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Abstract: Rapid economic growth in China has brought about a significant challenge: the
widening gap in regional development. Addressing this disparity is crucial for ensuring
sustainable development. However, existing studies have largely overlooked the intrinsic
spatial and temporal dynamics of regional disparities on various levels. This study thus
employed five advanced multiscale geographically and temporally weighted regression
models—GWR, MGWR, GTWR, MGTWR, and STWR—to analyze the spatio-temporal
relationships between ten key conventional socio-economic indicators and per capita GDP
across different administrative levels in China from 2000 to 2019. The findings highlight a
consistent increase in regional disparities, with secondary industry emerging as a dominant
driver of long-term economic inequality among the indicators analyzed. While a clear
inland-to-coastal gradient underscores the persistence of regional disparity determinants,
areas with greater economic disparities exhibit pronounced spatio-temporal heterogeneity.
Among the models, STWR outperforms others in capturing and interpreting local variations
in spatio-temporal disparities, demonstrating its utility in understanding complex regional
dynamics. This study provides novel insights into the spatio-temporal determinants of
regional economic disparities, offering a robust analytical framework for policymakers to
address region-specific variables driving inequality over time and space. These insights
contribute to the development of targeted and dynamic policies for promoting balanced
and sustainable regional growth.

Keywords: social disparity; spatio-temporal non-stationarity; spatial and temporal kernels;
spatio-temporal patterns; geographically and temporally weighted regression models

1. Introduction
Since the inception of the “Reform and Opening Up” policy in the late 1970s, China

has experienced remarkable economic growth, with its real GDP expanding at an average
annual rate of 9.8% over the past three decades [1]. However, alongside this economic
development, there has been a noticeable increase in rural–urban and regional economic
disparities post-2000 [2]. For instance, coastal regions exhibit a per capita GDP double
that of inland areas, while Shanghai’s per capita GDP surpasses that of inland Guizhou
Province by a factor of 10. Such escalating economic inequality can fuel social discontent
and political instability within a nation. Moreover, considerable and swiftly escalating
inequality may hamper economic growth and jeopardize the prospects of sustainable
long-term development [3]. From this standpoint, addressing regional social disparity is
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essential for advancement and has a beneficial impact on productivity, the economy, and
the reinforcement of democracy and citizenship rights [4,5].

Regional social disparity refers to unjust disparities in opportunities, resources, and
outcomes among different groups of people. These disparities can in turn contribute to
the emergence of spatial disparities, characterized by uneven distributions of various
socio-economic factors across varying geographical areas [2,3,6]. Importantly, these spa-
tial disparities often exhibit non-stationarity, which refers to the phenomenon where the
statistical properties of a dataset—such as its mean, variance, or relationships between
variables—change over space or time rather than remaining constant. In essence, social
disparity is a driving force behind the phenomenon of spatial disparity, as these two
concepts are intricately interlinked and mutually reinforcing. Therefore, recognizing the
spatial disparity and identifying the determinants of social disparity as a foundation for
targeted policy interventions to address the unique needs and concerns of disadvantaged
regions [7]. This recognition stands as the prerequisite to help implement policies that
facilitate social inclusion and provide opportunities for marginalized groups to overcome
structural barriers [8].

However, while the widely used global linear regression models are only able to
analyze the complicated influence of socio-economic variables in social disparity [9], they
neglect the spatial or temporal trends of regional disparity at some scales [10,11]. For
example, ordinary least square (OLS) assumes that the regression relationship between
independent variables and the explanatory variable is homogeneous in space and time,
leading to the inaccuracy or failure of results in exploring disparity patterns and processes.
Therefore, a series of OLS-like models, such as the expansion method [12], the distance–
decay weighted regression [13], and the geographically weighted regression (GWR) model
have been proposed to take spatial heterogeneity into consideration [14–16].

Among these OLS-like models, GWR was one of the widely used methods in regional
economic disparity analysis [17]. GWR is widely used in rural [18] and urban [19] analyses,
and the research scale ranges from large-scale administrative districts (such as the city
agglomeration [20] and provincial levels [21]) to small-scale community studies in non-
administrative units. In GWR, predictive variables such as the built environment (e.g.,
land use patterns, transportation systems, urban design variables) and socio-economic
situations (e.g., income, GDP, unemployment rate, education level) are embedded within
the GWR framework to demonstrate the social disparity determinants [22].

A critical component of GWR and its extensions is bandwidth optimization, which
determines the spatial range (or temporal range in spatio-temporal models) over which ob-
servations influence the local regression estimates. In GWR, a single bandwidth is selected
to ensure the relationships between variables are adequately smoothed while capturing
local variations. However, this uniform bandwidth assumes that all relationships vary at a
single spatial scale, which may oversimplify complex socio-economic phenomena [23]. To
address this limitation, the multiscale GWR model (MGWR) introduces variable-specific
bandwidths, enabling each predictor to adapt to distinct spatial scales. For example, while
income disparity might vary significantly over a broad spatial range, unemployment effects
could be more localized. MGWR’s bandwidth optimization dynamically adjusts to these
differences, providing a finer-grained analysis of socio-economic determinants [24–26].
Both GWR and MGWR highlight the importance of spatio-temporal kernels, which serve
as weighting functions to determine the influence of observations within a specific spa-
tial or temporal neighborhood. These kernels enable the models to capture variations in
social disparity determinants across both space and time, providing a dynamic lens to
analyze complex processes. By addressing the non-stationary nature of socio-economic
phenomena and introducing spatio-temporal kernels, these models offer powerful tools for
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exploring how social disparity determinants evolve across different spatial and temporal
scales [27,28].

While it is worth noting non-stationarity in a social disparity context, it can also
be the case that spatial disparity differs not only in a variety of spaces but at various
times (time–non-stationarity). Thus, to improve upon the GWR and MGWR methods,
geographically and temporally weighted regression (GTWR) [29,30] and multiple scales of
GTWR (MGTWR) models incorporating temporal dimensions alongside spatial bandwidth
optimization have been proposed to combine the effects of temporal and spatial variation
in the regression model. The time variation considered in the GTWR and MGTWR model is
the concept of a time interval instead of the rate of value variation over time. The stepwise
strategy applied in the spatio-temporal kernel function of the GTWR and MGTWR model
is to fix an optimized spatial bandwidth first, and then it fixes the optimized temporal
bandwidth [31,32]. However, this time-isolated bandwidth optimization procedure does
not always seem reasonable [33], as it is not able to optimize both the temporal and spatial
bandwidths at the same time [34]. At present, GTWR and other improved models of GWR
have been used in a large number of case studies in exploring ecological environment and
urban construction [35,36], air quality and carbon cycle [37].

