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Abstract: Climatic and environmental issues have attracted considerable attention world-
wide. Clarifying the interactions between urban land use efficiency (ULUE), industrial
structure (IS), and carbon emissions intensity (CEI) is of considerable importance in promot-
ing resource–economy–environment coordination. The temporal and spatial characteristics
of ULUE, IS, and CEI were analyzed based on panel data from 309 cities in China from
2006 to 2021. A PVAR model was established to analyze the long-term and short-term
dynamic and causal relationships among the three variables. ULUE, IS, and CEI showed
an upward trend, but significant spatial heterogeneity existed. The three variables had a
long-term cointegration relationship. Overall, ULUE had a positive effect on IS, and IS
had a promotional effect on ULUE. ULUE and IS had bidirectional inhibitory effects on
CEI. This indicates that improving ULUE, upgrading IS, improving energy efficiency, and
reducing CEI may be necessary measures to mitigate the environmental impact of human
activities. These research results can provide theoretical and policy support for promoting
the coordination of resources, the economy, and the environment, and for achieving the
promotion of urban high-quality green and sustainable development.

Keywords: urban land use efficiency; industrial structure; carbon emissions intensity; panel
vector autoregression; China

1. Introduction
Against the background of the increasing severity of global climate change and envi-

ronmental problems, it is necessary to break the bottleneck of resources and environment
and achieve green economic transformation [1]. This has become a common goal world-
wide. Therefore, finding a way to transform the external environment is an ongoing global
development task [2]. With the acceleration of global industrialization and urbanization,
more and more countries have begun to focus on the impact of carbon emissions on land
use, industrial transformation, and upgrading [3]. Globally, land resources are important
for environmental protection and economic development [4]. ULUE focuses more on the
efficiency of the use of land as a specific production factor. It refers to the ability to use land
resources strategically and efficiently during the urban planning and construction processes.
This reflects the degree of maximization of economic, social, and environmental benefits in
the use of urban land resources. It not only emphasizes the economic output of land but
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also encompasses social welfare and environmental sustainability, making it one of the key
objectives pursued in urban planning and management [5]. Urbanization is accelerating,
leading to differences in land use between urban and rural areas worldwide. Simultane-
ously, there have been substantial changes in resource demand and ecological pressure,
and irrational land use will aggravate environmental pollution and cause tension between
people and land. These have become common challenges for all countries worldwide [6].
In this context, improving ULUE is a more effective way of promoting long-term sustain-
able urban development. There is a positive correlation between the transformation and
upgrading of IS and high-quality economic development [7]. This continuous IS upgrading
is accompanied by a large increase in carbon emissions and resource consumption. This has
led to environmental problems and resulted in widespread concern. Therefore, examining
IS provides an important direction for addressing global challenges and has a profound
effect on economic growth, technological innovation, and international cooperation and
exchange [8,9]. As economies worldwide experience swift growth, the insatiable appetite
for non-renewable energy sources has precipitated a dramatic escalation in greenhouse gas
emissions. This phenomenon has not just exacerbated the trajectory of global warming
but has also catapulted climate change to the forefront of the most critical environmental
concerns of our time. The emission of CO2 stands out as a principal catalyst for both the
warming of our planet and the deterioration of our environment. Climate change is a global
challenge that transcends national borders, and it demands that we take effective measures
while pursuing economic growth. This includes promoting a green, low-carbon sustainable
development model to address the severe challenges posed by climate change.

China is the top carbon emitter globally and accounted for approximately 30.19% of
global carbon emissions in 2022 [10,11].Since the historic initiation of reform and opening
up in 1978, the economy of China has burgeoned, securing its position as second-largest in
the world [12,13]. Yet, this meteoric economic ascent has not been without environmental
repercussions; the ecological strain has become increasingly evident, and the capacity of the
environment to sustain such growth is under intense scrutiny [14,15]. China’s traditional
growth model, characterized by substantial investment and voracious energy consumption,
has often overlooked environmental considerations, leading to a dramatic escalation in
carbon emissions [16]. This paradigm, predicated on environmental sacrifice, is now
recognized as unsustainable. It poses a dual threat; domestically, it endangers ecological
integrity, while internationally, it draws the attention of the world due to the far-reaching
implications of carbon emissions. In the intermediate stage of industrial development, the
key to achieving the goals of carbon peaking and carbon neutrality lies in promoting the
in-depth optimization and upgrading of the industrial structure [17]. This process can
significantly improve the allocation efficiency of production factors, as well as effectively
improve the utilization efficiency of resources, reduce energy consumption, and thereby
reduce carbon dioxide emissions. Therefore, closely integrating the industrial structure
with the control of carbon emissions not only has far-reaching theoretical value, but also
has urgent practical significance. In addition, the adjustment of the land use structure
and the evolution of ecosystem types have a decisive impact on the dynamic balance of
regional carbon stocks, which in turn has an important impact on regional carbon emission
levels and industrial layout [18]. In addition, ULUE, IS, and CEI are important components
of the environmental economic system, and there may be interactions among them. The
enhancement of ULUE facilitates the upgrading of IS, leading to enhanced energy utilization
efficiency and a reduction in CEI [19,20]. Conversely, changes in IS also influence land
use patterns by modifying industrial layouts and energy consumption structures, which
subsequently affects CEI. Moreover, improvements in ULUE are typically accompanied by
a reduction in CEI, as more efficient land use minimizes the ecological damage associated
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with urban expansion and encourages the adoption of green buildings and low-carbon
technologies to further decrease carbon emissions [21]. Exploring the intrinsic relationship
between ULUE, IS, and CEI plays a vital role in formulating scientific land-management
policies, optimizing industrial layout, and achieving regional sustainable development,
and provides a solid foundation for building a green and low-carbon economic system.

