The GM(1,1) gray model was utilized to forecast the economic benefit coefficients
for various land use types in the study area for the year 2035 [81], and the results are
presented in Table 4.

Table 4. Economic benefit coefficients of various land use types.

Farmland Forest Land Grassland Water Construction Land

Economic benefit
coefficients (10 thousand/hm2) 12.549 0.722 367.331 22.253 535.853

Therefore, the objective function for maximizing economic benefits can be constructed
as follows:

Fe = 12.549X1 + 0.722X2 + 367.331X3 + 22.253X4 + 535.853X5 (4)

where Fe represents the total economic benefit in the study area; and X1 through X5 repre-
sent, in sequence, farmland, forest land, grassland, water, and construction land.

2.3.2. Multi-Objective Land Use Allocation Method

The multi-objective land use allocation method took into account the requirements
of economic development and low-carbon environmental protection, with maximizing
economic benefits, minimizing carbon emissions, and maximizing carbon sequestration
as the objective functions. This method used six types of land use as decision variables.
To ensure that the multi-objective optimization configuration of land use complied with
development patterns and policy constraints, several constraints were set in the NSGA-
II optimization model. This study used “Henan Province Territorial Spatial Planning
(2021–2035)” and other land use planning adjustment texts as its basis and combined
the historical land use change situation in the study area to construct constraints for
each land type. The total land area in the study area remained constant. According to
the plan, the arable land retention in 2035 should not be less than 10,955.52 million mu
(approximately 730,368.33 hectares). Based on the third national land survey, the arable land
in the study area accounted for 31.73% of the total arable land in the province. Through
proportional constraints, the arable land in the study area in 2035 should not be less
than 2,317,457.66 hectares. The scale of urban construction land was kept within 1.3 times
its scale in 2020. Forest land, grassland, and water areas were set based on previous
research [82] and historical land changes. Unused land was set to be non-negative. The
framework of the algorithm is shown in Figure 4. The initialization population size was set
to 100, the maximum number of iterations was 10,000, the intersection rate was 0.9, and the
variation rate was 0.1. Refer to Supplementary Materials for specific code details.
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The TOPSIS multicriteria method evaluates the superiority or inferiority of alternative
solutions by calculating the distances of each data point from both the positive and negative
ideal solutions, followed by a ranking process. Initially, the target values were normalized
with the carbon emission targets inverted to ensure that all three objectives were maximized,
indicating better performance. The data were then subjected to normalization, and equal
weights were assigned to the three objectives. Ultimately, closeness values were derived,
and these values were sorted to determine the most and least favorable solutions. For
detailed computational formulas, please refer to [48].

2.3.3. Future Land Use Simulation Model

Application of this model began with the use of the Artificial Neural Network (ANN)
module to obtain a set of suitability probability maps. This process utilized current land
use data and, integrating previous research findings, selected 11 driving factors based on
natural and socio-economic conditions, such as elevation, rainfall, population density, and
the distance to railways. These factors were normalized, as shown in Figure 5.

This study employed a random sampling strategy with the sampling parameter set to
20 and the number of hidden layers in the neural network set to 13. Based on the historical
context change method [81,83], the neighborhood factor and transition cost matrix were
configured. The closer the neighborhood factor was to 1, the more easily a land cover
type could transform (Table 5). In the cost matrix, 0 indicated that no transformation
could occur, while 1 indicated that transformation was possible. Finally, the Kappa index
was used to test whether the model’s predictions were consistent with the actual results.
This index has a range of 0 to 1, and it is generally accepted that a value greater than
0.70 indicates that a model has a high degree of credibility [58,73]. The Kappa index for a
land use simulation using the pre-study data from 2010 to 2022 was 0.821877, which was
greater than 0.70. Therefore, the FLUS model used in this study was applicable and had a
good simulation effect.
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Table 5. Neighborhood weight parameters for different land use types.

Land Use Types Farmland Forest Land Grassland Water Construction Land Unused Land

Weight of Neighborhood 0.52901 0.6567 0.0496 0.59267 1 0

3. Results
3.1. The Land Use Changes in the Zhengzhou Metropolitan Area

The Zhengzhou Metropolitan Area experienced land use changes from 2010 to 2022,
as depicted in Figure 6. During this period, the areas of both construction land and forest
land increased. Construction land expanded by 236,251 hectares, a 28.5% increase, which
was the highest among all land use categories. Forest land also increased by 36,178 hectares,
a rise of 3.6%. In contrast, arable land, grassland, water bodies, and unused land all
experienced decreases. Arable land saw the most significant reduction, with a decrease
of 220,219 hectares, accounting for 80.8% of the total decrease and a 5.7% reduction in its
proportion. The grassland area shrank by 51,393 hectares, representing 18.8% of the total
decrease and a 44.2% reduction in this category. Water bodies decreased by 731 hectares, a
1.1% reduction, and unused land decreased by 86 hectares, a 40.5% reduction.