To further improve the spatio-temporal kernel function, the recently developed spatio-
temporal weighted regression (STWR) model has been proposed by Que [38]. Different
from the GTWR and MGTWR, the STWR model treats the time distance as the rate of value
variation over a time interval rather than the time interval itself. This model integrates
spatial and temporal bandwidth optimization into a unified framework. By weighting
observations based on their proximity in both space and time, STWR excels at modeling
complex processes that evolve non-uniformly across regions and periods. It is thus more
suitable to consider the effects of different variation of observed points over time. In
addition, STWR optimized the temporal kernel function in two or three dimensions, which
is different with the one-dimension temporal kernel function (e.g., Gaussian kernel or Bi-
square kernel) that defined in GTWR and MGTWR. STWR utilizes a weighted average form
to calculate the spatio-temporal kernel rather than the multiplication form in GTWR and
MGTWR [29,33], which may avoid potential underestimation of combined spatio-temporal
effects [38].

Addressing the intricate dynamics of social disparity requires tackling complex, non-
linear interactions between temporal and spatial factors. These challenges are further
compounded by issues like the modifiable areal unit problem (MAUP) or “neighborhood
effect” [39], which arise from variations in geographical definitions and scales. To address
these complexities, this study employs advanced spatial and spatio-temporal regression
models, including GWR, MGWR, GTWR, MGTWR, and STWR, which effectively account
for non-stationarity across spatial and temporal dimensions—critical for analyzing socio-
economic data such as GDP per capita [40].

By leveraging spatio-temporal kernels, these models capture localized variations and
dynamically adapt to changes over both space and time. Their interpretability and ability
to provide geographically and temporally explicit insights set them apart from machine
learning techniques like random forests [41], support vector machines [42–44], or neural
networks [45,46], which often function as black box approaches. Unlike machine learning
models, these regression methods deliver localized coefficients, revealing spatially and
temporally varying relationships that offer valuable insights into regional disparities and
socio-economic patterns [47]. This interpretability makes these models particularly advan-
tageous for policy-making and academic research, where understanding the underlying
mechanisms driving disparities is as crucial as achieving predictive accuracy. Their ability
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to identify nuanced, context-specific relationships supports the development of targeted
interventions and evidence-based strategies to address social inequality effectively [48].

Additionally, socio-economic variables often exhibit unique spatio-temporal patterns,
further complicating the analysis of regional disparities. To better understand their dynam-
ics, this study focuses on county-level and prefecture-level cities in China as fundamental
spatial units [49]. Using spatio-temporal regression models of GWR, MGWR, GTWR,
MGTWR, and STWR, it aims to:

(1) Evaluate and compare the effectiveness of GWR, MGWR, GTWR, MGTWR, and STWR
in identifying and quantifying the key determinants of regional economic disparities.

(2) Investigate how these models capture spatio-temporal heterogeneity across different
administrative levels, providing deeper insights into the structural factors driving
regional social disparities.

This research contributes to refining the analytical framework for studying regional
disparities by integrating advanced spatio-temporal modeling techniques with a focus on
scale-sensitive and context-specific socio-economic variables.

2. Study Area and Data Collection
2.1. Study Area

To thoroughly investigate the “neighborhood” effect in various geographically and
temporally weighted regression models, this study examines regional disparities in China
at two spatial scales: the county level (2357 counties) and the prefecture level (357 cities), as
depicted in Figure 1a. The temporal dimension is segmented into four periods: 2000–2005,
2006–2010, 2011–2015, and 2016–2019. Given evidence of increasing rural–urban and
regional economic disparities in China since 2000 [2]. we extended the analysis to evaluate
social disparities across two dimensions: (1) poverty-stricken versus non-poverty-stricken
regions and (2) mega-regions and sub-national regions, represented by the southeastern and
northwestern areas divided by the Hu Line. This multi-scale and multi-regional approach
ensure sensitivity to the spatio-temporal dynamics of social disparity evolution.
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Figure 1. County-level and prefecture-level data were used to show the spatio-temporal regression.
Other spatial units levels (poverty-stricken vs. non-poverty-stricken regions, mega-regions, and
west/east of Hu Line regions) were used to evaluate socio-economic inequity as well as the model’s
sensitivity in this study.
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To address the frequent boundary changes in county-level administrative units, we
employed a boundary harmonization strategy. Using the 2019 administrative boundaries
of county-level units (2347 counties within 357 cities) as the authoritative reference dataset
(http://www.resdc.cn/, accessed on 1 January 2021), we ensured consistent spatial bound-
aries across all time periods. This harmonization accounted for over 653 boundary changes
between 2000 and 2020 [50]. When discrepancies were identified, socio-economic data such
as GDP and population were adjusted to a unified base year boundary using spatial overlay
techniques in GIS. For counties with boundary modifications, data were recalculated using
an area-weighting method or a time series interpolation approach, ensuring comparability
across years. To validate these adjustments, the recalibrated data were cross-referenced
with secondary datasets to minimize discrepancies and confirm accuracy. These preprocess-
ing methods ensured that the observed temporal trends reflected genuine socio-economic
changes rather than artifacts introduced by administrative boundary modifications.

2.2. Variables

How to objectively measure socio-economic inequity is a key issue in a regional
disparity study. Gross domestic product (GDP) per capita is an indicator that is widely
used in socio-economic research [17,27], and the growth rate of real GDP per capita has
shown a significant influence on regional development. This indicator is more generic
across regions compared with other indicators such as GDP, minimum income, etc. Thus,
this study adopted GDP per capita as the dependent variable to depict regional disparities
in China.

We selected the independent variables based on a comprehensive literature review
and data availability [42,43]. To clarify the rationale behind our selection, we have provided
the following explanations: (1) Practitioner number (PN) reflects the active labor force,
a key driver of economic productivity and GDP growth [51]. (2) Primary industry (PI)
includes agriculture, forestry, and fishing, representing the backbone of rural economies
and regional economic transitions [52]. (3) Secondary industry (SI) captures industrial
production and urbanization, a major GDP growth driver in emerging economies [53].
(4) Public financial revenue (PFR) indicates government income for funding infrastructure
and services, linked to economic growth and decentralization [54]. (5) Public financial ex-
penditure (PFE) reflects government spending on public goods associated with growth and
social welfare [55]. (6) Deposit balance (DB) represents household savings and financial sta-
bility, influencing inequality and consumption [56]. (7) Loan balance (LB) highlights access
to credit and investment capacity, crucial for economic development [57]. (8) Total power
of agricultural machinery (TP) indicates mechanization, boosting agricultural productivity
and rural economic transformation [58]. (9) Student number (SN) reflects educational
access, fostering human capital and long-term growth (Becker, 1964). (10) Hospital bed
number (HBN) measures healthcare infrastructure, linked to workforce productivity and
social development [59]. (11) Grain yield (GY) indicates agricultural productivity, essential
for food security and rural stability [60].