In the existing literature, the dynamic interaction influence of ULUE, IS, and CEI in
cities has rarely been mentioned. Examining the existing literature on the relationship of
ULUE and IS, researchers have reached different conclusions due to the use of diverse sam-
ples and models. Industrial structure transformation and upgrading can promote effective
land use efficiency [19]. However, Li et al. found that industrial structure upgrading has
had a negative effect on land use efficiency based on the spatial Durbin model [22]. Liu
et al. adapted the panel data of 31 provinces in China, combining the STIRPAT model with
the spatial Durbin model together to analyze the relationship of IS and ULUE, and the
results showed that a “U” relationship exists between industrial structure upgrading and
land use efficiency [23]. Meanwhile, some researchers have found a nonlinear relationship
between industrial structure upgrading and land use efficiency [9]. Wang et al. found that
the relationship between IS and ULUE follows an inverted U-shape. In the research on
ULUE and CEI, land use change is an important reason for carbon emission changes [24].
Land use urbanization has had a positive impact on CEI [25]. How to efficiently utilize
land resources to reduce carbon emissions is a very important research topic. Xie et al.
found that the increases in industrial land use efficiency have had negative impacts on CEI
based on the STIRPAT model [26]. Zhang et al. showed that there is an inverse U-shaped
relationship between land-intensive use and carbon emissions and that IS plays an inter-
mediary role in this mechanism [27]. In recent years, the relationship between IS and CEI
has been examined by constructing empirical test models at different spatial scales [28,29].
Hu et al. studied the influencing factors of CEI based on the EKC model, and found a
negative structural effect of industrial structure on CEI [30]. However, its absolute value is
too small and it has a limited effect on suppressing carbon emissions. Numerous scholars
have underscored the pivotal role of industrial restructuring and upgrading as a strategic
conduit for expediting economic progress and attaining the ambitious objectives encapsu-
lated by the “dual carbon” targets [12]. Su et al. used a STIRPAT-PLSR model to explore the
driving forces behind carbon emissions and found that increasing the proportion of tertiary
industries significantly inhibits regional carbon dioxide emissions [31]. However, to date,
most prior studies have found that secondary-sector growth significantly impacts carbon
emissions [32]. Song studied 30 provinces in China and showed that different regions have
different impacts on carbon efficiency. The upgrading of IS in the eastern region has a
positive effect on CEI and a negative effect on CEI in the central region [33].

In summary, most studies investigated the effects of ULUE and IS on CEI using
time series or panel data for bivariate analysis. Meanwhile, relatively few studies have
systematically analyzed the impact mechanisms among ULUE, IS, and CEI by constructing
a relationship between the three. The relationship between ULUE, IS, and CEI is not clear
when analyzed as a system. Additionally, the interaction between ULUE, IS, and CEI may
follow a dynamic spatiotemporal mechanism, which is affected not only by the internal
factors of the land system and environmental changes in a specific period, but also by
adjustments in different periods.

Additionally, since the research has predominantly focused on broader scales such
as provinces or river basins, there is also a notable gap in studies that delve into the
dynamics between ULUE, IS, and CEI from the vantage point of individual cities. By
choosing 309 cities from across China as research subjects, we are able to present a more
accurate depiction of the current state and challenges faced by Chinese cities in these critical



Land 2025, 14, 57 4 of 22

areas. This granular analysis offers a more intricate lens to discern the subtle yet profound
interplay between urban evolution and the stewardship of environmental and material
resources. During the period of 2000–2021, the economy and urbanization process of China
grew rapidly, and urban land use efficiency and industrial structure upgrading became key
factors in promoting economic development. In addition, 2021 is the year when the national
carbon emission trading market was officially launched, which is of great significance to
the study of carbon emissions. Therefore, to deepen our understanding of this, we regarded
ULUE, IS, and CEI as systems, using the PVAR model to innovatively examine the dynamic
interactions among them, which are of considerable practical importance for achieving
green and sustainable development in China and beyond.

Compared with previous studies, the academic contribution of this paper is mainly
reflected in two aspects: First, from the perspective of resources, economy, and environment,
the three indicators of ULUE, IS, and CEI are innovatively combined and incorporated
into statistical research, which will make up for the lack of quantitative analysis of the
relationship between the three in the existing literature. As well as further exploring
the temporal and spatial differences of the three variables in China’s urbanization and
industrialization process, we provide detailed comparative analysis across different regions
from the urban level in China. Second, this study also uses the PVAR model to clarify the
causal relationship between ULUE, IS, and CEI through the Granger causality test. The long-
term and short-term dynamic relationship between the three variables is analyzed through
impulse response diagrams and variance decomposition. It aims to provide reference for
green and sustainable development in various regions, and for future policy formulation
and development model selection. In addition, it provides innovative perspectives and
practical paths for achieving global carbon reduction goals and addressing climate change.
Especially in China, this study has opened up a new dimension of thinking for achieving
the national strategic goals of achieving a carbon emissions peak by 2030 and carbon
neutrality by 2060. The rest of this article is as follows. The data and variables selection
in this study are introduced and the econometric specifications of the regression models
are laid out in Section 2. Section 3 introduces our results, which include the comparison of
variables in time and space, as well as the testing and final results from the PVAR model.
The discussion and associated policy recommendations are introduced in Section 4. The
last section introduces the conclusions. The research flowchart is as Figure 1:Land 2025, 14, x FOR PEER REVIEW 5 of 23 
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2. Materials and Methods
2.1. Data Resources and Variable Selection
2.1.1. Data Resources

Due to the limited access to original data for some cities, the analysis used panel
data from 309 cities in China from 2006 to 2021. The data were taken from the National
Bureau of Statistics of China, the China City Statistical Yearbook (2007–2022), the Provincial
and Municipal Statistical Yearbook revised by the provincial statistical bureaus from 2007
to 2022, the China Environmental Statistics Yearbook (2007–2022), and the China Energy
Statistical Yearbook, additionally including the China Agricultural Statistical Yearbook,
China Animal Husbandry Yearbook, and China Forestry and Grassland Statistical Yearbook
from 2007 to 2022. The statistics data come from official statistics, which ensures the
accuracy of the analysis results. The calculation methods for the three indicators are
detailed as follows.

2.1.2. ULUE

This study proposes an evaluation system for ULUE in terms of input and output
dimensions (Table 1).

Table 1. Index system for ULUE.

Index Variable Measurement Method Unit

Input Land Urban construction land area km2

Capital Total investment in fixed assets 104 yuan
Labor force Total employed persons in secondary and tertiary industry 104 people

Resource Total water supply 104 m3

Expected output Economic output Added value of secondary and tertiary industry 104 yuan
Disposable income of urban residents 104 yuan

Social output Number of students enrolled in colleges and universities people
Number of hospital health beds sheet

Environmental output Green coverage rate %
Unexpected output Sulfur dioxide emissions Estimated sulfur dioxide emissions t

Smoke and dust emissions Estimated smoke and dust emissions t
Wastewater discharge Estimated water emissions 104 t

Land, capital, labor force, and resources were selected as input indicators for ULUE.
The rational planning and management of urban construction land directly impact the
spatial structure of urban development and the intensive use of land resources, thereby
reflecting the status of urban land use. Fixed-asset investment reflects the economic input
of cities in land development and infrastructure construction. Employment in secondary
and tertiary industries constitutes a significant portion of urban economic activities, and the
number of employees in these sectors can reflect the employment-driving effect of ULUE.
The total urban water supply is fundamental to the operation and development of the city
and serves as an important natural resource factor for measuring urban land use efficiency.
Therefore, the urban construction land area, total investment in fixed assets, employment
in secondary and tertiary industries, and total urban water supply were selected as input
indicators [34,35].

