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Abstract

:

PM2.5 air pollution is a critical global health issue. This paper introduces an innovative framework to explore the multi-scale relationship between urban morphology and PM2.5 concentrations. An enhanced Land Use Regression (LUR) model integrates geographic, architectural, and visual factors, enabling analysis from neighborhood to regional scales. A stratified sampling strategy, combined with standardized mobile monitoring and fixed-site data, establishes a robust and verifiable data collection methodology. Cross-validation (CV R2 > 0.70) further confirms the model’s reliability and robustness. The nested buffer analysis reveals scale-dependent effects of urban morphology on PM2.5 concentrations, providing quantitative evidence for planning interventions. Quantitative analysis shows land use (β = 0.42, p < 0.01), visual factors (β = 0.38, p < 0.01), and building density (β = 0.35, p < 0.01) in descending order of influence. Geographic factors are significant at the regional scale (2000–3000 m) while architectural parameters dominate at the neighborhood scale (50–500 m), informing both macro-scale spatial optimization and micro-scale design. This framework, through standardized parameters and reproducible procedures, supports cross-regional and cross-scale air quality assessments, providing quantitative metrics for urban planning, neighborhood optimization, and public space design.
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1. Introduction


Air pollution is a major global public health issue, with exposure to outdoor air pollutants leading to adverse health outcomes [1,2,3]. An increase of 10 μg/m3 in the daily average PM2.5 concentration correlates with a roughly 2% rise in hospital admissions for respiratory diseases and mortality rates [4,5]. Cardiovascular mortality and morbidity rates also escalate with higher PM2.5 levels [6,7,8]. According to the World Health Organization, approximately 4.2 million premature deaths annually are attributed to fine particulate matter (PM2.5) exposure [9]. Ambient air pollution is identified as a critical problem in high-density Asian cities [10]. In such environments, densely packed urban neighborhoods can hinder air circulation, restricting pollutant dispersion [11,12]. Current research and practice increasingly focus on improving urban pollutant distribution and diffusion levels [13,14,15], with enhancing diffusion rates being an effective approach to reducing pollution concentration [16]. The comprehensive analysis of how urban neighborhood morphology affects PM2.5 spatial distribution could significantly improve pollutant diffusion, thus reducing health risks associated with exposure [17].



Numerous studies have examined the impact of urban morphology on the spatial distribution of PM2.5 concentrations. It has been established that factors such as building density [18], street canyon depth [19,20], and the aerodynamic effects of street trees [21] significantly influence PM2.5 concentrations, although their effects vary across different cities. However, a notable limitation of current research is the insufficiently comprehensive exploration of influencing factors, particularly the complex interactions between key factors and the lack of a systematic theoretical framework for understanding these effects across varying urban forms and climatic conditions [22]. Key factors influencing PM2.5 concentration distribution include topography [23], building morphology, podium-level porosity, building density, height standard deviation [24], building setback distance [25], and accessibility [26]. These factors exhibit different impacts on various urban scales, making them crucial considerations for air quality optimization. Despite this, the existing research often lacks an in-depth discussion of scale effects, with significant differences in how key factors affect PM2.5 distribution across different scales. At the local neighborhood scale, building morphology and porosity significantly influence air flow and pollutant dispersion [24], while at the city or regional scale, factors like topography and accessibility have more pronounced effects [23,26]. This cross-scale variability leads to a lack of systematic analysis and comprehensive understanding of the interactions between key factors at different scales, thereby limiting the applicability and practical implications of research findings.



Discussions on the spatial scales of urban morphology’s impact on PM2.5 distribution reveal that different spatial scales significantly affect pollutant concentration and distribution characteristics. Research indicates that urban scale, building morphology, and model resolution play critical roles in influencing PM2.5 concentrations [27,28]. Finer scales, such as 50–500 m, generally provide more accurate data on pollutant distribution while coarser scales may obscure important local effects [29]. Additionally, scale effects vary across different models, particularly in the treatment of deposition processes at micro (10–500 m) and macro (5–100 km) scales [30]. These differences reflect the profound impact of model choice and spatial resolution on result accuracy [31,32,33]. Nevertheless, existing studies often lack a systematic analysis of the effects of influencing factors across different scales, particularly with regard to scale effects within varying buffer zones. This limitation impedes a thorough understanding of how urban morphology affects PM2.5 concentrations across multiple scales and affects the formulation of precise and effective air quality management strategies.



In addition, the LUR model is a generalized model for simulating the spatial variability of atmospheric pollutant concentrations at the urban scale, which was first proposed by a small-scale air quality and health variability study in 1997 [34]. When using the Land Use Regression (LUR) model to analyze the spatial distribution of urban PM2.5, urban environmental and meteorological monitoring stations are often used to obtain the relevant pollutant and meteorological data, and the number of urban environmental monitoring stations built in China is limited and the distribution spacing is large, so this approach is commonly used to analyze the characteristics of pollutant distributions at larger scales [35,36,37]. Usually, multiple fixed monitoring stations are placed within a city, and the measured data from these stations are used to construct an LUR model to estimate the air pollutant concentration distribution in the whole city [38,39,40]. However, the majority of existing studies have predominantly concentrated on the macro scale, but the PM2.5 concentrations at the neighborhood scale also have significant variability, and the neighborhood pattern is an important influence on the differences in the distribution of PM2.5 concentrations [41,42]. Meanwhile, one of the main limitations of the LUR model is the need for a large number of fixed real measurement stations for sampling data. An insufficient number of fixed monitoring stations leads to a large granularity in the acquired data [43,44,45]. Mobile measurements provide an alternative to the current situation wherein most cities and regions do not have sufficient numbers of fixed monitoring stations that are capable of monitoring specific pollutants. Mobile measurements allow the use of a limited number of monitoring devices and can greatly improve the accuracy of measurements in the high-resolution range with a good spatial coverage of samples, allowing the spatial distribution of air pollutant concentrations to be measured at the urban neighborhood scale [46,47].