These variables were chosen to explore GDP determinants across spatial and temporal
contexts. PN, PI, and GY highlight disparities in employment and agriculture-dependent
regions. SI addresses industrialization-driven disparities. PFR and PFE reflect government
capacity and investment. DB and LB capture financial inclusion and savings patterns, while
TP, SN, and HBN emphasize rural development, education, and healthcare. A detailed
description of these variables is provided in Table 1.

http://www.resdc.cn/
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Table 1. Summary of the variables used.

Variable Type Variable Name Code Description

Dependent variables Gross domestic product
per capita GPC Gross domestic product divided by

population

Independent variables

Practitioner number PN Number of registered practitioners

Primary industry PI GDP of primary industry

Secondary industry SI GDP of secondary industry

Public financial revenue PFR Total public financial revenue of the
government

Public financial
expenditure PFE Total public financial expenditure of the

government

Deposit balance DB Total saving deposits of urban and rural
residents

Loan balance LB Balance of various loans of financial
institutions at the end of the year

Total power of agricultural
machinery TP The sum of the rated power of all

agricultural machinery power

Student number SN Number of students in primary and
secondary schools

Hospital bed number HBN Number of beds in medical and health
institutions

Grain yield GY Total grain yield of each county

The variance inflation factors (VIFs) for 10 of the explanatory variables were all below
the acceptable threshold of 10 (ranging from 2.38 to 9.29) across four years of analysis.
For public financial revenue (PFR), the VIF exceeded 10 in earlier years but fell below
this threshold in 2014 and 2019. PFR was retained in the analysis because it serves as
a critical proxy for regional government capacity to invest in development initiatives.
It reflects government income from taxes and other sources that fund public services
and infrastructure development. Given its historical alignment with economic expansion
and fiscal decentralization, PFR provides valuable insights into regional disparities. To
ensure comprehensive analysis, we included all 11 variables, as their collective impact
is integral to understanding the socio-economic dynamics in this study. This approach
balances statistical robustness with the inclusion of theoretically and empirically significant
variables, as detailed in the methodology section. The details of the VIFs are shown in
Tables S3–S6 in the Supplementary Materials. All the socio-economic statistic data from
2000 to 2019 were collected from the China County Statistical Yearbook (CCSY), published
by the National Bureau of Statistics of China. All of these data are publicly available.

3. Methodology
As shown in Figure 2, the research methodology in this study involved two major

steps: (1) OLS, GWR, MGWR, GTWR, MGTWR, and STWR model regression; the rela-
tionship between the dependent and independent variables was established using the six
regression models; and (2) comparison between the results of the OLS, GWR, MGWR,
GTWR, MGTWR, and STWR models. A calibration procedure was implemented to opti-
mize the bandwidth of the regression models according to R2 and the Akaike information
criterion (AIC), and then the spatio-temporal heterogeneity of different variables was
explored across two different spatial domains.



Land 2025, 14, 59 7 of 25

Land 2025, 14, x FOR PEER REVIEW 7 of 26 
 

optimize the bandwidth of the regression models according to R2 and the Akaike infor-
mation criterion (AIC), and then the spatio-temporal heterogeneity of different variables 
was explored across two different spatial domains. 

 

Figure 2. Workflow of the methodology. 

3.1. GWR Model 

Traditionally, the relationship between the dependent and independent socio-eco-
nomic variables has been built using ordinary least squares (OLS) regression, i.e., 

𝑦 = 𝛽 +  𝛽𝑥
ୀଵ + 𝜀 (1)

where 𝛽 represents the intercept value, and 𝛽 denotes the 𝑘th coefficient, and 𝑘 is as-
sumed to be 11 in this study. 𝑥 represents the 𝑘th independent variable, and 𝑦 repre-
sents the dependent variable. 

Based on the OLS model, the GWR methodology was proposed, which used local 
regression framework to explain spatial non-stationarity by estimating various parame-
ters locally in space [14]. The parameters were estimated locally, using distance-weighted 
subsampling at neighboring locations, which can be expressed as: 

𝑦 = 𝛽(𝑢, 𝑣) +  𝛽(𝑢, 𝑣)𝑥
ୀଵ + 𝜀 (2)

where 𝑦 is a response variable of point 𝑖 at location i with the coordinate (𝑢, 𝑣), and 𝑥  represents the 𝑘 th in 𝑚  predictive variables of point 𝑖 . 𝛽(𝑢, 𝑣)  is the intercept 
value, 𝛽(𝑢, 𝑣) denotes the estimated parameter for the 𝑘th predictor variables, and 𝜀 
is the error term of point 𝑖. 𝛽(𝑢, 𝑣) in the GWR model is estimated using the predictive 

Figure 2. Workflow of the methodology.

3.1. GWR Model

Traditionally, the relationship between the dependent and independent socio-
economic variables has been built using ordinary least squares (OLS) regression, i.e.,

yi = β0 +
m

∑
k=1

βkxik + ε (1)

where β0 represents the intercept value, and βk denotes the kth coefficient, and k is assumed
to be 11 in this study. xik represents the kth independent variable, and yi represents the
dependent variable.

Based on the OLS model, the GWR methodology was proposed, which used local
regression framework to explain spatial non-stationarity by estimating various parameters
locally in space [14]. The parameters were estimated locally, using distance-weighted
subsampling at neighboring locations, which can be expressed as:

yi = β0(ui, vi) +
m

∑
k=1

βk(ui, vi)xik + εi (2)

where yi is a response variable of point i at location i with the coordinate (ui, vi), and
xik represents the kth in m predictive variables of point i. β0(ui, vi) is the intercept value,
βk(ui, vi) denotes the estimated parameter for the kth predictor variables, and εi is the error
term of point i. βk(ui, vi) in the GWR model is estimated using the predictive variables
of point i’s neighbors in the scope defined by the space distance to the point i and can be
expressed by Equation (3):
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βk(ui, vi) = [XTW(ui, vi)X]
−1XTW(ui, vi)y (3)

where X is the independent variable matrix, XT is the transpose of X, y is the independent
variable, and W(ui, vi) denotes an n × n diagonal geographic weighting matrix for point i,
which is formed through a kernel function, such as Gaussian and bi-square. Here βk(ui, vi)

denotes the impact of xik on yi (GDP per capita in this case), and higher βk(ui, vi) signifies
larger impact on regional economic disparity.