Economic, social, and environmental benefits were selected as the first-level indicators
of the expected output indicators. To measure the level of economic output in relation to
urban land use we used the added value of the secondary and tertiary industries, which
are crucial for urban economic vitality and innovation capacity. The number of students
enrolled in colleges and universities along with the number of hospital beds were chosen
as indicators of social benefit output. This is because the enrollment figures in higher
education and the availability of hospital beds are vital components of urban social services
in education and healthcare. Their quantity and quality directly impact the quality of
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life and social welfare of urban residents. To assess environmental development in urban
land use, the green coverage rate was selected as an indicator of environmental benefit
output [6,36].

Based on the prior literature, the emissions of three traditional pollutants, namely,
sulfur dioxide, industrial wastewater, and industrial smoke (dust), were included as unex-
pected output indicators [11].

2.1.3. IS

Changes in IS reflect the level of economic development and technological progress.
Therefore, upgrading IS is of considerable importance in improving economic efficiency,
promoting sustainable development, and enhancing international competitiveness. IS is a
process that is carried out from primary to secondary and tertiary industries. In this study,
the proportion of the sum of secondary and tertiary industry output values to the GDP was
used as an indicator to measure IS [7]. This reflects changes in the quantity of IS.

2.1.4. CEI

The core issue in city-scale carbon emission estimation is determining the estimation
scope. The idea of delineating emission sources was first proposed by the World Resources
Institute in its guidelines for the preparation of corporate greenhouse gas inventories to
avoid double counting [37]. Therefore, based on prior research, the emission factor co-
efficient was used to calculate the sum of all direct emissions within the jurisdiction of cities
and energy-related indirect emissions outside the jurisdiction of cities [38,39].

2.2. Research Methods
2.2.1. The Undesired Super-Efficiency SBM

The undesired super-efficiency SBM model was proposed by Tone and combines the
DEA and SBM models to enhance the practicality of the efficiency model, which improves
the practicality and accuracy of efficiency analysis [40]. Compared with the DEA and SBM
models, a notable feature of the undesired super-efficiency SBM model is that it allows
efficiency values greater than one, which makes the efficiency comparable. In addition to
this, the Super-r-efficiency SBM model considers slack variables and radial problems and
evaluates the efficiency of decision-making units with unexpected outputs. This provides
a more detailed approach to efficiency assessment, making it a better super-efficiency
model [41]. Therefore, this study used a nonradial and nonangular super-efficiency SBM
model to measure ULUE. The expressions are as follows:

minθ =

1
m ∑m

i=1
xi
xi0

1
S1+S2

(
∑S1

r=1
yg

r
yg

r0

)
+ ∑S2

r=1
yg

l
yg

l0

(1)

S.t =



x ≥ ∑n
j=1,j ̸=0 λjxj, (i = 1, 2, · · · , m)

yg ≤ ∑n
j=1,j ̸=0 λjy

g
j , (r = 1, 2, · · · , S1)

yb ≥ ∑n
j=1,j ̸=0 λjyb

j , (k = 1, 2, · · · , S2)

x ≥ x0, yg ≤ yg
0 , yb ≥ yg

0 , λ ≥ 0
∑n

j=1,j ̸=0 λj = 1

(2)

In this paper, θ represents urban land use efficiency; n represents the number of
decision-making units; λ represents the weight vector; m, S1, and S2 represent the number
of inputs, expected outputs, and unexpected outputs, respectively; and x, yg, and yb

represent the vectors of input, output, and unexpected output, respectively. The variable
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with “-” indicates the projection value and the variable with a subscript 0 is the evaluated
decision unit.

2.2.2. PVAR Model

The PVAR model was developed by Love et al. and is an extension of the VAR
model used to study the interaction among variables [42]. It treats each variable as an
endogenous variable, thereby capturing the dynamic interrelationships between variables
while considering potential endogeneity issues, it can solve the endogenous problem of
variables by introducing variable lag, a problem that has been ignored in most of the
literature [43]. This has the advantages of both panel data and the VAR model but also
considers individual fixed effects and time effects. The PVAR model effectively addresses
the issues of individual heterogeneity and temporal effects in the data by combining time
series analysis with panel data analysis, as well as effectively describing the short-term
response and long-term movement trends among variables, forming a robust analysis of
multivariable dynamic relationships. This can improve the accuracy of the results [44].
Therefore, the PVAR model was used to study the dynamic interactions among ULUE,
IS, and CEI more accurately as it can avoid the endogenous influences that may arise
among the three variables during the analysis process, clearly depicting the transmission
mechanisms formed by various shocks. The PVAR model is expressed as follows:

Yit = T0 +
K

∑
j=1

TjYit−j + ai + βi + εit (3)

where Yit represents a vector composed of ULUE, IS, and CEI variables; i and t represent
city and year, respectively; j represents the lag period; T0 represents the intercept term
vector; Tj represents the parameter matrix of the jth order of lag; εit represents the random
disturbance term; ai represents the individual fixed effect vector; and βi represents the time
effect vector. Among them, the size of the individual fixed effects can indicate the strength
of heterogeneity among 309 cities in China, and the size of the time effects can describe the
strength of specific shock effects. To ensure the accuracy of parameter estimation, ULUE,
IS, and CEI were logarithmically processed before model estimation.

2.2.3. Time Series Clustering

This study is based on the longitudinal and latitudinal coordinates of 309 cities in
China from 2006 to 2021. The step time was set to 1 year, and a space–time cube containing
time and space characteristics was generated through the aggregation point. Time series
clustering was used to divide the positions of the space–time cube into three groups
(Figure 2). The time series within the groups are highly similar, including numerical
similarity and change trend similarity [45]. The main purpose of this research was to use
time series clustering to find the areas where values are clustered throughout the cycle.
Therefore, numerical similarity was used for the analysis. For two given time series, their
numerical similarity can be expressed as follows:

∆ =
(

z(n)1 − z(m)
1

)2
+ · · ·+

(
z(n)i − z(m)

i

)2
(4)

Ωm =
(

z(m)
1 , z(m)

2 , · · · , z(m)
i

)
Ωn =

(
z(n)1 , z(n)2 , · · · , z(n)i

)
where z(n)i , z(m)

i represent the ULUE (IS, CEI) of the m and n time series (Ωm, Ωn) in the i
time step, respectively.
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3. Results
3.1. Spatiotemporal Variation in ULUE, IS, and CEI

To further explore the spatial distribution characteristics of ULUE, IS, and CEI for
309 cities in China from 2006 to 2021, the natural breaks method was used to divide the
calculation results into four categories, from high to low. We selected two time periods
from 2006 to 2021 to show the results.

