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Abstract: As one of the 19 key regions for comprehensive land development in China, the
Tianshan North Slope urban agglomeration is significant for China’s urban development
when calculating the land subsidence and analyzing the impact factors. This study focused
on eight cities in the Tianshan North Slope urban agglomeration, calculating the land
subsidence rate from 18 January 2018 to 12 April 2023 using Sentinel-1A data and analyzing
the spatiotemporal patterns and impact factors of land subsidence. The results showed
that (1) the average land subsidence rate is mainly distributed between −30 and 10 mm/a,
and the maximum subsidence rate can reach −358 mm/a. Land uplift mainly occurs in
Hutubi County and Manas County. (2) From the transition matrix, landscape pattern index,
and Moran’s I, the spatiotemporal patterns of the land subsidence rate are obvious, with a
spatial positive correlation. During the monitoring period, each administration experienced
varying degrees of land subsidence or uplift processes. (3) Using GeoDetector to perform
quantitative analyses, it was found that the hydrological environment is significant to land
subsidence, and human activities, such as road network density and nighttime lighting,
contribute the least to land subsidence, suggesting that it is related to the arid climate of
the study area. This paper aims to provide theoretical support for the stable development
of and production activities in the study area. This approach not only offers technical
support but also provides guidance for evaluating, monitoring, and the early warning of
land subsidence in the region.

Keywords: Tianshan North Slope urban agglomeration; Sentinel-1A data; land subsidence;
spatiotemporal patterns; impact factors

1. Introduction
Land subsidence refers to the vertical descent of the ground surface relative to a certain

datum (usually sea level) caused by natural or anthropogenic factors. It is typically caused
by the consolidation and compression of underground loose strata, resulting in a decrease
in the elevation of the earth’s surface. This hazard typically manifests over extended
periods and is associated with a notable incidence in fatalities and substantial economic
repercussions annually [1–3]. Land subsidence can lead to the formation of surface cracks
and ground subsidence, damage infrastructure, disrupt transportation networks, and pose
severe risks to public safety and property [4,5]. It also presents significant challenges
to sustainable urban development. At present, land subsidence of varying degrees has
occurred in nearly 100 cities and regions across China, especially in the North China
Plain [6], Fenwei Basin [7], Yangtze River Delta Plain [8], and other regions [9]. As time
goes by, the degree and scope of land subsidence in these regions have expanded year by
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year, bringing a serious impact on the local economy, society, and ecological environment.
Ao et al. [1] found that most cities in China are facing a threat of land subsidence, which
is caused by various factors such as excessive groundwater extraction, mining activities,
building weight, and transportation infrastructure. Land subsidence can lead to changes
in the flow of surface water and a decline in groundwater levels, which, in turn, can
affect the growth of vegetation and the stability of ecosystems, exacerbating the ecological
vulnerability of the Tianshan Mountains. Additionally, land subsidence can damage
infrastructure such as roads, bridges, and buildings, posing threats to the safety of residents’
lives and property, and affecting the normal operation and sustainable development of
the city.

Traditional methods such as GPS and leveling are widely used in land monitoring
due to their high precision, but they have limitations due to high costs, labor intensity,
and the inability to cover large areas [10,11]. With the advancement of remote sensing
technology, Synthetic Aperture Radar Interferometry (InSAR) [12,13] has gradually become
an important method for monitoring land subsidence, landslides, volcanic activity, and
the stability of infrastructure. Commonly used InSAR technologies include Differential
Interference Radar (D-InSAR) [14], Small Baseline Subset InSAR (SBAS-InSAR) [15], and
Persistent Scatterer InSAR (PS-InSAR) [16]. Compared to conventional methods, it boasts
benefits such as continuous operation regardless of weather conditions, the capacity to see
through cloud cover, extensive surveillance area, and reduced financial expenditure. These
features make it particularly adept at conducting sequential surveillance of land subsidence.
D-InSAR technology can accurately reveal the location and extent of ground subsidence,
suitable for small-scale areas and short-term deformation monitoring; PS-InSAR technology
has a millimeter-level monitoring precision, making it capable of detecting stable ground
scatterers; SBAS-InSAR technology can perform deformation monitoring over large areas
and provide high-quality deformation measurement results.

During the past decade, the utilization of InSAR technology for broad-scale delineation
of geological hazards has seen considerable growth. The technique has become a key asset
in the detection and surveillance of a wide array of geological risks [17]. By integrating
InSAR technology with other data sources, we can not only identify ground subsidence
but also analyze the impact of natural conditions or human activities (such as mining
operations, geological activities, groundwater extraction, and building loads) on ground
subsidence. Devara et al. employed DInSAR technology, along with data from Sentinel-1A
and 1B, to successfully identify significant landslides in the Kodagu district of Karnataka,
India. They found that after an earthquake, the rate of surface subsidence in the mineral
development area was relatively high [18]. Teixeira et al. applied an upgraded QPS-InSAR
technique to scrutinize the ground deformations resulting from mining activities [19]. Vaka
et al. used multiple ascending and descending pass C-band Sentinel-1 images to study an
earthquake’s pre- and post-seismic surface displacements [20]. He et al. employed both
PS-InSAR and SBAS-InSAR methodologies to analyze surface deformation and associated
time series data. They found that geological structure, groundwater extraction, reclamation,
and engineering construction all have impacts on land subsidence. The land subsidence
of fault belts and seismic focus areas was significant, and the area above the clay layer
settled significantly [21]. Compared to D-InSAR and PS-InSAR technology, SBAS-InSAR
technology leverages the coherence of spatial distribution, exhibiting higher coherence.
This technique has a relatively lower requirement for the amount of data in the time series
because it does not rely on a single pixel point but instead utilizes the coherence of the
spatial distribution. Moreover, SBAS-InSAR technology can make use of all available
interferometric pairs, which enhances its practicality, especially when dealing with large-
area ground deformation monitoring. Therefore, SBAS-InSAR technology is considered
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more effective and widely applicable in practical applications due to its flexibility in data
utilization and processing, as well as its reduced requirements for coherence [22–24].