3.2. MGWR Model

MGWR is an extension of GWR. While GWR assumes consistent local relationships
across models at the same spatial scale [24], MGWR allows the conditional relationships
between the response variable and the different predictor variables to vary at different
spatial scales. This adaptability is facilitated by aligning each explanatory variable’s
neighborhood with its own spatial extent, a principle that underpins MGWR’s enhanced
coefficient estimation within local regression models. This innovation is reflected in the
bandwidths, which indicate the range over which data is borrowed and can vary by
parameter surface. The expression of MGWR Equation (4) is refined from Equation (2).

yi = β0(ui, vi) +
m

∑
k=1

βbwk(ui, vi)xik + εi (4)

Assuming that there are n observations, for observation i ∈ {1, 2, . . ., n} at loca-
tion (ui, vi), bwk in βbwk indicates the bandwidth used for the calibration of the jth
conditional relationship.

3.3. GTWR Model

To further reveal the influence of spatial–temporal heterogeneity of independent
variables, the GTWR model is used to explore regional differences and periodic laws of
influencing effects [33,61]. The base formula of the GTWR model is shown as follows:

yi = β0(ui, vi, ti) +
m

∑
k=1

βk(ui, vi, ti)xik + εi (5)

where yi is the response variable at point i with spatial and temporal coordinates (ui, vi, ti).
In GTWR, βk(ui, vi, ti) is optimized using the predictive variables of point i’ s neighbors in
the scope defined by the space–time distance to the point i, and it can be obtained from
Equation (6), where W(ui, vi, ti) is a diagonal spatio-temporal weighting matrix specific to
location i:

βk(ui, vi, ti) =
[
XTW(ui, vi, ti)X

]−1XTW(ui, vi, ti)y (6)

The elements in the spatio-temporal weighting matrix can be represented as:

W(ui, vi, ti) =

{
WS

ij × WT
ij , 0 ≤ ∆t < bSτ

0, otherwise

WT
ij = exp

(
dτ

ij
2

h2
T

)
, WS

ij = exp

(
dS

ij
2

h2
S

)
dT

ij =
√(

ti − tj
)2

(ti > tj) dS
ij =

√(
ui − uj

)2
+
(
vi − vj

)2

(7)

where WT
ij and WS

ij are the time-weighted and space-weighted elements between observa-

tions i and j, respectively. hT and hS are the spatial–temporal bandwidth. dS
ij is defined as

the spatial distance between observations i and j; v is the bandwidth in time. τ is used for
adjusting the inconsistency of the time distance and space distance, and therefore bSτ is
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the spatial bandwidth bS at a certain time stage τ, and bτ denotes the temporal bandwidth.
The remaining steps of GTWR are similar to those in GWR.

3.4. The MGTWR Model

The calibration of the MGTWR model is based on a back-fitting algorithm, and the
MGTWR model is regarded as a generalized additive form [25]:

yi = β0(ui, vi, ti) +
m

∑
k=1

βbwk(ui, vi, ti)xik + εi =
m

∑
k=1

fik + εi (8)

The MGTWR model regression coefficients bwk for the kth covariate are calibrated
using the specific bandwidth bwk. The back-fitting algorithm first initializes the additive
term vector fk = [f1,k, f2,k, . . . , fn,k] using the GTWR model. The residual term ε̂ at this stage
can be obtained from ε̂ = y − ∑m

k=1 fk. The first covariate generates the optimal bandwidth
bw1 and updates the first additive term vector fk as well as ε̂. Then this process continues
on to the next covariate until all optimal bandwidths bwk are updated.

3.5. STWR Model

The spatio-temporal weighted regression model (STWR) is a space–time regression
model similar to GTWR to explore local spatio-temporal non-stationarity. The most notable
improvement of STWR compared with GTWR is that it is designed to have a weighted
average form in the spatio-temporal weighting matrix [38]. The distances are calculated as:

WST
ij = (1 − α)WS

ij + αWT
ij (9)

where α ∈ [0, 1] is an adjustable factor to scale the space and time effect. This improves
on the potential weight underestimation and accelerates the calculation through kernel
functions. WS

ij is the same as in the GTWR model and WT
ij is not the time interval, but the

rate of value variation between an observed point and a regression point through a time
interval, shown as follows:

WT
ij =


[ 2

1+exp
(
−dT

ij /bT
) − 1

]
, 0 < ∆t < bT

0, otherwise
(10)

dT
ij =

∣∣(yi − yj
)
/yj
∣∣

ti − tj
(11)

where ∆t is the time interval ti − tj between point i and point j, and bT is the temporal
bandwidth selected from time intervals. dT

ij represents spatial distance and temporal
distance between point i and point j, respectively, ti is the timestamp of point i, and tj is
the timestamp of point j ( tj < ti

)
; yi and yj are dependent variables. Thus, dT

ij is actually
the rate of value variation from time tj to ti, rather than the time interval, as in GTWR.

3.6. Model Evaluation

The above algorithms were implemented in the package of GWmodel and STWR v1.0
model in Python [38,62]. To avoid randomness within different regression models as well as
to ensure the stability of the model results, we repeated the simulation experiment 200 times
for each model for the purposes of selecting the minimum Akaike information criterion
(AICc) to define the bandwidth of the model. Then several corresponding indicators,
namely the mean absolute error (MAE), the root mean square error (RMSE), the coefficient
of determination (R2), and the adjusted R2 (Radj2), to quantitatively evaluate the similarity
between the observations and the estimated values of the resulting response variable.
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High R2 and low RMSE, MAE, and AICc indicate a good fit between the model and
the observation.

4. Results
4.1. Statistical Evaluation of the Six Regression Models

Before using the regression models, the spatial–temporal non-stationarity of explana-
tory variables was evaluated using the interquartile range (IQR). The IQR measures the
spread of the middle half of the data, and a larger IQR value indicates a larger data variabil-
ity. Comparison of the IQR of the regression coefficients from the GWR, MGWR, GTWR,
MGTWR, and STWR models with twice the standard error (SE) from the OLS model is
shown in Table 2. The extra local variation in the rightmost column indicated that all
11 explanatory variables exhibit spatio-temporal non-stationarities.

Table 2. The comparison of interquartile range of the regression coefficients from the GWR, MGWR,
GTWR, MGTWR, and STWR models.