Over the 12-year period, construction land, forest land, grassland, and water bodies
were primarily converted from arable land. Construction land had the most conversions,
totaling 85,730 hectares, followed by forest land with 60,248 hectares, grassland with
41,960 hectares, and water bodies with 13,160 hectares. These conversions were also the
main reasons for the reductions in grassland and water bodies. Agricultural land and
unused land were mainly converted into construction land, with 318,546 hectares and
98 hectares converted, respectively. The conversion of agricultural land was the primary
cause of the increase in construction land.
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3.2. Multi-Objective Pareto Set and TOPSIS Filtering

This study utilized Python 3.9 to invoke NSGA-II from the Geatpy library and im-
plement a multi-objective land use structure optimization plan for the study area in 2035.
Ultimately, 100 solutions were retained, which are represented by gray dots in Figure 7. The
X-axis represents economic benefits in trillions of CNY, the Y-axis represents carbon emis-
sions in hundreds of millions of tons, and the Z-axis indicates carbon storage in hundreds
of millions of tons. After calculation, we first determined three extreme plans for each
objective: maximizing economic benefits, minimizing carbon emissions, and maximizing
carbon storage. Subsequently, the TOPSIS was used to calculate the closeness to the ideal
solution for the three objectives of economic benefits, carbon emissions, and carbon storage
in the Pareto set. The closeness results ranged from 0.41 to 0.64, and the value closest to the
positive ideal solution was selected. It is marked in red in Figure 6. Observed from multiple
perspectives, the red dot is precisely at the turning point of the solution set, indicating that
the TOPSIS assessment was better able to select the balance point in the set. The plan could
effectively accommodate economic benefits, carbon emissions, and carbon storage.

The results of the multi-objective functions for the four scenarios were compared with
the situation in 2022, as shown in Table 6. Looking at the balanced plan, the total annual
economic benefit was CNY 7.646 trillion, the carbon emissions were 99.236 million tons,
and the land carbon storage was 424.257 million tons. According to Henan Province’s
“14th Five-Year Plan” and the 2035 vision target, the GDP growth rate should be maintained
at around 6%, and by 2035, the total economic benefit will reach about CNY 7.99 trillion.
The balanced plan maintained an average annual GDP growth rate of 5.6–5.7%, and this
similar growth rate led to a similar result. When maximizing the economic benefits, the
overall annual output of the study area was CNY 9.664 trillion, the total carbon emissions
were 130.249 million tons, and the carbon storage was 409.06 million tons. When minimiz-
ing the carbon emissions, the total annual economic output was CNY 5.994 trillion, the total
carbon emissions were 76.09 million tons, and the carbon storage was 416.705 million tons.
At the same time, compared with the scenario that maximized the economic benefits, in the
balanced plan the total carbon emissions were reduced by a quarter and the carbon storage
increased by 10%, adding 3.8165 million tons. Compared with the carbon emission mini-
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mization scenario, in the balanced plan both the economic benefits and carbon emissions
increased by about 30%.
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Table 6. Summary of the results for the three objectives in the different scenarios in 2035.

Results Economic Benefit
(Trillion CNY)

Carbon Emissions
(Million Tons)

Carbon Storage
(Million Tons)

2022 3.75 68.7 409.06

Maximum economic benefit 9.664 130.249 386.092

Minimum carbon emissions 5.994 76.09 416.705

Maximum carbon storage 7.646 99.236 424.257

Balanced plan 7.646 99.236 424.257
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The balanced plan’s land quantity structure results were input into the FLUS model,
as shown in Figure 8. Panel (a) represents the land use status in 2022, while panel (b)
illustrates the balanced optimization outcomes. It is observable that urban construction
land is expected to increase significantly, with expansion radiating outwards from the city
centers of various urban areas. The central region is anticipated to experience economic
growth; however, this is likely to come with a reduction in carbon storage, making it a
primary area for potential future increases in carbon emissions. In contrast, continuous
reductions in arable land between forest lands in the southwest and northwest—leading
to the formation of contiguous forest areas—are expected to be the main source of carbon
emission reductions and increases in carbon storage. The emergence of this phenomenon
is likely associated with environmental protection measures such as the “Zhengzhou
Metropolitan Circle Ecological Protection and Construction Plan (2020–2035)”, which has
strengthened the forest barriers of the Taihang Mountains in the northwest, Songshan in
the central region, and the Funiu Mountains in the southwest of the metropolitan circle.
These measures have fortified the ecological defense line, contributing to conservation and
enhancing the carbon sequestration capacity in this region.

Land 2024, 13, x FOR PEER REVIEW 14 of 19 
 

 

Figure 8. Land use optimization distribution map of Zhengzhou Metropolitan Area in 2035. (a) Land 

Use Status Classification Map of 2022; (b) Land Use Simulation Map for 2035. 