Positioned within the central region of the Silk Road Economic Belt, the Tianshan
North Slope urban cluster (TSNSUA) has distinguished itself as the most flourishing
economic area in Xinjiang and a key pillar within the Silk Road Economic Belt. It is
anticipated to develop into the strategic nucleus for the expansion of urbanization in
Xinjiang in the forthcoming period [25–27]. With the continuous influx of an employed
population, the local economy has been significantly boosted. Nevertheless, this surge in
population has also resulted in a boom in infrastructure development, an enlargement of
transportation networks, and excessive extraction of groundwater, all of which add strain
to the ground and heighten the likelihood of subsidence. Yet, the area has not established a
sustainable system for monitoring subsidence, and there remains a deficit in understanding
the phenomenon and its causes, which is inadequate for addressing the demands of urban
growth and disaster management in the future.

Owing to the limited research conducted on land subsidence within TSNSUA, this
study applied SBAS-InSAR technology, leveraging data from Sentinel-1A, to track and
analyze the spatial and temporal patterns of land subsidence from 18 January 2018 to 12
April 2023. Additionally, by synthesizing information on the geological background and
hydrologic environment, the study delved into the factors contributing to land subsidence.
The objective of this study was to identify the origins of subsidence and furnish crucial
data for urban operational safety and environmental conservation. It carries substantial
theoretical and practical importance for disaster preparedness, alleviation, and surveillance,
contributing to the enhancement of urban geological environment management and risk
aversion proficiency.

2. Materials and Methods
2.1. Study Area

TSNSUA, with geographical coordinates ranging from 83◦24′ E to 91◦56′ E and
40◦18′ N to 46◦11′ N, encompasses areas including Urumqi City, Changji City, Shawan
County, Wujiaqu City, Shihezi City, Manas County, Fukang County, and Hutubi County
(Figure 1) [28]. The terrain of the region spans the Tianshan Mountains, alluvial plains,
and the Gurbantunggut Desert, with an overall south-high–north-low topography. The
elevation in most areas of the north is approximately 170 m, while in the south, due to the
presence of the Tianshan Mountains, the highest elevation exceeds 5000 m. The region
shows a distinct linear pattern, with cities primarily located along rivers and transportation
arteries. For instance, cities such as Urumqi and Changji extend along the river valleys
and transportation routes at the northern foot of the Tianshan Mountains, forming a lin-
ear urban belt along the river valleys and transportation lines. The area is located at the
northern foot of the Tianshan Mountains, where the geological structure is complex, with
developed faults and folds. These geological structures not only affect the location selection
and layout of cities but also impose constraints on urban infrastructure construction and
resource development. Due to the complex geological structure, geological disasters such
as earthquakes, landslides, and mudslides occur from time to time, posing a serious threat
to the economic development of the urban agglomeration and the safety of people’s lives
and property.

The total area of TSNSUA is approximately 215,400 km2, accounting for 13% of the
total area of Xinjiang, and characterized by a continental climate. The predominant soil
type in this area is gray desert soil, and at higher altitudes, brown calcareous soil and
marsh soil are also found [29]. The TSNSUA region has a typical temperate continental
climate, with cold winters and hot summers, and precipitation peaks in the summer,
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while being relatively scarce in winter and spring. This climatic pattern leads to increased
reliance on groundwater, and frequent extraction has caused a drop in the water table,
thereby impacting ground subsidence. Additionally, the region’s rich mineral resources
and frequent mining activities have also negatively affected ground stability, exacerbating
the problem of ground subsidence. In the economic development of Xinjiang, TSNSUA
holds a significant position, with its secondary and tertiary industries occupying a larger
share in the overall industries of the region. Moreover, agriculture, animal husbandry,
and mineral resource extraction form the two main economic pillars of the area, with the
extraction of resources such as coal, oil, and natural gas playing a crucial role in the region’s
economic development.
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TSNSUA has a sensitive ecological environment, valuable water resources, and abun-
dant mineral resources. Surface deformation monitoring helps in the rational development
and utilization of groundwater resources, prevents ground subsidence caused by overde-
velopment, and protects biodiversity. It assists urban planners in better understanding the
impact of urban development on geological structures, formulates more reasonable urban
planning and land use policies, and maintains the sustainable development of the regional
economy. Additionally, as TSNSUA is located at the border of multiple countries, surface
subsidence monitoring is also an important part of transnational ecological protection and
disaster management cooperation. Therefore, for TSNSUA, conducting surface subsidence
monitoring is not only a technical issue but also a comprehensive issue involving the
ecology, economy, and society, which is of great significance for ensuring the sustainable
development of the region.

2.2. Data

Sentinel-1A, a radar satellite for earth observation. launched by the European Space
Agency (ESA) in 2016, provides high-quality radar imaging data to users worldwide,
offering vital support for all-weather, all-terrain monitoring. Utilizing C-band (3.75–7.50 cm)
synthetic aperture radar imaging, it features all-weather conditions and a high resolution,
making it capable of penetrating through clouds and fog for observations. The Sentinel
series includes four imaging modes, with the wide-swath interferometric mode being
suitable for land surface monitoring [30]. In this study, we utilized 132 Sentinel-1A single-
look complex data (SLC) from 18 January 2018 to 12 April 2023 (https://search.asf.alaska.
edu/, accessed on 20 July 2023) for monitoring ground subsidence in TSNSUA (Figure 2),
with specific parameters detailed in Table 1. The Sentinel-1A SLC data are characterized
by their high resolution. In this study, the Interferometric Wide (IW) imaging mode is
employed, which offers a high resolution of 5 m by 20 m and covers a broad area of 250 km.

https://search.asf.alaska.edu/
https://search.asf.alaska.edu/
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This allows the SAR images to precisely capture the fine details of the ground surface,
providing valuable data for ground surface monitoring and analysis. Moreover, the selected
SAR images fully cover the entire study area, and there is a significant overlap between
adjacent image strips, with an overlap rate as high as 60%, thereby effectively ensuring the
continuity and integrity of the data.
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Table 1. Specific parameters of SAR image.

Number of
Orbital

Imaging
Mode Band Resolution/m Revisit Period/d Polarization

Mode Selection Period/d

2
(Descend/Ascent) IW C 5 × 20 12 VV 90

Orbital data play a crucial role in InsAR data processing, exerting a key influence
from the initial image co-registration to the final generation of deformation maps. The
precise orbital files used in this paper are Precise Orbit Ephemerides (POD) data (https:
//dataspace.copernicus.eu/, accessed on 20 July 2023), aimed at achieving more accurate
inversion results. These orbital data have a positioning accuracy of less than 5 cm, which is
the highest level of precision for orbital data, and are typically available only 21 days after
the acquisition of SAR data.