Variable IQR
(GWR)

IQR
(MGWR)

IQR
(GTWR)

IQR
(MGTWR)

IQR
(STWR)

2 × SE
(OLS)

Extra-Local
Variation

PN 0.19 0.19 0.19 0.11 0.20 0.14 Yes

PI 0.14 0.20 0.16 0.09 0.17 −0.13 Yes

SI 0.69 0.05 0.86 0.57 0.80 0.10 Yes

PFR 0.69 0.04 0.74 0.65 0.51 1.48 Yes

PFE 0.4 0.07 0.43 0.27 0.34 0.33 Yes

DB 0.63 0.04 0.78 0.47 0.75 −0.08 Yes

LB 0.70 0.03 0.76 0.40 0.67 0.19 Yes

TP 0.12 0.12 0.15 0.09 0.16 −0.04 Yes

SN 0.25 0.13 0.30 0.17 0.28 0.01 Yes

HBN 0.15 0.16 0.13 0.12 0.10 −0.34 Yes

GY 0.18 0.10 0.22 0.13 0.14 −0.09 Yes

Table 3 presents a comparative analysis of the average fitted results obtained from five
regression models at two levels. At the county level, the statistical results of the STWR
model exhibited the highest R2 values of 0.97 along with the lowest AICc value for the
fitting results at the county level, and relatively high R2 values of 0.95 with reasonable
RMSE and MAE values at the prefecture-level. However, at the prefecture-level, the GTWR
model outperformed another four models with the highest R2 and Radj2, as well as the
lowest RMSE and MAE values.

Comparing the performances of STWR and MGTWR models with GTWR revealed
that, based on R2, Radj2, and AICc values, they exhibited similar capabilities, without one
model clearly surpassing the others. However, when assessing the RMSE and MAE values,
STWR and MGTWR did not outperform GTWR. Therefore, these results indicate that the
STWR, GTWR, and MGTWR models offer advantages over OLS, GWR, and MGWR in
the fitting process. Still, they do not distinctly outperform each other based on different
validation methods.
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Table 3. Statistical evaluation of the OLS, GWR, MGWR, GTWR, MGTWR, and STWR models.

Level Model R2 Radj
2 AICc RMSE MAE

County

OLS 0.68 0.68 −7668.20 0.03 0.02

GWR 0.93 0.90 −9631.55 0.02 0.01

MGWR 0.93 0.90 −9278.35 0.02 0.01

GTWR 0.97 0.95 −49,311.54 0.02 0.01

MGTWR 0.94 0.92 −49,579.53 0.02 0.01

STWR 0.97 0.95 −11,380.14 0.02 0.01

Prefecture

OLS 0.70 0.69 −808.76 0.13 0.09

GWR 0.86 0.81 −898.94 0.05 0.03

MGWR 0.86 0.81 −853.78 0.05 0.03

GTWR 0.96 0.94 −5625.34 0.12 0.08

MGTWR 0.95 0.92 −4317.74 0.12 0.08

STWR 0.95 0.92 −1228.29 0.20 0.14

4.2. Spatial Dynamics of the Beta Parameter for the 11 Variables in Response to GDP per Capita

During the study period, the mean nominal GDP per capita exhibited a consistent
increasing trend across both county- and prefecture-level regions (Figure 3b), with the most
significant growth observed between 2005 and 2015. After adjusting for the GDP deflator
coefficients provided by the National Bureau of Statistics (2000: 0.35%; 2005: 1.78%; 2010:
3.18%; 2015: 1.44%; 2019: 2.90%), the trend of real GDP per capita mirrored that of nominal
GDP per capita (Figure 3b). However, regional disparities in GDP per capita widened
significantly after 2005.
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(b) from 2000 to 2019. The blue dots represent the regional mean value, and the shaded area represents
the variance.

Specifically, regional differences in GDP per capita increased modestly during the
first five years but grew rapidly over the subsequent 15 years. The growth rates of mean
GDP per capita were 740.1% and 728.2% at the county and prefecture levels, respectively.
Although the regional per capita differences at the prefecture level were initially less than
half of those at the county level during the first decade, these disparities continued to
expand after 2015. In contrast, per capita differences at the county level began to narrow
during this period.
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Among the 11 independent variables, secondary industry (SI) has always had the
most positive influences and made the biggest contribution to the GDP per capita over
the past 20 years. While the relationships between GDP per capita and the other variables
vary dramatically—for example, in 2000, SI, PN and SN were three of the most important
variables related to the GDP per capita at the prefecture level, but the variables’ combination
changed to SI, PN, and DB in 2010 and SI, PFR, and HBN in 2019. Therefore, we only
selected the SI, PN, and HBN variables in 2019 as an example to further demonstrate the
spatial pattern variances of their intercept coefficients in response to GDP per capita.

As shown in the spatio-temporal regression results in Figures 4 and 5, based on
five models, SI maintained a positive and significant influence on GDP per capita using
different models across county-level and prefecture-level regions, and the highest value
was observed in the northwestern regions of China. Following SI, PFE also showed a
gradient spatial pattern from the southeastern parts to the northwestern parts of China.
Unlike SI and PFE, the spatial pattern of HBN is more diverse across the study regions.
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In term of the models’ performance, the spatial pattern of intercept coefficients based
on the STWR model was more consistent with that based on the GTWR model and MGTWR
model. Comparatively, the spatial patterns of intercept coefficients based on GWR and
MGWR were less fragmented than those of STWR, GTWR, and MGTWR. In addition, when
compared with the results based on county-level and city-level regions, the variances in
PFE and HBN at the prefecture level are less significant than those at the county level
in the southeastern part of China as well as the western part of China, and most of the
intercept coefficients changed from the negative value to the positive values across these
regions. Generally, the spatial patterns of intercept coefficients based on GTWR, MTGWR,
and STWR are more sensitive to the variables, as well as the spatial units.

4.3. Spatial Heterogeneity of Regional Disparity Influencing Variables

Figure 6 provides a deeper insight into the spatio-temporal patterns of SI intercept
coefficients over five different years, using various regression models. Notably, when it
comes to the SI variable, GTWR sometimes falls short in detecting changes in parameter
fitting as effectively as GWR. For instance, in 2010, significant variations were observed in
SI parameters within the region at the intersection of Qinghai and Tibet Provinces. While
GTWR employs an adjustment factor τ to balance the influence of time and space, it tends
to over-emphasize the temporal effects in most Chinese counties while neglecting spatial
fitting within local neighborhoods.
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Furthermore, regarding the spatio-temporal patterns of SI intercept coefficients, the
variations within the MGWR and MGTWR models are relatively insignificant. This suggests
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that the utilization of time intervals as temporal weights through the adjustment factor c
in MGTWR is not as impactful as the rate of variation in SI attribute values. In contrast,
STWR excels in capturing the combined effects of a non-stationary spatio-temporal process
involving the observed SI variable, effectively capturing local SI influences on GPC in
both space and time. This results in more pronounced spatio-temporal variations when
compared to MGWR and MGTWR.