4. Discussion 

4.1. Multi-Objective Low-Carbon Space Optimization 

Against the backdrop of the dual carbon goals and new urbanization, achieving low-

carbon spatial evolution in metropolitan areas is an inevitable regional mission. However, 

the development of urban agglomerations is a dynamic and ongoing process, and global 

research indicates that land use changes exhibit significant regional differences. Studies 

on land use allocation suggest a gradual shift from singular to composite models [48]. 

Therefore, this study integrated NSGA-II, the FLUS model, and TOPSIS evaluation to con-

struct a framework for optimizing land use configuration models. It effectively connects 

land quantitative optimization with spatial structure optimization, providing valuable 

references for effective land use management in emerging metropolitan areas. On the one 

hand, considering the multifunctional ability of land to meet the diverse development 

needs of urban agglomerations, this study addressed the allocation of economic benefits 

and land types. Li Shaoshuai and colleagues used a genetic algorithm for multi-scenario 

land optimization, allocating industrial output value only to construction land [82]. Con-

sidering that the main activities of tertiary industry also take place on construction land, 

the economic benefits of construction land included both secondary and tertiary indus-

tries in this paper. Moreover, the corresponding coefficients for energy consumption and 

economic development in 2035 were predicted using the relatively reliable gray model 

[42]. Many scholars with different perspectives have used different settings and balances 

when constructing objective functions that require trade-offs. He Haishan and colleagues, 

based on the carbon densities and carbon emission coefficients of various land use types, 

constructed land use structure models for two low-carbon scenarios: maximizing carbon 

sequestration and minimizing carbon emissions [73]. Yifei Yang and colleagues coupled 

multiple models and introduced urban form indices in an attempt to focus on both eco-

nomic and carbon emission benefits using dual structural and spatial dimensions [45]. 

Yang Lu and colleagues, focusing on pastoral areas, carried out simulations of future land 

use changes with ecological protection and economic development as their starting points 

[43]. Based on the NSGA-II and TOPSIS evaluations, this study established a multi-objec-

tive function with economic benefits as the goal, low carbon emissions as the premise, and 

carbon sequestration as an indicator. It calculated a Pareto frontier solution set for each 

type of land and selected the optimal proportions. This approach not only simulated the 

multifunctional potential of land for ecology, production, and living but also met the de-

velopment needs of the metropolitan area for low carbon emissions, increased ecological 

Figure 8. Land use optimization distribution map of Zhengzhou Metropolitan Area in 2035. (a) Land
Use Status Classification Map of 2022; (b) Land Use Simulation Map for 2035.

4. Discussion
4.1. Multi-Objective Low-Carbon Space Optimization

Against the backdrop of the dual carbon goals and new urbanization, achieving low-
carbon spatial evolution in metropolitan areas is an inevitable regional mission. However,
the development of urban agglomerations is a dynamic and ongoing process, and global
research indicates that land use changes exhibit significant regional differences. Studies on
land use allocation suggest a gradual shift from singular to composite models [48]. There-
fore, this study integrated NSGA-II, the FLUS model, and TOPSIS evaluation to construct
a framework for optimizing land use configuration models. It effectively connects land
quantitative optimization with spatial structure optimization, providing valuable references
for effective land use management in emerging metropolitan areas. On the one hand, con-
sidering the multifunctional ability of land to meet the diverse development needs of urban
agglomerations, this study addressed the allocation of economic benefits and land types.
Li Shaoshuai and colleagues used a genetic algorithm for multi-scenario land optimization,
allocating industrial output value only to construction land [82]. Considering that the main
activities of tertiary industry also take place on construction land, the economic benefits of
construction land included both secondary and tertiary industries in this paper. Moreover,
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the corresponding coefficients for energy consumption and economic development in 2035
were predicted using the relatively reliable gray model [42]. Many scholars with different
perspectives have used different settings and balances when constructing objective func-
tions that require trade-offs. He Haishan and colleagues, based on the carbon densities
and carbon emission coefficients of various land use types, constructed land use structure
models for two low-carbon scenarios: maximizing carbon sequestration and minimizing
carbon emissions [73]. Yifei Yang and colleagues coupled multiple models and introduced
urban form indices in an attempt to focus on both economic and carbon emission benefits
using dual structural and spatial dimensions [45]. Yang Lu and colleagues, focusing on
pastoral areas, carried out simulations of future land use changes with ecological protection
and economic development as their starting points [43]. Based on the NSGA-II and TOPSIS
evaluations, this study established a multi-objective function with economic benefits as
the goal, low carbon emissions as the premise, and carbon sequestration as an indicator.
It calculated a Pareto frontier solution set for each type of land and selected the optimal
proportions. This approach not only simulated the multifunctional potential of land for
ecology, production, and living but also met the development needs of the metropolitan
area for low carbon emissions, increased ecological carbon sequestration, and increased
economic growth, properly coordinating regional development contradictions. Subse-
quently, this study employs the TOPSIS assessment method to discern the optimal decision
among the available solution set, corroborated by Wei Li’s research [48]. By integrating the
NSGA-II with TOPSIS, we have successfully balanced the critical trade-offs between GDP
growth, carbon emissions, and carbon sequestration. This represents an advancement in
the quantitative optimization of land use, offering a robust framework for decision-making
in sustainable development.