The ULUE in Chinese cities showed an overall upward trend (Figure 3). There were
80 cities with values of ULUE more than 0.88 in 2006. These were mainly distributed in the
eastern region, followed by the central region, and then the western region. Meanwhile,
the ULUE on the eastern section of the Hu Line was higher than that of the western section.
Over time, the change in urban land use efficiency in the eastern region of the Hu Line
was significantly higher than that in the western region. From 2006 to 2021, the spatial
pattern of the ULUE in China exhibited imbalanced characteristics. Overall, ULUE in the
eastern region was significantly higher than that in the western and central regions, with
Shanghai and Guangdong having the highest ULUE values. This indicates the reasons
for the differences in ULUE levels across different regions may include that the eastern
region has made rapid strides in the reform of land marketization, which has facilitated the
efficient utilization of land resources. As well as this, the ULUE is influenced by the level of
economic development, with regions that have a higher economic level exhibiting greater
ULUE. Cities with faster ULUE growth, such as Anhui and Yunnan, are concentrated in the
central region. Cities with lagging growth in ULUE were mainly located in the western
regions, such as Inner Mongolia and Xinjiang.

Land 2025, 14, x FOR PEER REVIEW 9 of 23 
 

3. Results 
3.1. Spatiotemporal Variation in ULUE, IS, and CEI 

To further explore the spatial distribution characteristics of ULUE, IS, and CEI for 
309 cities in China from 2006 to 2021, the natural breaks method was used to divide the 
calculation results into four categories, from high to low. We selected two time periods 
from 2006 to 2021 to show the results. 

The ULUE in Chinese cities showed an overall upward trend (Figure 3). There were 
80 cities with values of ULUE more than 0.88 in 2006. These were mainly distributed in 
the eastern region, followed by the central region, and then the western region. Mean-
while, the ULUE on the eastern section of the Hu Line was higher than that of the western 
section. Over time, the change in urban land use efficiency in the eastern region of the Hu 
Line was significantly higher than that in the western region. From 2006 to 2021, the spa-
tial pattern of the ULUE in China exhibited imbalanced characteristics. Overall, ULUE in 
the eastern region was significantly higher than that in the western and central regions, 
with Shanghai and Guangdong having the highest ULUE values. This indicates the rea-
sons for the differences in ULUE levels across different regions may include that the east-
ern region has made rapid strides in the reform of land marketization, which has facili-
tated the efficient utilization of land resources. As well as this, the ULUE is influenced by 
the level of economic development, with regions that have a higher economic level exhib-
iting greater ULUE. Cities with faster ULUE growth, such as Anhui and Yunnan, are con-
centrated in the central region. Cities with lagging growth in ULUE were mainly located 
in the western regions, such as Inner Mongolia and Xinjiang. 

 

Figure 3. Spatial distribution of ULUE in Chinese cities. (a) Spatial distribution of ULUE in Chinese 
cities in 2006; (b) Spatial distribution of ULUE in Chinese cities in 2021. 

As shown in Figure 4, the overall IS in Chinese cities continuously improved from 
2006 to 2021. This indicates that the IS of China has been upgraded. There was a coupling 
with the spatial variation trend of ULUE from a macroscopic point of view. Compared 
with ULUE, the Hu Line played a smaller role. Overall, the IS changes in the areas east 
and west of the Hu Line were smaller than those of ULUE. The number of cities with an 
IS above 89.58% increased from 95 to 145 during this period. The scope of cities that were 
above 89.58% gradually expanded from regional central cities, such as Beijing and Hang-
zhou, to subcentral cities. Over time, subcentral cities tend to connect individual regions 
to cover the entire region in their development process from an overall perspective. The 
disparities in industrial structure levels among various regions may be attributed to dif-
ferences in resource availability and geographical environments; therefore, IS develop-
ment in the eastern region is the fastest as the improvement of infrastructure and market 

Figure 3. Spatial distribution of ULUE in Chinese cities. (a) Spatial distribution of ULUE in Chinese
cities in 2006; (b) Spatial distribution of ULUE in Chinese cities in 2021.



Land 2025, 14, 57 9 of 22

As shown in Figure 4, the overall IS in Chinese cities continuously improved from
2006 to 2021. This indicates that the IS of China has been upgraded. There was a coupling
with the spatial variation trend of ULUE from a macroscopic point of view. Compared with
ULUE, the Hu Line played a smaller role. Overall, the IS changes in the areas east and west
of the Hu Line were smaller than those of ULUE. The number of cities with an IS above
89.58% increased from 95 to 145 during this period. The scope of cities that were above
89.58% gradually expanded from regional central cities, such as Beijing and Hangzhou, to
subcentral cities. Over time, subcentral cities tend to connect individual regions to cover
the entire region in their development process from an overall perspective. The disparities
in industrial structure levels among various regions may be attributed to differences in
resource availability and geographical environments; therefore, IS development in the
eastern region is the fastest as the improvement of infrastructure and market mechanisms
has promoted the development of high-tech industries and modern service industries.
This has eliminated backward production capacity and promoted industrial structure. IS
in the central and western regions also improved significantly. This may be because the
Central Rise Strategy and Western Development Strategy of China had achieved results.
Meanwhile, market demand and consumption upgrading have led to the westward transfer
of capital, technology, labor, and other resource factors, which has promoted the upgrading
of IS.
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As shown in Figure 5, during the study, the overall CEI in the cities of China showed
a pronounced upward trend. The number of cities with a CEI above 3110.12 increased
from six to two hundred and eighty-seven. Compared to ULUE and IS, the overall degree
of change in CEI was the most substantial and included more cities. The Hu Line of CEI
played the most significant role. The increase in CEI in the eastern region of the Hu Line
was significantly higher than that in the western region. There was a difference in the
distribution of CEI in different regions of China. Overall, the CEI of the eastern region
was significantly higher than that of the central and western regions. This may be because
of the high population density, developed technology, and concentrated transportation
and industries in the eastern region. During this period, the CEI was low in the western
region, and the western region lagged behind other regions in economic development.
This may be because the western region’s industrialization process occurred relatively late.
The western region has abundant renewable energy resources, which can reduce depen-
dence on traditional fossil energy, improve environmental quality, and reduce greenhouse
gas emissions.
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3.2. Time Series Clustering Analysis of ULUE, IS, and CEI