5. Discussion
5.1. The Optimization of Bandwith Selection in Different Models

The optimization of the spatio-temporal kernel function in STWR is distinguished by
the introduction of a scale parameter, which adjusts the relative contributions of spatial
and temporal kernels to the regression points. This parameter effectively quantifies the
relative strength of spatial and temporal influences, enabling a more nuanced analysis of
spatio-temporal interactions. However, the advantages of this optimization may not be
immediately evident when temporal variations are minimal [34]. For example, as illustrated
in Table 4, during the initial period (2000–2005), the R² values across the five models are
similar. This is because models such as STWR, GTWR, and MGTWR lack prior temporal
observations to leverage, and any observed R² differences are likely due to variations in
their spatial bandwidth search ranges.

As the time intervals extend (e.g., from 5 years to 20 years), significant differences
begin to surface. Models like GWR and MGWR demonstrate a consistent decline in R²
values across the time stages, indicating reduced model fit over longer periods. In contrast,
STWR maintains consistently high R² values, reflecting its robustness in capturing spatio-
temporal dynamics. Although MGTWR occasionally achieves higher R² values than STWR,
its performance comes with a trade-off in model complexity, as evidenced by substantially
higher AICc values. AICc penalizes models with excessive complexity, balancing model fit
against overfitting risks.

Table 4. Bandwidth comparison of the five models based on the bi-square kernel.

Level Year Model R2 AICc

County

1999

MGWR 0.95 −10,622.3

MGTWR 0.95 −10,347.9

GWR 0.95 −11,088.7

GTWR 0.95 −11,078.8

STWR 0.96 −11,032.9

2004

MGWR 0.94 −9208.77

MGTWR 0.95 −20,219.7

GWR 0.94 −9560.87

GTWR 0.95 −20,724.8

STWR 0.96 −10,285.9

2009

MGWR 0.94 −9286.07

MGTWR 0.95 −29,307.6

GWR 0.93 −9572.26

GTWR 0.95 −30,821.3

STWR 0.96 −10,114.4
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Table 4. Cont.

Level Year Model R2 AICc

County

2014

MGWR 0.92 −8829.88

MGTWR 0.96 −35,262.5

GWR 0.92 −9044.22

GTWR 0.95 −40,490.7

STWR 0.93 −9904.19

2019

MGWR 0.93 −8444.73

MGTWR 0.94 −49,579.5

GWR 0.93 −8891.7

GTWR 0.97 −49,311.5

STWR 0.97 −11,380.1

Prefecture

1999

MGWR 0.89 −782.94

MGTWR 0.92 −738.84

GWR 0.92 −872.11

GTWR 0.92 −873.75

STWR 0.93 −871.55

2004

MGWR 0.85 −968.72

MGTWR 0.93 −1722.67

GWR 0.83 −956.22

GTWR 0.93 −2055.85

STWR 0.92 −1131.59

2009

MGWR 0.85 −760.3

MGTWR 0.95 −2556.34

GWR 0.89 −873.24

GTWR 0.95 −3221.36

STWR 0.98 −1286.9

2014

MGWR 0.82 −915.43

MGTWR 0.95 −3388.8

GWR 0.79 −899.6

GTWR 0.95 −4317.06

STWR 0.97 −1238.52

2019

MGWR 0.88 −841.5

MGTWR 0.97 −5434.55

GWR 0.89 −893.54

GTWR 0.96 −5625.34

STWR 0.95 −1228.29

Furthermore, our comprehensive examination of parameter bandwidths across the
five regression models highlights an important distinction: while STWR may not offer the
same degree of flexibility in adjusting parameter bandwidths as the MGWR and MGTWR
models [63,64], it consistently exhibited smaller bandwidths for all 11 parameters compared
to their counterparts in other models. For instance, as demonstrated in Table 5, regardless
of whether we considered county or city scales, the bandwidths for all parameters in STWR
were 15 and 9, respectively. These values were significantly smaller than those observed
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in other models. These smaller bandwidths indicate that STWR optimizes fewer initial
neighbors, focusing on a more confined local area for spatio-temporal analysis.

Table 5. Bandwidth of the five models based on the bi-square kernel.

Level Model PN PI SI PFR PFE DB LB TP SN HBN GY

County
MGWR 43 43 43 43 43 43 43 43 43 43 47

MGTWR 54 54 54 54 54 54 54 54 54 54 54

GWR: 81 GTWR: 67 STWR: 15

Prefecture

MGWR 43 43 46 46 43 43 43 44 44 44 51

MGTWR 22 20 17 24 14 19 21 29 17 20 23

GWR: 83 GTWR: 70.1 STWR: 9

This reduced bandwidth demonstrates STWR’s capability to effectively address spatio-
temporal non-stationarity within localized contexts. By focusing on smaller neighborhoods,
STWR enhances the robustness of its regression outcomes, allowing it to capture finer-
grained variations in the spatio-temporal dynamics of the data. This localized focus not
only improves the interpretability of the results but also highlights STWR’s ability to
maintain stability and accuracy in regions with complex or heterogeneous spatio-temporal
patterns. Moreover, while MGTWR may occasionally achieve a higher fit, the findings
emphasize that STWR offers a more optimal balance between goodness of fit and model
parsimony. By avoiding excessive model complexity, STWR ensures greater reliability and
interpretability across varying temporal scales. This balance underscores STWR’s practi-
cality and effectiveness as a tool for spatio-temporal analysis, particularly in applications
where achieving both precision and simplicity is essential.

5.2. The Kernel Function of Different Spatio-Temporal Regression Model

It is worth noting that the STWR model optimizes the weight matrix for spatial
and temporal intervals rather than the spatial kernel function. Traditional kernel density
estimation methods, such as the bi-square kernel and Gaussian kernel, incorporate a
distance decay function that assigns more weight to observations closer to a regression
point and less weight to those farther away [16,65]. Therefore, we also compared the
performance of the bi-square kernel and Gaussian kernel in specifying spatial weighting.
Since the Gaussian model has not been fully implemented in the STWR model, we only
compared its results in four other models. As shown in Tables 6 and S1, all the models
achieved higher R-squared values but also higher AIC information criteria when using the
Gaussian kernel [25,39]. The Gaussian kernel demonstrates higher uncertainty than the
bi-square kernel.