DEM data, serving as ancillary data, were derived from SRTM 30 m precision DEM
data (https://www.usgs.gov/, accessed on 1 September 2023) to eliminate topographic
effects from the interferograms using SBAS-InSAR technology. The algorithm for processing
SRTM data to obtain a 30 m resolution DEM typically includes the following steps: data
acquisition; data format conversion; data merging and clipping; no-data value filling; data
smoothing and correction. Through these steps, SRTM data can be effectively processed
into a 30 m resolution DEM, providing foundational data support for subsequent analysis.

Administrative division data of TSNSUA were downloaded from the National Cat-
alogue Service for Geographic Information (https://www.webmap.cn/, accessed on
1 September 2023).

https://dataspace.copernicus.eu/
https://dataspace.copernicus.eu/
https://www.usgs.gov/
https://www.webmap.cn/
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2.3. Method

The research process of this paper is shown in Figure 3.
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2.3.1. InSAR Process

For SAR image, each pixel contains two parts of information: amplitude and phase,
which can be represented by a complex number. A complex number consists of a real part
and an imaginary part, with the real part corresponding to the amplitude value and the
imaginary part corresponding to the phase value. Therefore, SAR is also referred to as SLC
imagery. The value can be represented as formula [31]:

φdi f f = φde f + φtop + φatm + φnoice (1)

where φde f reflects the phase shifts caused by surface deformation factors along the line of
sight. φtop reflects phase shifts caused by topographic factors. φatm reflects the atmospheric
phase, which has a high degree of terrain auto-correlation, exists in the form of a low
frequency, and can be suppressed by high-pass filtering methods. φnoice reflects the noise
phase, which exhibits random characteristics, exists in the form of a high frequency, and
can be suppressed using low-pass filtering methods.

SBAS-InSAR technology, a derivation of time-series InSAR methodologies, focuses on
extracting points with stable scattering properties from a lengthy series of SAR imagery. By
establishing a network of these isolated, highly coherent points, SBAS-InSAR facilitates the
accurate retrieval of surface deformation information [32].

In this study, we used ENVI/Scape5.6.2 for SBAS computation. The SBAS-InSAR
technique integrates separate SAR images into multiple short-baseline sets by adhering to
defined thresholds for vertical, temporal, and Doppler baselines. This approach helps to
minimize the effects of perspective differences, thereby mitigating errors and the effects of
decorrelation. In this paper, SBAS-InSAR is employed with temporal and spatial baselines
as criteria, below a specific threshold, to combine all data into interferometric pairs. The
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interferograms are created with a temporal baseline capped at 180 days and a spatial
baseline limited to 45% [33] (Figure 4).
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the slave image, which is paired with the super master image or other images.

2.3.2. Transfer Matrix

In this paper, to conduct a more precise study and comparison of land subsidence phe-
nomena across different regions, we employed a transition matrix and analyzed each city
within TSNSUA based on administrative divisions, with a clear time frame set from 2018 to
2022, considering each year as a separate analysis period (2018–2019, 2019–2020, 2020–2021,
2021–2022). In this way, we can observe and analyze the trends of land subsidence during
these periods, more accurately identify and compare the subsidence conditions of each
city, and, thus, gain a deeper understanding of the dynamic processes and potential influ-
encing factors of land subsidence. To make the presentation of the transition matrix more
intuitive, we use a Sankey diagram to illustrate the transmission and variation of the land
subsidence rate.

2.3.3. Spatial Autocorrelation Analysis

Ground subsidence generally exhibits spatial intercorrelation, and Moran’s I index
is a commonly used measure of spatial correlation [34]. It can reflect the similarity be-
tween ground subsidence and adjacent areas and is used to assess the scale and spatial
positional relationships of ground subsidence levels within various regions of TSNSUA.
The mathematical expression is as follows:

I =
n
S0

∑n
i=1 ∑n

j=1 wijzizj

∑n
i=1 zi

2 (2)

S0 =
n

∑
i=1

n

∑
j=1

wij (3)

zI =
I − E[I]√

V[I]
(4)

E[I] = −1/(N − 1) (5)

V[I] = E[I2]− E[I]2 (6)

where zi is the deviation between the attributes of element i and its average value xi − X;
wij is the spatial weight between elements i and j; n equals the total number of elements;
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and S0 is the set of all spatial weights. The value range of I is [−1, 1], I > 0 indicates that
the variables have a positive correlation, I < 0 indicates a negative correlation, and I = 0
indicates no correlation.

2.3.4. Landscape Pattern Analysis

In this paper, incorporating ground subsidence velocities into the analysis of land-
scape patterns allows for the representation of variations in the configuration of ground
subsidence across the terrain. We employed a set of five criteria to examine the spatial
patterns of land subsidence within TSNSUA, including perimeter fractal dimension (PFD),
max fractal dimension (MFD), Shannon’s diversity index (SHDI), aggregation index (AI),
and patch density (PD). Specifically, this study uses perimeter fractal dimension (PFD)
to quantitatively describe the shape characteristics and complexity of ground subsidence
patches of different severity levels. PFD can, to an extent, indicate the level of human
activity interference, with a value range of [1, 2]. The closer the value is to 1, the less the
area is affected by human activities; conversely, the closer the value is to 2, the greater
the interference from human activities. Shannon’s diversity index (SHDI) and max fractal
dimension (MFD) are employed to investigate their diversity and complexity, reflecting
the heterogeneity of the landscape and the types of dominant patches. The Aggregation
Index (AI) is utilized to characterize the spatial configuration of these patches, reflecting
the degree of aggregation of ground subsidence. The patch density (PD) is calculated to
quantify the fragmentation degree of ground subsidence patches across various severity
levels [35].