The time series cluster of ULUE, IS, and CEI from 2006 to 2021 is shown in Figure 6.
The data were clustered according to the similarity of the values in the time series data.
Therefore, ULUE, IS, and CEI were clustered based on time series. The number of clusters
was three, which were divided into high, medium, and low. The cluster distribution
patterns of the three variables have certain similarities. Medium and high clusters are
mainly distributed in the central and eastern regions and are predominantly concentrated
in urban agglomerations. Urban agglomerations are characterized by large populations,
active economies, and developed industries. Carbon emissions are high and concentrated.
Low clusters were mainly distributed in the western region, such as Yunnan, Xinjiang,
and Inner Mongolia, and showed a concentrated and contiguous distribution pattern.
This may be because these regions have complex and diverse geographical environments,
an uneven distribution of resources, and are lagging in technological innovation and
economic development.
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3.3. Analysis of ULUE, IS, and CEI
3.3.1. Panel Unit Root and Panel Cointegration Tests

The descriptive statistical analysis of ULUE, IS, and CEI is shown in Table 2. It was
crucial to conduct unit root testing on panel data to avoid regression errors caused by panel
data non-stationary phenomena before model estimation. Therefore, three unit root tests
were used to confirm data stationarity [46,47]. All three variables passed the significance
test at the 1% level. This indicated that they were stationary and could be used for the
parameter estimations. After that, a panel cointegration test was performed to analyze the
balanced relationship between the variables over time (Table 3). The original hypothesis
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of Gt was that there is no cointegration relationship. Ga’s original hypothesis was that at
least one set of cointegration relationships exists. Thus, ULUE, IS, and CEI had a long-term
cointegration relationship. Based on these findings, it could be assumed that the PVAR
model could be developed (Table 4).

Table 2. Descriptive statistics of empirical variable data.

Variable Obs Mean Std. Dev. Min Max

lnULUE 4944 −0.1477137 0.333958 −10.714 1.1067
lnIS 4944 1.937149 0.0492624 1.5563 3.34161

lnCEI 4944 3.419364 0.2197135 2.7301 3.8138

Table 3. Results of the unit root test.

Variables LLC Test IPS Test HT Test Conclusion

lnULUE −24.386 *** −1.097 *** 0.204 *** Smooth
lnCEI −23.404 *** −10.407 *** 0.608 *** Smooth
LnIS −53.173 *** −12.846 *** 0.109 *** Smooth

*, **, and *** denote significance at 10%, 5%, and 1% confidence levels, respectively.

Table 4. Results of the panel cointegration test.

t Value Z-Value p-Value

Gt −1.801 −7.038 0.000
Ga −4.525 4.176 1.000
Pt −23.735 −5.467 0.000
Pa −6.597 −14.697 0.000

3.3.2. Determining the Optimal Lag Order

It was necessary to determine the lag order of the variables when establishing the
PVAR model. Setting the lag order is important for the model, which suggests that the
past values of a variable can serve as exogenous variables for its future values. In this
way, we can reduce the endogeneity issues caused by simultaneity to a certain extent.
The Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Hannan–
Quinn Information Criterion (HQIC) were used to determine the optimal lag order [48].
According to the three-criteria value minimization principle, the lag order of the model
was set to the first order (Table 5) [49].

Table 5. Results of optimal lag order determination.

Lag ATC BIC HQIC

1 −5.0590 * −3.6704 * −4.5622 *
2 −5.4769 −3.9952 −4.9518
3 −5.8932 −4.2434 −5.3240
4 −5.8592 −4.1221 −5.2383
5 −5.7823 −3.8837 −5.1004

Note: * denotes the optimal lag order chosen for the corresponding criterion.

3.3.3. Granger Causality Test

A Granger causality test was performed using stationary panel data to determine the
statistical causal relationship between ULUE, IS, and CEI. The data are listed in Table 6.
With ULUE investment as the dependent variable, IS and CEI were Granger causes at the
10% significance level. With IS as the dependent variable, CEI was a Granger cause at the
5% significance level. When CEI was the dependent variable, ULUE and IS were Granger
causes at the 5% significance level. This means that there was a single causality between
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ULUE and IS and a two-way causality between ULUE and CEI. IS and CEI also established
a two-way causal relationship between them.

Table 6. Results of Granger causality test.

Equation Excluded Ch2 df Prob > chi2 Conclusion

h_lnULUE h_lnIS 3.3729 1 0.066 reject
h_lnCEI 12.119 1 0.000 reject

ALL 73.904 2 0.000 reject
h_lnIS h_lnULUE 1.3205 1 0.251 accept

h_lnCEI 10.633 1 0.001 reject
ALL 12.945 2 0.002 reject

h_lnCEI h_lnULUE 7.8603 1 0.005 reject
h_lnIS 3.8568 1 0.050 reject
ALL 7.8791 2 0.019 reject

3.3.4. GMM Estimation of the PVAR Model

A generalized method of moments (GMM) estimation was performed based on the
previously determined optimal lag order (Table 7). It combines the advantages of the
instrumental variables method and the difference GMM method, effectively addressing
endogeneity issues in dynamic panel data models. The GMM uses lagged variables as
instruments and takes into account potential serial correlation and heteroskedasticity,
providing a more effective estimation method.

Table 7. Results of GMM estimation.

h_lnULUE h_lnCEI h_lnIS

h_lnULUE 0.0232
(0.0314)

−0.0262 **
(0.0093)

0.0115 *
(0.100)

h_lnCEI −1.9563 ***
(0.5620)

1.1937 ***
(0.1647)

−0.5876 ***
(0.1802)

h_lnIS 4.1193 *
(2.2430)

−1.4087 **
(0.7173)

1.5977 **
(0.7775)

*, **, and *** denote significance at 10%, 5%, and 1% confidence levels, respectively.