Furthermore, we compared the bandwidth differences between the Gaussian and
bi-square kernels (Table 6 vs. Table S2) and found that the bandwidths for all 11 parameters
were more diverse with the Gaussian kernel. This may be because the bi-square weight
assigns a weight of zero to observations outside the bandwidth, effectively eliminating
their influence on the local regression estimate. As a result, the bi-square kernel is less
sensitive to detecting variations in the magnitudes of observation values. However, it excels
in capturing local spatial heterogeneity effects from observations to the regression point.
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Table 6. The comparison of bi-square and Gaussian-based models.

Gaussian Bi-Square

Level Model R2 AICc R2 AICc

County

OLS 0.68 −7668.20 0.68 −7668.20

GWR 0.90 −9131.82 0.93 −9631.55

MGWR 0.82 −8659.29 0.93 −9278.35

GTWR 0.73 −39,537.20 0.97 −49,311.54

MGTWR 0.88 −45,273.30 0.94 −49,579.53

STWR / / 0.97 −11,380.14

Prefecture

OLS 0.70 −808.76 0.70 −808.76

GWR 0.83 −868.43 0.86 −898.94

MGWR 0.75 −836.39 0.86 −853.78

GTWR 0.78 −4420.36 0.96 −5625.34

MGTWR 0.88 −4990.48 0.95 −4317.74

STWR / / 0.95 −1228.29

5.3. The First Law of Geography and the MAUP Issue in the Spatio-Temporal Regressions

Tobler’s First Law Of Geography [66], which states that “everything is related to
everything else, but near things are more related than distant things,” serves as the foun-
dational principle for spatial–temporal geographic weighted regression. This principle
underpins the analysis of spatial heterogeneity and temporal dynamics, enabling a more
nuanced understanding of geographic patterns. The findings depicted in Figure 7 further
affirm this fundamental principle by illustrating the coefficient consistency of parameters
across various spatial–temporal geographic weighted regression models. Consistent with
Zhang [67] and Li et al. [68], this homogeneity arises from uniform socio-economic condi-
tions, smaller GDP per capita differences, and limited industrial diversification. Similar
trends are discussed by Song et al. [69] and Chen [70], who note minimal disparities in
western China due to slower economic integration and less diverse economic structures.

Conversely, regions with greater GDP per capita disparities, such as the Mega-region
and areas east of the Hu Line, show lower spatial consistency due to significant economic
heterogeneity and rapid industrialization. Kanbur and Zhang [71] and Gao et al. [72]
highlight how diversification and income disparities in these regions create fragmented
spatial patterns. Advanced models like GTWR, MGTWR, and STWR, which incorporate
spatial and temporal heterogeneity, effectively capture these dynamics. Wu et al. [73]
emphasize the value of temporal dimensions in understanding socio-economic processes,
while Han et al. [74] and Wang et al. [75] demonstrate the efficacy of these models in regions
undergoing rapid transformation, such as China’s eastern Mega-region.

The modifiable areal unit problem (MAUP) further impacts the fitting outcomes
of spatial–temporal models [76,77]. Parameters like HBN, GY, and PI, which correlate
positively with GDP at the prefecture level, may exhibit negative correlations at the county
level (Figures S1–S20). Openshaw [78] and Fotheringham and Wong [79] stress that MAUP-
induced variability necessitates multi-scale regression approaches. Multi-scale analyses
improve reliability by exploring the effects of spatial and temporal heterogeneity at varying
scales [25,80]. Recent advancements, such as the One4All-ST framework [81], mitigate scale
inconsistencies through flexible, unified spatio-temporal modeling.

Rational parameter selection also plays a crucial role. Indicators like HBN and PI
offer insights into human development and infrastructure investment, while GY cap-
tures economic growth dynamics, making them essential for analyzing spatial–temporal
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variations [75,82]. This aligns with Jiang and Yao [83], who underscore the importance
of selecting indicators reflective of regional disparities in heterogeneous development
landscapes like China. Therefore, adopting multi-scale models, flexible frameworks, and
carefully selected parameters is crucial for addressing MAUP and enhancing the inter-
pretability of spatial–temporal analyses. These approaches deepen our understanding of
the interplay between spatial proximity, temporal dynamics, and socio-economic disparities
while refining the application of Tobler’s First Law across varying scales.
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5.4. Suggestions for Regional Disparity Alleviation

China has made great leaps in reducing poverty and reaching the benchmarks laid
out in the Sustainable Development Goals (SDGs) [84,85], which has lifted more than
500 million of its citizens out of extreme poverty over the last three decades. Despite
these achievements, regional disparities persist, necessitating a deeper understanding of
the spatial and temporal dynamics of inequality to inform effective policy-making. This
study, using the GWR, MGWR, GTWR, MGTWR and STWR models from 2000 to 2019,
offers timely insights into the socio-economic variables influencing regional disparities
across various scales (all counties, poverty-stricken and non-poverty-stricken counties,
mega-regions, and sub-national levels). The results highlight several critical issues and
policy implications.

Equalization of Public Services. One significant finding is the role of the public
financial revenue (PFR) variable, which emerged as the second most important factor
contributing to regional disparities from 2000 to 2020. This reflects the success of initiatives
like the “China Rural Poverty Alleviation and Development (CRPAD) Program” [86,87]
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in developing healthcare, education, and technology services in the central and western
regions. However, other public service variables, such as SN and HBN, demonstrated weak
relationships with economic growth, indicating potential misallocation of government
resources. A similar point was also raised by Blanchard [88]. Therefore, this misallocation,
characterized by overinvestment in manufacturing and underinvestment in domestic
service industries, particularly at the county level, underscores the need for more balanced
resource distribution. Insufficient equalization of public services remains a significant
challenge for achieving high-quality economic development.

Rebalancing the Economy to Promote Domestic Consumption. When time interval
variables were considered in the GTWR and STWR models, deposit balance (DB) emerged
as a more significant factor than PFR in poverty-stricken regions and areas west of the Hu
Line. This finding suggests that rising inter-regional inequality has contributed to high
personal savings rates in these areas [89,90], highlighting the need to transition from high
savings to higher domestic consumption [91]. Rebalancing the economy is essential for
addressing these disparities, particularly in inland poverty-stricken regions and small cities,
where fostering local demand could boost economic growth.