2.3.5. GeoDector

Wang et al. [36] proposed GeoDector to detect spatial heterogeneity and key factors,
and it has been adopted in quite a number of studies since then. GeoDector has a factor
detector, a risk detector, an interaction, and an ecological detector [37–39]. Factor detection
can assess the extent to which a certain factor explains the spatial variability of an attribute.
The explanatory power of the factor is measured by calculating the q value, with a larger
q value indicating a stronger ability to explain the spatial distribution of the attribute.
Risk zone detection is used to determine whether there are significant differences in the
mean values of attributes between different regions, which is tested using the t-statistic.
Interaction detection can identify the interactions between different factors, assessing
whether the combined effect of these factors on the dependent variable is enhanced or
weakened, and whether the influences of these factors are independent. Ecological detection
can compare whether there are significant differences in the impact of different influencing
factors on the spatial distribution of attribute values.

The spatial variation of a certain independent variable z and its degree of consistency
are expressed by detecting to what extent a certain independent variable z explains the
dependent variable y, which is expressed by the q value. The q values were obtained by
substituting the y and x data into the GeoDetector software (Excel 2007) run, and its value
range was [0, 1], and the larger the value, the stronger the explanation of the dependent
variable y by the independent variable factor z. The model is as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 = 1 − SSW

SST
(7)

SSW =
L

∑
h=1

Nhσ2
h , SST = Nσ2 (8)

where h = 1, . . ., L is the classification of dependent variable y or independent variable z;
Nh and N are the number of cells in layer h and the whole area, respectively, and they are
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the variance in layer h and the whole area, respectively; and SSW and SST are the sum of
variance within the layer and the total variance in the whole area, respectively.

This study used GeoDetector to analyze land subsidence, which can explain the
contribution of different influencing factors to land subsidence and identify interactions
between various factors. It is capable of handling interactions among multiple factors
and is suitable for large-scale spatial data analysis. Based on previous research [1,40–46],
the characteristics of the study area, data availability, and data volume requirements, we
selected 10 impact factors to quantitatively analyze the explanatory power of various
influencing factors on land subsidence with specific parameters detailed in Table 2. It
is known that land subsidence is closely related to natural factors and human activities.
Natural factors include geological background, hydrological environment, and topographic
features; human activities include urban development and ground load. Soil is the material
basis for the development of land subsidence, and the risk of land subsidence varies
among different types of rock formations. Differences in clay content can also affect soil
moisture content and porosity. This study selected two factors, geological lithology and clay
content, to characterize the impact of geological background. TSNSUA is located in the arid
and semi-arid northwest region. Considering the availability of data, this study selected
two factors, potential evapotranspiration and precipitation, to characterize the impact of
the hydrological environment. Elevation can affect vegetation growth and groundwater
recharge, and slope can affect the stability of the slope structure, thereby affecting the
probability of land subsidence. This study selected two factors, elevation and slope, to
characterize the impact of topographic features. Population density and nighttime light are
important factors of urban development, which can reflect the degree of urban construction
activities to a certain extent. At the same time, ground load such as building density and
road network density can also have an impact on land subsidence. This study selected four
factors, population density, nighttime lighting, building density, and road network density,
to characterize the impact of human activities.

Table 2. Ten impact factors for GeoDetector.

Natural Factors/Human Activities Characterization Factors Impact Factors Abbreviation

Natural factors

Geological background Geological lithology G1
Clay content G2

Hydrological environment Precipitation W1
Potential evapotranspiration W2

Topographic features Elevation T1
Slope T2

Human activities
Urban development Population density H1

Road network density H2

Ground load
Building density H3

Nighttime lighting H4

3. Results
3.1. Inversion Results of Land Subsidence Based on SBAS-InSAR

Based on SBAS-InSAR technology processing flow, the vertical land subsidence rate
of TSNSUA during the monitoring period was obtained (Figure 4). The average land
subsidence rate during the monitoring period is mainly concentrated between −30 and
10 mm/a, with a maximum subsidence rate of −358 mm/a and a maximum uplift rate of
342 mm/a. The areas with severe land subsidence in the research area are concentrated in
Hutubi County and Manas County, while the areas with severe land uplift are concentrated
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in Shawan County in the southwest. It is speculated to be related to active geological
tectonic activity (Figure 5).
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Figure 5. Land subsidence rate using SBAS-InSAR.

The SBAS-InSAR technique can provide high-precision, large-scale ground subsidence
monitoring results by analyzing SAR images from multiple time phases. However, due
to the inherent limitations of the SAR data and surface conditions, some errors and un-
certainties may be introduced during the processing of SAR images with SBAS-InSAR.
Field verification can provide more accurate ground subsidence data for calibrating and
validating the accuracy of remotely sensed data, correcting potential errors, and ensuring
the reliability of monitoring results. Moreover, on-site investigations help to understand
the specific causes and mechanisms of ground subsidence, assisting governments in formu-
lating more specific and accurate policies (Table 3).

Table 3. Field verification.

Number Location Description Field Verification

1 Urumqi County Land subsidence caused by excessive
extraction of groundwater
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Table 3. Cont.

Number Location Description Field Verification

3 Shawan County Land subsidence caused by human
activities such as quarrying
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3.2. Analysis of Spatiotemporal Distribution Characteristics

In order to better assess the varying rates of land subsidence and subsequent spatial
analysis, we divided the land subsidence rates into five subsidence levels based on the
detailed classification criteria shown in Table 4. By precisely categorizing the rates of ground
subsidence, we can gain a clearer understanding of the spatial distribution characteristics
of subsidence. This facilitates the comparison of subsidence trends across different regions
or time periods, providing crucial data support for studying the spatiotemporal variations
in ground subsidence.

Table 4. The classification criteria of land subsidence rate.

Number Subsidence Level Subsidence Rate (mm/a)

1 Higher land subsidence rate zone ≤−100
2 High land subsidence rate zone −100~−50
3 Middle land subsidence rate zone −50~−20
4 Low land subsidence rate zone −20~0
5 Land uplift zone >0

3.2.1. Transfer Matrix of Land Subsidence Rate

TSNSUA covers a vast area, and the natural economic conditions of each region are not
entirely the same. Therefore, in order to better explore the temporal evolution characteristics
of land subsidence, this section discusses and analyzes the land subsidence situation during
the monitoring period at the scale of each administrative region (Figures 6–8).

In Urumqi City, the uplift area in 2018 was 7680 km2 (91.6% of total area). In 2019,
subsidence expanded to 33.7% of the area, with 2533 km2 previously uplifted. By 2020,
97.2% of the area experienced subsidence, with 4580 km2 showing high rates. In 2021,
subsidence rates slowed, and 646 km2 transitioned back to uplift. In 2022, 95.9% of the area
was uplifted, including 7374 km2 previously subsided.