4.2. Urban Land Use Strategies

Simply achieving low-carbon cities through urban expansion cannot decouple the as-
sociation between the economy and carbon emissions. Compared with the carbon emission
minimization plan, both the economic benefits and carbon emissions in the balanced plan
increased by about 30%, indicating that economic growth in the Zhengzhou Metropolitan
Area has not decoupled from carbon emissions. Research by Lei H and colleagues also
found that although Chengdu and Xi’an have reached the carbon emission reduction tar-
gets, their GDPs have not yet been decoupled from their carbon emissions [84]. In Figure 8,
it can be seen that the correlation between carbon emissions and economic benefits is likely
due to the increase in construction land in the central region. Research by Wang Guibo
and others corroborated this view, stating that construction land, as an important carrier
of economic activities, is closely related to carbon emissions [28]. Continuous reductions
in arable land between forest lands in the southwest and northwest, with contiguous
expansion of forest areas, will be the main source of future carbon emission reductions and
increases in carbon storage. Similar studies have indicated that the conversion of ecological
land to urban construction land is one of the primary sources of carbon emissions [27,67].
Furthermore, in the spatial arrangement of land use, areas with higher proportions of
ecological land use tend to have lower carbon emissions and greater carbon sequestration
potential [85]. In addition, managing contiguous areas with the same land use type can
also bring about a certain degree of carbon reduction through scale effects. Li and others,
by establishing an urban metabolism model in Hangzhou City, found that increasing the
relative concentration of the urban population and the scale of the urban land resulted
in higher energy efficiency [86]. Gerrit Angst and others also believe that proper land
management can not only improve economic benefits but also carbon sink potential [70].
Facing the development path of a high-energy-consumption GDP, measures such as carbon
emission trading and carbon taxes can not only adjust the energy structure and reduce
differences in carbon emissions between cities but can also control the total regional carbon
dioxide emissions at a lower cost, thereby achieving multiple benefits for the metropolitan
area [31,32,87]. Referring to Figure 8, the future expansion of construction land in the study
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area towards river systems such as the Yellow River implies a rigid requirement for “city
planning based on water resources”. Future policy development can integrate the research
of Yang Zhang and Lirong Liu, among others [87], to utilize the energy–water–carbon
nexus to help alleviate the issues of water scarcity, the uneven spatiotemporal distribution
of energy, and carbon emissions.

5. Conclusions

Against the backdrop of global warming caused by increasing carbon emissions, as
China continues to advance its “dual carbon” goals and the strategy of new urbanization,
exploring spatial layout patterns for a low-carbon economy is an essential part of the
development of high-quality urban agglomerations. This study utilized NSGA-II to maxi-
mize economic benefits, minimize carbon emissions, and maximize carbon sequestration,
resulting in a series of solution sets. Subsequently, the TOPSIS was used to evaluate the
optimal solution location within the Pareto set. Finally, the optimal solution’s trade-off
plan for the three objectives was incorporated into the FLUS model to optimize the spa-
tial layout. Considering the trade-off between the economy and carbon emissions while
simultaneously taking into account the target of land carbon storage, it is possible to
control the peaking and stabilization of carbon emissions while increasing the economic
output. The balanced plan achieves an economic benefit of CNY 7.646 trillion in 2035,
meeting the economic development requirement guided by policy. The carbon emissions
are controlled within 99.236 million tons, and carbon storage grows by 15.197 million tons.
According to the spatial layout results for 2035, the expansion of construction land at the
centers of urban areas and the “return of farmland to forest” between forests ensure that
economic development continues while carbon emissions are controlled and the stability of
land carbon storage is guaranteed, enhancing the overall spatial efficiency. These results
will be significant for emerging metropolitan areas like the study area when formulating
low-carbon development plans for the future.

Future research will address the following limitations: First, macroeconomic develop-
ment is not a simple linear relationship; therefore, while using the gray model to predict
the economic coefficients for 2035, further exploration should be conducted based on
the constraints of macroeconomic trends. Secondly, carbon emissions from energy con-
sumption are directly and simply linked to the area of construction land. In fact, newly
developed low-carbon technologies, as well as scale effects, can reduce carbon emissions
by improving energy efficiency. Therefore, mechanisms should be discussed in the future
while considering the impacts of technological elements on carbon reductions.
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