In the ULUE equation, the co-efficient for the current period was 0.0232, which is
positive. However, the co-efficient was not significant. This indicated that the cumulative
effect of intensive land-resource use was relatively weak and had not yet exerted its real
effect. The impact of IS and CEI on each other was significantly positive during the
current period. This shows that the evolution process of ULUE, IS, and CEI had a self-
reinforcing effect. IS had a significant negative effect on ULUE during this study period.
Simultaneously, CEI had a significantly positive effect on ULUE. This may be because
industrial structure upgrading improves the comprehensive utilization efficiency of urban
land resources by optimizing urban land use structure and employment structure, adjusting
the allocation of land and labor factors.

ULUE had a significant positive effect on IS during the study period. This means
that improvement in ULUE has provided the necessary space and resources for industrial
development and promoted industrial linkage and technological innovation. This has
supported the economy in moving toward higher quality and efficiency and more envi-
ronmental protection and directional development. CEI is different from ULUE, and has
had a significant negative effect on IS. This indicates that a development model driven by
increased factor inputs and reliant on resource dependence is highly likely to result in a
high-carbon lock-in effect. This then leads to substantial energy waste and low efficiency.
This can, in turn, increase the costs of environmental governance, limit the capacity for
sustainable development, and suppress the growth of emerging industries.
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ULUE was significantly negatively correlated with current CEI. This shows that high-
density urban land layouts play a positive role in reducing resource waste and contributing
to global climate mitigation. Improvements in ULUE reduce direct and indirect carbon
emissions by promoting greener and more sustainable urban development. IS has also had
a significant negative impact on CEI. Despite industrial structures upgrading, the energy
consumption structure still relies on fossil fuels. This may increase corresponding carbon
emissions in the short term. Simultaneously, the different regions had significant differences
in the energy structure and industrial upgrading paths. Some regions may still rely on
high-carbon energy sources such as coal. In these areas, even if the IS is upgraded, carbon
emissions may not be effectively reduced or may even increase, owing to the backward
energy structure.

3.3.5. Analysis of Impulse Response Function

The GMM estimation results showed a prominent static relationship between ULUE,
IS, and CEI. To further understand the dynamic change process between the three variables
and determine their time-lag relationship, an impulse response analysis was performed
on ULUE, IS, and CEI (Figure 7). This draws on the Monte Carlo method which was used
to obtain impulse response diagrams of 309 cities across the country with a 10-period
lag through 200 simulations. The impact of each variable on the other variables was also
analyzed. The abscissa is the number of lag periods, and the ordinate is the degree of
response. The blue lines indicate the 95% confidence interval, and the red line indicates the
trend of the impulse response function.
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ULUE showed a significant positive impact on itself as well as strong initial reactions
during the sensing period. The impact gradually reached zero in the subsequent period.
ULUE had a negative impact on IS, reaching its peak in the third period and gradually
converging to zero. When facing the impact of CEI, the response of CEI and IS intensity
was similar. They demonstrated significant negative effects gradually reaching zero. This
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indicates that improving ULUE can help balance the relationship between economic de-
velopment and environmental benefits. In other words, an increase in urban land use
efficiency is usually accompanied by an increase in the intensity of land use, reducing the
consumption of energy and resources, which can reduce carbon emissions and thereby
alleviate the pressure caused by climate change.

IS showed a significant positive impact on ULUE, peaking in the fourth period. Sub-
sequently, the influence gradually decreased until it finally converged to zero. IS has a
significant positive impact on improving ULUE by promoting the efficient agglomeration
of economic activities, optimizing the urban spatial layout, encouraging the multifunctional
and intensive use of land, and promoting the construction of smart and green cities. The
comparison shows that the impulse response paths of IS to itself are similar to those of
ULUE, and IS also has dynamic dependence. IS showed a significant positive impact for
its shock in the first period. Subsequently, the impact gradually decreased and converged
to zero in the 10th period. This indicates that IS also had a dynamic dependence. In
contrast to ULUE, the impact of IS on CEI showed a significant positive reaction, reaching
a maximum in the first period. IS upgrading had a negative impact on CEI and decreased
slightly, tending to flatten after the second period. This means the upgrading of IS is
usually accompanied by an increase in energy consumption and carbon emissions. Over
time, technological progress and innovation may lead to the increased use of clean energy,
thereby curbing carbon emissions.

CEI had a significant negative impact on ULUE; peaking occurred in the second period
and gradually decreased. The responses of CEI to IS and LUUE were similar, showing a
significantly negative reaction. Because land is the basic carrier of urban resources, the
environment, the economy, and social development, it is also an important constraint on
urban development. The use status and scheme of land resources are constraints and
guidelines for regional structural adjustments. Industrial structure transformation and
upgrading are often accompanied by the development of high-value-added, low-resource-
consumption industries. This includes information technology, financial services, and
high-end manufacturing industries. These industries generally use land more efficiently
and create higher economic value on limited land, thereby improving land use efficiency.
The interaction between them constitutes the reverse effect that promotes a decline in CEI
in the future.

To avoid errors in the empirical research, we adjusted the variable order. By testing the
model, we found that the empirical analysis results of this study were consistent with the
above findings. Therefore, the model developed in this study is reliable, and the findings
have strong explanatory power.

3.3.6. Analysis of Variance Decomposition

To better measure the degree of interaction between endogenous variables, this study
selected 20 prediction periods for PVAR variance decomposition based on impulse response
analysis and listed the first, fifth, tenth, fifteenth, and twentieth periods to analyze the
interactions between ULUE, IS, and CEI (Table 8).

The contribution gradually decreased from the ANOVA decomposition results of
ULUE, and its contribution to itself became 39.4% in the 20th period. This implies that
the economic value created per unit of land was reduced. This may be because, with the
development of urbanization, urban land resources have become increasingly scarce. When
there are insufficient land resources, land use efficiency may be limited. IS played a greater
role in improving ULUE, but its contribution gradually decreased. The contribution of CEI
to ULUE gradually increased. This may be because, with the acceleration of urbanization
and industrialization, urban and industrial activities generally generate more carbon emis-
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sions. This includes emissions from transportation, energy consumption, and industrial
processes. Therefore, urban and industrial development patterns with inefficient land use
have led to a gradual increase in the contribution of carbon emissions. The contribution of
CEI to ULUE reached 13% during the 20th period.

Table 8. Variance decomposition result.