In Changji City, the uplift area in 2018 was 3856 km2 (89.8% of total area). In 2019,
subsidence expanded to 65.3% of the area, with 2574 km2 previously uplifted. By 2020,
98.6% of the area experienced subsidence, with 1032 km2 showing increased high rates. In
2021, subsidence rates slowed, and 427 km2 transitioned back to uplift. In 2022, 97.5% of
the area was uplifted, including 3768 km2 previously subsided.
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In Shihezi City, there was no high-speed subsidence in 2018, with 56.36 km2 uplifted
(97.9% of total area). In 2019, subsidence expanded to 12.1% of the area, with 6.79 km2

previously uplifted. By 2020, 96.1% of the area experienced subsidence, with significant
increases in high- and middle-rate subsidence areas totaling 49.61 km2. In 2021, subsidence
rates slowed, and 8.89 km2 transitioned back to uplift. In 2022, 99.3% of the area was
uplifted, including 47.35 km2 previously subsided.

In Wujiaqu City, the non-uplifted area in 2018 was 231.92 km2 (81.4% of total area). In
2019, subsidence expanded to 72.1% of the area, with 161.47 km2 previously uplifted. By
2020, 99.8% of the area experienced subsidence, with 103.49 km2 showing high rates. In
2021, subsidence rates slowed, and 8.89 km2 transitioned back to uplift. In 2022, 99.3% of
the area was uplifted, including 65.48 km2 previously subsided.

In Fukang City, the non-uplifted area in 2018 was 4578 km2 (94.3% of total area). In
2019, subsidence expanded to 34.9% of the area, with 1467 km2 previously uplifted. By
2020, 93.9% of the area experienced subsidence, with 2247 km2 showing middle rates. In
2021, subsidence rates slowed in some areas, with 1471 km2 transitioning from high to
middle rates and 760 km2 intensifying from middle to high rates. In 2022, 98.3% of the area
was uplifted, including 4481 km2 previously subsided.

In Shawan City, the uplift area in 2018 was 2873 km2 (93.5% of total area). In 2019,
subsidence slightly expanded, with 259 km2 of previously uplifted area subsiding and
134 km2 of previously subsided area stabilizing or uplifting. By 2020, 89.4% of the area ex-
perienced subsidence, with 1672 km2 showing middle rates. In 2021, subsidence decreased,
but 17 km2 remained at high rates, 401 km2 were at middle rates, and 223 km2 intensified.
In 2022, 98.5% of the area was uplifted, including 2464 km2 previously subsided.

In Manas County, the non-uplifted area in 2018 was 2593 km2 (89.1% of total area). In
2019, subsidence expanded to 19.5% of the area, with 436 km2 previously uplifted. By 2020,
98.7% of the area experienced subsidence, with 2111 km2 showing middle rates. In 2021,
subsidence rates slowed in some areas, with 246 km2 transitioning from high to middle
rates and 334 km2 intensifying from middle to high rates. In 2022, 95.2% of the area was
uplifted, including 2624 km2 previously subsided.

In Hutubi County, the non-uplifted area in 2018 was 3356 km2 (79.2% of total area).
In 2019, subsidence expanded to 66.7% of the area, with 2334 km2 previously uplifted. By
2020, 99.1% of the area experienced subsidence, with 2297 km2 showing high rates. In 2021,
subsidence rates slowed, and 225 km2 transitioned back to uplift. In 2022, 87.7% of the area
was uplifted, including 3503 km2 previously subsided.

For areas experiencing higher rates of ground subsidence, it is not advisable to continue
with the construction of high-rise buildings, large structures, or transportation facilities
with high precision requirements. Additionally, it is crucial to closely monitor changes in
groundwater levels and strictly regulate the development of mineral resources and the
extraction of groundwater in these areas. For areas with high subsidence rates, ground
subsidence is likely to continue to worsen. In addition to focusing on monitoring, it is
also necessary to actively take intervention measures, such as reducing the extraction of
groundwater. For areas with middle subsidence rates, there is already a trend of ground
subsidence. It is necessary to increase attention to these areas and impose restrictions on
surface construction. For areas with low subsidence rates and regions where the ground is
uplifting, there may be some fluctuations in the surface, but the subsidence is minimal or
there is an uplift phenomenon, indicating that the ground is relatively stable. These areas
are suitable for construction, but it is necessary to control the weight pressure of buildings.
Industrial parks can consider relocating to these areas.
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3.2.2. Spatial Autocorrelation Analysis of Land Subsidence Rate

A spatial autocorrelation analysis was conducted on the land subsidence rate of
TSNSUA from 2018 to 2022. In this study, a grid scale of 1 km × 1 km was used to analyze
the spatial clustering characteristics of land subsidence in this study. The results showed
that the Moran’s I of the land subsidence rate was 0.74, which passed the significance test
(Z > 1.96, p < 0.05), indicating a significant spatial positive correlation and a clear spatial
agglomeration distribution feature during the monitoring period. This result indicates
that the spatial distribution of land subsidence in the region exhibits a certain pattern of
regular aggregation. For instance, subsidence is more pronounced in areas of coal mining or
excessive groundwater extraction. Coal mining causes displacement and deformation of the
strata, leading to surface subsidence. Additionally, excessive groundwater extraction results
in a continuous decline in groundwater levels, forming a groundwater depression cone,
which further exacerbates surface subsidence. Moreover, the presence of subsidence cones
can affect subsidence in surrounding areas. The expansion of groundwater depression cones
can cause a decline in groundwater levels in neighboring regions, leading to subsidence
over a larger area. This spatial interaction results in a clear clustering pattern of subsidence
in these areas.

3.2.3. Landscape Pattern Analysis of Land Subsidence Rate

Based on the Fragstats4.2 platform, the map of the land subsidence rate using SBAS-
InSAR technology of TSNSUA was used as the data source to calculate the landscape
pattern indices for different subsidence levels (Table 5).

Table 5. Landscape pattern indices of land subsidence rate.