Monitoring County-Level Disparities and Addressing the MAUP Issue. The study
confirmed Tobler’s First Law of Geography, showing that adjacent counties tend to share
more similar socio-economic determinants than distant ones. Patterns such as the posi-
tive congestive SI pattern in Xinjiang and the negative congestive DB pattern in the Pearl
River Delta mega-regions highlight the importance of continuous monitoring and tailored
interventions that account for the unique socio-economic and geographic characteristics
of these regions. However, the analysis also revealed significant MAUP effects, particu-
larly in regions with high inequities, such as Xinjiang and Inner Mongolia. For instance,
the SI factor in Shaanxi varied in significance between county and mega-region scales,
underscoring the need for cross-scale evaluations. Policies designed without considering
scale variations may lead to inaccurate conclusions and ineffective interventions, making
multi-scale analyses essential for designing robust and accurate policies to address regional
disparities effectively [92,93].

Strategic Focus on High-Disparity Regions: Regions with pronounced inequities,
such as Xinjiang and Inner Mongolia, require tailored strategies to address their unique
challenges. These areas exhibit stronger MAUP effects and greater resource allocation
needs, reinforcing the importance of targeted development efforts. Focusing on technical
efficiency improvements and creating sustainable development models for these regions
can significantly bridge the gap between high-growth and high-inequity areas, fostering
equitable economic development [94–96].

5.5. Research Limitation

We should note that there is not one ideal dataset that can comprehensively represent
the complexities of socially and economically meaningful regional inequity. Due to the
data limitation of the China County Statistical Yearbook (CCSY) published by the National
Bureau of Statistics of China, this study can only obtain 11 variables to delineate the regional
variations. Meanwhile, to explore regional disparities, it is essential to address inflationary
distortions in socio-economic data. In this study, the data collected from CCSY were
adjusted using the same inflation coefficient, ensuring their robustness in demonstrating
their contribution to nominal GDP per capita. However, if the goal is to analyze the
variance of socio-economic data across different spatial and temporal scales, it would be
advisable to account for inflation coefficients to achieve more accurate and comparable
results. Moreover, different combinations of socio-economic indicators may lead to various
alternative representations of regional disparity and different spatio-temporal patterns
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in their relationships [90,93]. Therefore, it is crucial to integrate diverse socio-economic
variables, such as remote sensing data, open access geographical data, etc., to study regional
disparities and social perceptions of inequity in the future. The framework outlined in
this study transforms static statistical data into multiple scales of geographical units but
lacks ground truth data for validation. Therefore, it is advisable to employ composite
indicators based on multiple dimensions of socio-economic and environmental features
to further scrutinize the uncertainty and sensitivity of indicators in identifying inequities
across different scales.

6. Conclusions
To better analyze the spatio-temporal dynamics of regional economic disparities in

China, this study builds upon existing spatial and temporal regression models (e.g., GWR,
MGWR, GTWR, and MGTWR) and advances the framework with the spatio-temporal
weighted regression (STWR) model proposed by Que [34]. By introducing a “time dis-
tance” perspective, the study explores the intertwined spatial and temporal complexities
of regional economic disparities. The contributions of this research can be summarized
as follows:

(1) Extending Traditional Spatial Regression by Incorporating Temporal Dynamics. Un-
like models such as GWR, MGWR, GTWR, and MGTWR, which focus on spatially
varying relationships at specific time steps, STWR incorporates a spatio-temporal
kernel function. This kernel optimizes the weighting of observations based on their
spatial and temporal proximity, enabling a more accurate representation of regional
economic disparities where spatial and temporal non-stationarity coexist. This en-
hancement ensures a deeper understanding of the dynamic interactions driving
disparities over time and space.

(2) Improving the Interpretability of Regional Disparities. By employing county-level
spatial units and analyzing disparities across diverse regions—poverty-stricken and
non-poverty-stricken areas, mega-regions, and sub-national regions delineated by
the Hu Line—STWR ensures robust estimation of regional disparities. The flexibility
of spatial units enhances the model’s ability to reflect nuanced differences across
various regions, making the results more interpretable and actionable for policymakers
and stakeholders.

(3) Encouraging Data-Driven Policymaking. This study successfully applies STWR to ana-
lyze a range of socio-economic variables, including primary and secondary industries,
public financial revenue, and deposit balances, to assess regional economic disparities.
By integrating spatial and temporal kernels, STWR provides a holistic analysis of
socio-economic inequities, offering a comprehensive understanding of the factors
driving disparities. This approach highlights specific spatial and temporal dimensions
of inequality, enabling more targeted resource allocation and intervention strategies.

This study also emphasizes the practical applications of GTWR, MGTWR, and STWR
models, which provide significant advancements in analyzing the spatial and temporal
impacts of China’s “accurate poverty targeting” [97] initiatives and offer deeper insights
into regional economic disparities. The key contributions are as follows:

(1) Impact of Industrialization on Regional Disparities. Post-2000, heavy industry has
intensified the rural–urban divide, particularly between mega- and non-mega-regions
and areas west and east of the Hu Line. These findings highlight structural chal-
lenges in regional development, underscoring the need for tailored policies to address
industrial dependency and promote balanced growth.

(2) Policy-Driven Transformations Post-2010. The analysis of the public financial revenue
(PFR) variable highlights the Chinese government’s focused efforts to improve public
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services, ecological development, and capacity building, with a stronger impact
observed in poverty-stricken areas. These results validate the effectiveness of targeted
poverty alleviation strategies and provide a blueprint for scaling similar efforts.

(3) Targeted Interventions to Address Disparities. Spatio-temporal insights identify spe-
cific counties where targeted investments in healthcare, education, and technology can
effectively reduce inequities. The findings highlight the importance of sustained and
region-specific policy efforts, particularly in poverty-stricken areas and regions west
of the Hu Line. Enhancing technical efficiency and implementing long-term strategies
can significantly contribute to equitable economic development and growth [89,90].

It is crucial to acknowledge that the effective application of GTWR, MGTWR, and
STWR models hinges on the presence of spatio-temporal non-stationarity in parameters
related to social disparities. Although socio-economic indicators may exhibit variations
within spatial bandwidths and spatio-temporal kernels, relying solely on a combined
measurement of spatial and temporal distances can lead to oversimplification or mis-
interpretation. Calculating distances in three dimensions—time and two-dimensional
space—remains a significant methodological challenge. To address this, future research
should focus on optimizing spatio-temporal kernel functions and experimenting with
varying spatial and temporal bandwidths to more accurately capture the complexities of
spatio-temporal heterogeneity.
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