Variable Number of Periods lnULUE lnIS lnCEI

lnULUE 1 0.939 0.061 0.000
5 0.473 0.445 0.082

10 0.404 0.473 0.122
15 0.395 0.476 0.129
20 0.394 0.477 0.130

lnIS 1 0.000 1.000 0.000
5 0.000 0.919 0.081

10 0.000 0.876 0.124
15 0.000 0.868 0.132
20 0.000 0.867 0.133

lnCEI 1 0.001 0.000 0.999
5 0.001 0.002 0.997

10 0.002 0.002 0.996
15 0.001 0.003 0.996
20 0.001 0.003 0.996

The variance contribution of IS is mainly from itself. However, this contribution
gradually decreased in IS. This means that the contribution of a certain industry or sector
to the overall economy has declined. This may be because upgrading the IS is a complex
process, including cost increase, industrial chain extension, increase in the proportion of
the service industry, international industrial division of labor, and technological evolution.
In the 20th period, the contribution of IS to itself reached 86.7%. The contribution of IS to
ULUE was 0% in the 20th period. This also verifies the unidirectional causal relationship
between ULUE and IS; that is, IS was not the cause of ULUE. The contribution of CEI to IS
gradually increased, reaching 13.3% during the 20th period. This may be due to increased
energy demands, complex production processes, increased transportation, and untimely
technological updates during the upgrading of industrial structures.

The variance contribution of CEI originates mainly from itself. Compared with ULUE
and IS, its change in the contribution to itself was the smallest. The contribution of CEI to
itself was maintained at 99.6% after the 10th period, which was the highest contribution
among ULUE, IS, and CEI. This shows that factors such as the cities’ IS, energy structure,
and resident lifestyles have led to higher levels of CEI. These have had a greater impact on
climate change and the environment. The contributions of CEI to ULUE and IS were both
small at 0.1% and 0.3%, respectively, in the 20th period.

4. Discussion and Policy Implications
4.1. Discussion

Determining the relationship between resources, the economy, and environmental
development is a prerequisite for improving the quality of development. This study focused
on ULUE, IS, and CEI, examined their spatiotemporal evolution, and analyzed the static
and dynamic interactive effects of the three variables. How to use and enhance land
use efficiency, promote industrial structure upgrading, and reduce carbon emissions are
subjects worthy of research. The mechanism diagram of ULUE, IS, and CEI is shown in
Figure 8.
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The ULUE, IS, and CEI of Chinese cities had an overall upward trend, and there
are substantial differences in their distribution in different regions of China. This also
provides a complementary basis for optimizing land resource allocation, upgrading dif-
ferentiated industrial structures, and reducing carbon emissions. This is consistent with
the conclusions of Xiang et al. [50]. However, there are also different components. This
study is not only based on ULUE, IS, and CEI but also on building a regionally coordinated
development mechanism with complementary advantages and positive interactions. The
regional comparative advantages played a key role. However, ULUE, IS, and CEI will
also be used to conduct empirical research on the relationship between the three variables.
Hence, this study differs from other research [51]. The empirical results are in accord with
the reality of development in Chinese cities.

ULUE promotes the upgrading of IS, and IS upgrading has a positive effect on
ULUE [19]. China has entered the middle stage of industrialization, the ULUE and IS
of China has improved compared to the past, and improving ULUE can promote the IS
to develop towards a higher-end, more environmentally friendly, and more technology-
intensive direction, which can in turn further enhance the efficiency of land use. Industrial
development is increasingly dependent on these resources. Faced with the discrepancy
between increasing land demand and limited land supply in urban development, it is
imperative to improve ULUE. The impulse response results of ULUE on IS are consistent
with the research findings of Liu et al. who utilized the STIRPAT model and the spa-
tial Durbin model to examine the relationship between the rationalization of industrial
structure and land use efficiency [23]. The study results suggested that ULUE has an
approximate “U-shaped curve” relationship with industrial structure optimization, but,
unlike this, ULUE exerts a negative influence on the upgrading of IS. The spatial relation-
ship between different land uses is a characteristic of the urban land use structure. The
strategic use of urban land can improve the efficiency of resource allocation and promote
industrial agglomeration. Hence, it is necessary to pay attention to scientificity, suitability,
and sustainability in urban planning and land use, and to coordinate the relationship with
the IS to promote optimization and upgrading.
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ULUE inhibits CEI and CEI inhibits ULUE. Wang et al. showed that ULUE is negatively
correlated with the spatial distribution of carbon emissions [16]. These findings confirm the
results of the present study. Improving ULUE may reduce carbon emissions per unit of land
through more intensive land use patterns and an optimized urban spatial structure. Land
use change is also crucial to the impacts of ecological changes on the environment. Carbon
emissions caused by land changes are closely related to global warming [52]. Therefore,
carbon emissions must be reduced by improving the efficiency of urban land use while
simultaneously promoting innovation in green technology and other policies to reduce
carbon emissions. However, this may contradict the findings of Zhang et al., who proposed
an inverse U-shaped relationship between intensive land use and carbon emissions, with
industrial structure upgrading playing a mediating role in this mechanism [27]. This
suggests that the relationship between ULUE and CEI may not be fixed but is jointly
influenced by a variety of factors. Future research should pay more attention to the impact
of different types of land use in different regions on carbon emissions, as well as how to
optimize this relationship through policy intervention.

IS initially promotes CEI, and CEI inhibits IS. IS is closely related to economic devel-
opment, and IS upgrading and optimization promote CEI in the short term [53,54]. To
upgrade the IS, large resource investments and energy consumption may be required. IS
is mainly manifested in the gradual decline in the proportion of primary and secondary
industries and the gradual dominance of tertiary industry. At present, China still takes
secondary industry as its leading industry, which is the main source of CEI [48]. However,
as IS is gradually upgraded, carbon emissions will decrease. Substantial amounts of money,
human, and material resources are required to reduce carbon emissions. This may cause
waste and the uneven distribution of resources, affecting the sustainability of IS. Therefore,
it is necessary to take measures to promote IS in a low-carbon direction, promote economic
growth, and reduce carbon emissions. In addition, although some of our research findings
are consistent with the existing literature, for instance, the widely held view that the up-
grading of IS helps to improve CEI, Song’s (2019) study offers a more nuanced perspective,
suggesting that this relationship does not hold in all regions. This indicates that it may be
worthwhile to reconsider existing theories to account for such regional differences and the
factors that contribute to these disparities in future research [48].

This study has several limitations. While the PVAR model effectively reveals the
dynamic interactions between the variables, non-experimental research cannot entirely
eliminate the potential for omitted variable bias or reverse causality. Furthermore, due to
limitations in data acquisition, we mainly focus on research at the prefecture-level-city level;
thus, this study did not include some autonomous prefectures in the southwestern region,
and there are significant regional differences among cities in China which we may not have
fully considered the impact of on ULUE, IS, and CEI. Future research should consider more
nuanced regional divisions to more comprehensively capture specific regional heterogeneity.
Lastly, econometric models are varied and complex; this study only employed the PVAR
model and therefore exploring other models to investigate this topic should be a focus for
future research.