Subsidence Level PD AI PFD MFD

Higher land subsidence rate zone 1.5006 24.6988 1.7190 0.0324
High land subsidence rate zone 5.8553 42.5601 1.5467 0.2913

Middle land subsidence rate zone 18.684 33.0502 1.6140 0.4531
Low land subsidence rate zone 41.664 71.5806 1.6082 17.383

Land uplift zone 44.400 54.5081 1.5990 6.6998

The analysis of the patch density (PD) calculation results shows that patches with a
high land subsidence rate and a higher land uplift rate have lower fragmentation levels,
while patches with a low land subsidence rate and land uplift rate are relatively fragmented.
The analysis of the aggregation index (AI) calculation results shows that patches with a
low land subsidence rate and land uplift have a higher degree of aggregation, while
patches with higher land subsidence rates are relatively dispersed. The analysis of the
perimeter fractal dimension (PFD) calculation results shows that the shape of patches
with a higher land subsidence rate is relatively complex, with the largest perimeter area
quantile, indicating that the higher subsidence area is most affected by human activities.
During the monitoring period, the Shannon Diversity Index (SHDI) for land subsidence
classification in TSNSUA was 0.8893, and the maximum patch area index (MFD) for a low
subsidence rate and land uplift was 17.383 and 6.6998, respectively, which is much higher
than other types. Therefore, it can be inferred that the land subsidence pattern in TSNSUA
is dominated by a low subsidence rate and land uplift.

3.3. Analysis of Impact Factors
3.3.1. Contribution of Impact Factors to Land Subsidence

Based on using GeoDetector software (Excel 2007) to perform factor detection on
10 impact factors, the q-value was used to measure the explanatory power of each factor on
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land subsidence during the statistical analysis of the results. Specifically, the increase in
q-value indicates that the relevant variables have a stronger explanatory power and greater
contribution to land subsidence phenomena. On the other hand, the p-value represents
the probability of more extreme observational data occurring under the assumption of a
zero hypothesis; a lower p-value indicates that the likelihood of the observed data being
an extreme case is extremely low when the null hypothesis is true. The p-values for all
factor detection results of the influencing factors are less than 0.001, suggesting that the
test outcomes are highly unlikely to be the result of random variation and possess a high
level of statistical significance; thus, these results can be deemed reliable and trustworthy
(Figure 9).
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The explanatory power of a single impact factor for different land subsidence
varies, and the overall order is as follows: hydrological environment > geological
background > human activities > topographic features. In reflecting urban land subsi-
dence factors, groundwater changes have the strongest induction on land subsidence. In
this paper, W1 and W2 directly affect groundwater content and soil moisture content, and
they have the most significant effect on land subsidence in TSNSUA, where the q-values
are 0.1356 and 0.0171, respectively, ranking the first and sixth, and their comprehensive
explanatory power is significantly higher than other factors. Geological background pro-
vides a suitable environment for the occurrence of land subsidence. G2 and G1 affect the
susceptibility of land subsidence, with q-values of 0.1028 and 0.0087, respectively, rank-
ing the second and seventh. Human activities can affect urban water consumption and
construction needs, indirectly affecting land subsidence. The q-values of H1, H4, H2, and
H3 are 0.0904, 0.0028, 0.0025, and 0.0019. The topographic features affect the mobility of
soil and groundwater, and they affect land subsidence to a certain extent. In this paper,
the q-values of T2 and T1 are 0.0371 and 0.0264, respectively, ranking the fourth and fifth,
with the lowest comprehensive explanatory power. The p-values of each individual impact
factor are all below 0.001, indicating that extreme situations rarely occurred in this study,
which indirectly demonstrates the reliability of the experimental results.
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3.3.2. Ecological Detection and Factor Interaction Detection

Ecological detector is a method used to evaluate the differences in the influence
of impact factors on land subsidence. When the q-values of two impact factors differ
significantly, the ecological detector will record the result as Y, indicating the existence
of a significant difference; on the contrary, if the difference is not significant, the result is
denoted as N. Ecological exploration was conducted on the selected 10 impact factors G1,
G2, H1, H2, H3, H4, W1, W2, T1, and T2.

Compared to other statistical methods, interaction detectors exhibit significant ad-
vantages in analyzing the interrelationships between variables. Its characteristic lies in
the ability to identify existing interaction patterns by comparing the q-value of a single
factor with the interaction q-value between factors. Unlike traditional statistical methods,
interaction detectors are not based on the assumption of multiplication relationships and
can detect interactions as long as they exist (Table 6 and Figure 10).

Table 6. The result of ecological detection.

Impact Factor G1 G2 H1 H2 H3 H4 W1 W2 T1 T2

G1
G2 Y (NE)
H1 Y (NE) N (NE)
H2 N (NE) Y (NE) Y (NE)
H3 N (NE) Y (NE) Y (NE) N (NE)
H4 N (NE) Y (NE) Y (NE) N (BE) N (NE)
W1 N (NE) Y (NE) Y (NE) N (NE) Y (NE) N (NE)
W2 Y (NE) Y (NE) Y (BE) Y (NE) Y (NE) Y (NE) Y (NE)
T1 Y (BE) Y (NE) Y (NE) Y (NE) Y (NE) Y (NE) N (BE) Y (NE)
T2 Y (BE) Y (NE) Y (NE) Y (NE) Y (NE) Y (BE) Y (BE) Y (NE) N (BE)

NE reflects nonlinear enhancement effects; BE reflects bivariate enhancement effects.
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The ecological detection results of W2, G2, H1, and T2 are Y compared to most other
impact factors, indicating significant differences and a high degree of independence among
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them. Although these impact factors play a unique and significant role in the process of
land subsidence, their mutual influence cannot be ignored.

There are 45 different forms of interaction between 10 impact factors, among which
82% of the factor combinations are nonlinear enhancement effects, and the remaining
factor combinations are bivariate enhancement effects. The significant interaction between
independent variables indicates that their influence on the independent variables is not
independent. When there is interaction between independent variables, the explanatory
power of the dependent variable is enhanced compared to independent effects, and the
enhancement effect is manifested as a nonlinear enhancement or bivariate enhancement.
A nonlinear enhancement refers to the effect of the interaction between two impact fac-
tors, resulting in explanatory power greater than the sum of explanatory power when
acting alone. Although the strength of the bivariate enhancement is weak, its explanatory
power still exceeds that of a single impact factor, indicating a complex interaction pattern
between variables.

Even if the explanatory power of a single impact factor is weak, or the explanatory
power of two impact factors is not strong enough, when they interact, the explanatory
power of land subsidence will be significantly improved. Among them, the explanatory
power of the interaction between the W2, T1, G2, and W1 of hydrological environment
factors exceeds 20%, while the explanatory power of the interaction between H1 and T2, W1,
and G2 exceeds 15%. This indicates that in the process of land subsidence, the interactions
between these hydrological environmental factors are more significant and important than
the effects of individual factors. Such interactions may involve multiple aspects, including
changes in groundwater levels, interactions between surface water and groundwater, and
the influence of geological structures on hydrological conditions. For example, changes in
groundwater levels can affect the conditions for the replenishment and discharge of surface
water, which, in turn, when combined with the geological background and topographical
features, can lead to land subsidence. The decline in groundwater levels may cause the
compression of underground aquifers, resulting in ground subsidence. At the same time,
the interaction between surface water and groundwater, such as the replenishment or
discharge of surface water, can also alter the flow paths and pressure distribution of
groundwater, further affecting the spatial distribution and extent of land subsidence.

The interplay between geological background, hydrological environment, and topo-
graphic features is multifaceted, forming a complex system that collectively determines
the patterns of ground subsidence. The dynamics of geological structures, including fault
movements, folding, and magmatic activities, not only reshape the conditions for ground-
water storage but also alter its recharge and flow paths. The movement of groundwater can
dissolve minerals in rocks, altering the physical and chemical properties of the soil, and
in certain cases, such as the erosive action of underground rivers, it can even change the
morphology of the terrain. The undulations of the terrain affect not only the flow and distri-
bution of surface water but also the recharge and drainage of groundwater. Therefore, the
interactions among these factors play a crucial role in explaining the spatial and temporal
variations of land subsidence, emphasizing the importance of considering the interactions
of multiple factors in land subsidence research. Only by comprehensively considering the
interactions of these factors can we more accurately understand and predict the dynamic
trends of land subsidence.

4. Discussion
In this study, we calculated the rate of land subsidence of TSNSUA by utilizing

Sentinel-1A SAR data, SRTM 30 m data, and other socio-economic data, and we analyzed
the distribution patterns and impact factors.
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This study employed the SBAS-InSAR technique for monitoring land subsidence.
Compared to existing monitoring methods such as D-InSAR and PS-InSAR, SBAS-InSAR
effectively overcomes the decorrelation issues caused by long spatial baselines, as well as
the influence of terrain and atmospheric phases, by selecting multiple master images and
appropriate spatiotemporal baseline thresholds. Additionally, this technique can monitor
large areas of surface deformation and provide long time series of surface deformation data,
making it suitable for regional geological disaster assessment and urban land subsidence
monitoring. It also enables the analysis of trends in surface deformation. Through an
in-depth analysis of land subsidence in the TSNSUA region, it is evident that subsidence is
more severe in areas with active geological structures, excessive groundwater extraction,
and dense human activities. Additionally, the presence of subsidence funnels causes land
subsidence to exhibit a distinct clustering characteristic. Different cities experience varying
processes and degrees of subsidence due to their unique topography, climate conditions,
and urban development impacts. For instance, some cities may be more significantly
affected by geological activities due to their undulating terrain, while others may face
intensified subsidence due to insufficient groundwater replenishment caused by climatic
conditions. The urbanization process, including changes in land use and infrastructure
construction, also significantly impacts land subsidence. For example, large-scale urban
development can lead to a decline in groundwater levels, thereby triggering subsidence.
Therefore, it is crucial to develop targeted monitoring and management strategies based on
the specific conditions of each city to effectively address land subsidence issues.

Through analyzing the factors affecting ground subsidence, we found that the hydro-
logical environment has the greatest contribution to ground subsidence in TSNSUA. The
region has a complex climate, including temperate continental and plateau mountain cli-
mates, with low and uneven annual precipitation, and most areas are in arid and semi-arid
zones [47]. As urban development progresses, surface water is insufficient to meet the
city’s water demand, leading to overexploitation of groundwater. When groundwater is
overexploited, the water table drops, disrupting the pressure balance between soil bodies,
and the soil and rock bodies supported by groundwater are excessively compressed due
to water loss, reducing in volume, forming funnel voids, and losing their load-bearing
capacity for the ground. In addition, the pressure from surface buildings and transportation
systems further compresses the soil or rock bodies, accelerating ground subsidence. Even if
measures are later taken to raise the groundwater level, it is difficult for the soil or rock
bodies to return to their original state, making ground subsidence irreversible [48].

The intricate geological backdrop significantly influences the occurrence of ground
subsidence. TSNSUA, positioned at the forefront of the Tianshan Mountain range, is
part of an active intracontinental orogen. Over the last 10 million years, this area has
been subjected to vigorous tectonic movements and rapid erosional uplift, classifying
it as a newly active tectonic zone. The subsidence in TSNSUA is predominantly found
in regions rich in Quaternary unconsolidated sediments. Intense tectonic activities can
reshape the landforms, affect the sediment distribution, alter the hydrological environment,
and impact human activities, all of which can lead to ground subsidence. Earthquakes, a
pronounced manifestation of geological tectonic activity, are indicative of the rapid release
of stress within the crust. The earthquake data from the China Earthquake Networks
Center (https://news.ceic.ac.cn/, accessed on 11 December 2023) reveal that between 2018
and 2022, TSNSUA was struck by 68 earthquakes of varying intensities. We extracted
the surface subsidence rates at the epicenter (Figure 11) and found that most areas of
the epicentral region experienced varying degrees of land subsidence. In the majority
of these earthquake-prone areas, ground subsidence has been observed, highlighting the
contribution of seismic activities and the subsequent subsidence they trigger to the overall

https://news.ceic.ac.cn/
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ground subsidence in the region. Expanding on this, the continuous tectonic uplift in the
northern foothills of the Tianshan Mountains, with an uplift rate of approximately 1.2 to
4.8 mm per year since the last 13,000 years, suggests that the region is still undergoing
active geological changes. These uplifts, combined with the spatial characteristics of
ground subsidence across TSNSUA, indicate that different areas have experienced varying
degrees of subsidence or uplift. The correlation between seismic activity and ground
subsidence is further emphasized by the fact that areas prone to earthquakes have shown
significant ground deformation, suggesting that the stress release during earthquakes not
only causes immediate surface shaking but also leads to longer-term ground deformation
and subsidence. This underscores the importance of considering tectonic and seismic
activities when assessing and managing ground subsidence risks in TSNSUA and similar
geologically active regions.
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Additionally, TSNSUA is located on two key metallogenic belts, the Paleo Asian
Ocean and the Tethys Ocean [49]. This region has undergone a long history of marine and
terrestrial alternation, possessing a unique geological history and diverse mineralization
processes. The widespread geological structures and relatively intact exposed strata provide
excellent natural conditions for the enrichment and diversity of mineral resources, resulting
in abundant and varied mineral reserves in the area.