4.2. Policy Implications

Based on the study findings, we have sought a green and sustainable development
path that coordinates “resources–economy–environment” and achieves positive interaction
among the three variables. This would promote the strategic and intensive use of land
resources, achieve economic growth, reduce carbon emissions, and cope with climate
change. The following policy recommendations are proposed.
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Among the different regions of China, the eastern region should focus on high-level
innovation capacity, geographical location, and technical advantages, focusing on the
development of the modern service industry and advanced manufacturing industry. It
should also promote the multifunctional development and full use of construction land.
The central region should transform the factor drive into an innovation drive, accelerating
the integration of traditional heavy industry and the green transformation of industry.
Simultaneously, we should actively explore the mechanism of improving the efficiency
of urban land use and promoting the integration of cities and industries to optimize
industrial structure. In addition, the western region should construct a green mode of
industrial transfer according to talent and natural resource endowments. Additionally, we
should encourage cooperation and coordination among different regions in land resource
management, industrial structure optimization, and carbon emission control in order to
achieve complementary advantages and positive interactions between regions.

Research findings suggest that improving ULUE can suppress CEI. Efficient use of
urban land is the key to achieving green development and reducing greenhouse gas emis-
sions. In the short term, optimizing urban planning and land use policies. As the leaders
of land resource allocation, local governments should establish a regular land-resource
assessment system based on respecting the market mechanism as well as comprehensively
consider factors such as the local economic development level, resources, and environmen-
tal conditions, so as to formulate a scientific and reasonable land supply strategy. In the
long term, they should promote the intensive use of urban land resources and encourage
multifunctional land use to achieve a sustained increase in land use efficiency. By advocat-
ing mixed land use and multifunctional integration in key areas, such as industrial land
reconstruction areas, near rail transit stations, and around public spaces, we can not only
improve the efficiency of land use, but also stimulate the vitality and sustainability of cities.
In this way, we can effectively avoid the waste and idleness of land resources and correct
improper resource allocation.

Industrial upgrading is a crucial pathway to curb carbon emissions and promote
sustainable economic development. The research results indicate that there is a bidirec-
tional causal relationship between industrial structure and carbon emissions. Therefore,
enterprises should be encouraged to pursue technological innovation and industrial up-
grading through financial incentives and tax breaks. Local governments should actively
advocate for and support the robust growth of clean high-tech industries such as big data
and finance, thereby facilitating the evolution of industrial structures towards higher-end
and more environmentally friendly directions. In the long term, it is essential to develop
high-value-added, low-energy-consumption industries, gradually decreasing reliance on
high-energy-consumption sectors. To reduce carbon emissions per unit of GDP by improv-
ing energy efficiency and promoting clean energy, traditional industries with high pollution
levels should be encouraged to undergo necessary transformations or to relocate to cities
with lower economic levels to achieve green industrial upgrading. Moreover, accelerating
the development of strategic emerging industries and establishing a green manufacturing
and service system is key to achieving environmentally friendly growth. By nurturing
green, low-carbon enterprises with international competitiveness, we can not only effec-
tively mitigate environmental pollution but also foster sustainable urban development.

This research finds that the optimization and upgrading of the industrial structure
are the key drivers in enhancing land use efficiency. It helps alleviate the over-reliance on
land resources and propels the transformation of urban land use patterns from extensive
to intensive and efficient models. The government should formulate strategic plans and
policies to guide the industrial structure towards higher levels and greater added value. By
extending the industrial chain, for example, in the manufacturing sector, companies can
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be encouraged to expand their focus towards research and development as well as brand
marketing, thereby enhancing the technological sophistication of their products and brand
value while the economic output and benefits of land use can be effectively improved.
Through these measures, we can achieve the harmonious development of the economy,
society, and environment, laying a solid foundation for building more prosperous, livable,
and sustainable cities.

5. Conclusions
Using the PVAR model, this study examined the dynamic relationships among ULUE,

IS, and CEI in 309 cities in China from 2006 to 2021. The following conclusions were drawn.
The ULUE of Chinese cities generally increased during the study period; ULUE

increased the most in the central region and showed a spatial pattern that was higher
in the eastern region and lower in the western region. The eastern and central regions
morphed into vibrant epicenters of efficient land utilization, whereas the western region,
though showing promise, treads slightly behind in this rapid ascent. The CEI of Chinese
cities was distributed in a hierarchical pattern, and, over time, the development trend
shifted from individual areas to cover the entire region. Concurrently, while the central and
eastern regions sustained a moderate to high level of carbon emissions, the western region
presented a commendably lower carbon footprint. The disparities in IS across various
regions witnessed a consistent reduction. The ULUE, IS, and CEI exhibited spatial coupling
characteristics. Middle and high values were mainly concentrated in the central and eastern
regions, whereas those in the western region were relatively low.

From the Granger causality test and GMM, ULUE, IS, and CEI had dynamic effects.
There was a symmetrical effect of the one-way interaction between ULUE and IS. ULUE
had a significant positive effect on IS. Improvement in ULUE produces an agglomeration
effect that improves the standards of industrial chains and promotes the upgrading of urban
industrial structures. Ultimately, the direct and indirect carbon emissions from land use
were reduced. In addition, there was a complex two-way interaction between ULUE and
CEI. During the study period, the causal relationship between CEI and IS was the same, the
difference being that the improvement of ULUE played a restraining role in CEI, while IS
promoted the growth of CEI to a certain extent. CEI had an inhibitory effect on the IS.

From the impulse response function and analysis of the variance decomposition,
ULUE, IS, and CEI all had positive impacts on themselves but the contributions of ULUE,
IS, and CEI showed a downward trend. In particular, the negative impact of ULUE on IS
and CEI reveals that the improvement of ULUE may have an inhibitory effect on IS and
CEI, which is of great significance for achieving green and sustainable development. At
the same time, the contribution of IS to ULUE gradually decreased, while the contribution
of CEI to ULUE increased. The impact of IS on ULUE was positive, and the impact of IS
on CEI was positive in the short term. The contribution of CEI to IS gradually increased.
Simultaneously, CEI had a negative impact on both ULUE and IS, and the contributions of
ULUE and IS to CEI were relatively small.
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