During the initial stages of underground mining, excavation activities disrupt the orig-
inal stress balance of the underground rocks. As mining progresses and subsurface mineral
resources are extracted, voids are created, leading to displacement of the surrounding rocks
and even broader areas of the rock mass. Over time, this results in ground subsidence.
The extensive extraction of groundwater during mining operations causes surrounding
groundwater to flow towards the mining area, disrupting the original stress balance of the
groundwater and, thus, triggering widespread ground subsidence [50,51]. At the same
time, mining activities often attract a large number of migrant workers, which may lead
to a surge in demand for local housing, transportation, and public service facilities. This
increases ground load and urban supply pressure, negatively impacting ground stabil-
ity. Many mining areas within the TSNSUA region have experienced significant ground
subsidence, such as in Changji City and Manas County, where some coal mining areas
have shown particularly severe ground subsidence. Therefore, it can be concluded that the
extraction of coal and other mineral resources is a significant cause of long-term, high-rate
ground subsidence in certain areas of TSNSUA.
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This study reveals that the influence of human activities on ground subsidence is
relatively limited. On the one hand, the study predominantly attributes the changes
in groundwater and mining activities to the effects of hydrological environments and
tectonic movements, while considering a restricted range of human activity indicators,
such as nighttime lighting and population density. On the other hand, TSNSUA, as
one of China’s 19 core urban agglomerations, has seen swift development due to the
Western Development and Belt and Road Initiatives, yet it still lags behind the central
and eastern regions in terms of the impact of human activities on ground subsidence.
Nevertheless, urbanization and the surge of population are intensifying urban stressors,
including excessive groundwater extraction and heightened ground loading, which could
heighten the risk of ground subsidence—a factor that should not be disregarded [52].

In summary, the land subsidence phenomenon in TSNSUA is not directly caused by a
single independent impact factor, but rather the result of multiple factors working together
through complex interactions and mutually reinforcing effects. This multi-factor interaction
leads to a comprehensive impact on the phenomenon of land subsidence, reflecting the
complexity and diversity of the land subsidence process. And due to differences in regional
characteristics, the ways and intensities of various factors also vary. Therefore, when
studying and managing land subsidence issues, it is necessary to fully consider the regional
characteristics and the interactions between various factors in order to develop targeted
prevention and control measures to protect the geological environment and human living
environment of the region.

This paper proposes a monitoring plan for ground subsidence in the TSNSUA area.
To effectively manage and mitigate the impacts of ground subsidence, a comprehensive
consideration of various factors such as geological structures, hydrological conditions,
mineral resource extraction activities, and population growth is necessary. This includes
implementing stricter groundwater management policies, optimizing methods of mineral
resource extraction, strengthening infrastructure to accommodate increased loads, and
planning urban development to minimize disruption to geological structures. Through
these multifaceted measures, the geological environment can be better protected, ensuring
sustainable development in the region. It is recommended that the government incorporate
this monitoring plan into its existing planning tools. In the process, by providing valuable
data support for geological disaster risk assessment and urban planning, establishing a
ground subsidence monitoring and early warning system holds significant theoretical
and practical importance for disaster prevention, mitigation, and safety monitoring. This
contributes to enhancing the management level of urban geological environments and the
capacity for risk prevention and disaster mitigation.

5. Conclusions
This study computed land subsidence within TSNSUA from 2018 to 2022 using

Sentinel-1A SAR satellite images based on SBAS-InSAR technology. The spatiotemporal
patterns of land subsidence and evolution trends were analyzed by using transition matrix
and the landscape pattern index. The impact factor of land subsidence was developed
based on 10 impact factors including geological background, human activities, hydrological
environment, and terrain features, and we quantitatively analyzed the complex impact
mechanism of land subsidence. The main conclusions are as follows:

(1) The study used SBAS InSAR technology to obtain land subsidence information within
TSNSUA from 2018 to 20222. The average land subsidence rate of TSNSUA is mainly
distributed between −30 and 10 mm/a, and the maximum subsidence rate can reach
−358 mm/a. Settlement mainly occurs in Hutubi County and Manas County.
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(2) The spatiotemporal distribution characteristics of land subsidence in TSNSUA from
2018 to 2022 were studied. The results indicate that in terms of spatial characteristics,
the rate of land subsidence in the study area shows a clear spatial clustering distri-
bution and exhibits positive spatial correlation, which is related to the formation of
subsidence funnels in the subsiding areas. The pattern of land subsidence is primarily
characterized by low subsidence rates and areas of uplift. Regarding temporal charac-
teristics, during the monitoring period, each administrative district within the study
area experienced varying degrees of subsidence and uplift.

(3) The study used GeoDector software to quantitatively analyze the impact factors of
land subsidence in TSNSUA and explored the impact mechanism of land subsidence
in the study area. The quantitative results indicate that the hydrological environment
is the primary factor influencing land subsidence, with a strong explanatory power
and significant interactions with other factors. This is closely related to the arid
and semi-arid climate conditions in the TSNSUA region, as well as the scarcity of
groundwater resources.

In this study, we calculated the land subsidence rate and analyzed the spatiotemporal
pattern and impact factor in TSNSUA. However, the shortcoming is that we did not analyze
in depth the driving factors affecting the land subsidence, including groundwater and
geological structures. Moreover, fewer reliability verification analyses were used in land
subsidence, and more contemporaneous-level monitoring data or other measured data will
be added in a later study for more scientific and accurate land subsidence.
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