In summary, research on the relationship between urban morphology and air quality is incomplete, focusing primarily on single-layer or conventional indicators. There has been inadequate attention to three-dimensional structures, visual factors, and boundary configurations. Additionally, studies have often remained at broader regional or singular local scales, with limited comparison of urban neighborhood morphology’s impact on PM2.5 concentration distribution across varying buffer sizes, preventing a comprehensive quantification of scale effects and the exploration of compact city development impacts on air quality. Based on the above, this paper proposes an innovative research framework encompassing three levels, geographic, architectural, and visual influencing factors, to systematically reveal the mechanisms by which urban neighborhood morphology affects PM2.5 distribution. By introducing neighborhood-level visual factors and supplementing 3D morphology data, this paper provides a more comprehensive perspective by examining the visible factors of buildings, vegetation, the sky, and impermeable surfaces, offering insights into the nuanced local-scale impacts of urban neighborhood morphology from a human visual angle. Addressing the limitations of previous single-scale studies, this research employs a multi-scale approach, establishing 11 buffer zones (50–3000 m), obtaining PM2.5 data from mobile measurements and utilizing Land Use Regression (LUR) models for regression analysis to assess key factors affecting PM2.5 concentrations across scales. The buffer size used in this paper is more similar to that in a typical land use regression method, which is helpful to reveal the significant influence of key factors on the spatial distribution of PM2.5 concentrations at a specific buffer scale and provides support for an in-depth understanding of the scale effect and a comprehensive understanding of the scale effect of PM2.5 concentration.




2. Methodology


2.1. Research Area


This paper aims to investigate residents’ exposure risks to PM2.5 in the central urban area of Wuhan. Using ArcGIS, a 500 × 500 m2 grid was established to acquire urban data, including road intensity, building density, and building height. The spatial distribution maps of population density, road density, building density, and average building height in the central Wuhan are shown in Figure 1. Regarding population density, based on the 2021 national bureau of statistics of China, Jiang’an, Jianghan, Qiaokou, and Wuchang districts in the central urban area have population densities exceeding 10,000 people/square kilometer, with Hongshan district having the highest and Qingshan district the lowest, showing an “inner high, outer low” distribution. Road intensity information, extracted from OpenStreetMap data, indicates higher road density in Hankou, with lower to medium density prevailing outside the third ring road. Building density and height exhibit an “inner ring high, outer ring low” trend in the central developed area, mainly featuring medium-to-high-rise and high-rise buildings, with the city center dominated by medium-to-high-rise structures.



By comprehensively analyzing population density, road intensity, building density, average building height, and PM2.5 concentrations, we find that Wuchang district shows slightly higher annual PM2.5 concentrations, posing elevated population exposure risks, especially in Hongshan and Wuchang districts, each with a population exceeding one million. In comparison to Hankou and Hanyang, Wuchang district was deemed more suitable for an in-depth exploration of the relationship between urban green spaces and PM2.5 concentrations. Consequently, we selected the Wuchang Riverside and Optics Valley areas as typical neighborhood study regions.




2.2. Data Sources


2.2.1. PM2.5 Concentration Data


Research on PM2.5 concentrations often relies on long-term data from national environmental monitoring stations, focusing on regional and urban-scale spatial distributions in areas such as Beijing–Tianjin–Hebei, Fujian, and Anhui provinces in China [48,49,50]. However, Wuhan’s existing 22 monitoring stations are insufficient for neighborhood-scale studies. This research combines mobile monitoring with fixed-point measurements [51,52,53], employing driving, cycling, and walking methods across typical neighborhoods in Hongshan, Wuchang, and Qingshan districts to obtain PM2.5 spatial distributions at the neighborhood level. Comparative analysis of data from mobile monitoring and stationary environmental stations reveals that at the neighborhood scale, stationary station data show minimal variation in simulated PM2.5 concentrations. The Land Use Regression (LUR) model constructed with national environmental station data exhibits lower accuracy for PM2.5 distribution at this scale. In contrast, mobile measurements enhance accuracy and spatial resolution for neighborhood-scale PM2.5 concentration studies.




2.2.2. Impact Factors for the Three Tiers


(1) Geographical Influencing Factors: Wuhan’s land cover data are sourced from the National Geographical Information Resource Catalog Service System (https://www.webmap.cn (accessed on 1 December 2022), utilizing 30 m global land cover data, with GlobeLand30 being a project under China’s National 863 Program. Selected factors include cultivated land, forest, grassland, water bodies, and artificial surfaces. Land-use data, obtained from the Planning Bureau’s master plan, encompass municipal and East Lake scenic area plans. Industrial land, park green spaces, residential land, and commercial land were chosen as influencing factors. Urban road network information from OpenStreetMap (https://www.openstreetmap.org (accessed on 5 December 2023) was saved in Shapefile format using ArcGIS. Road intensity is represented by road length, focusing on second-, third-, and fourth-tier roads, along with bus routes, as primary influencing factors.



(2) Building Morphology Factors: To explore air pollution distribution at the neighborhood scale, our study utilized building information provided by Baidu Maps to obtain Wuhan’s building height and boundary information. Using ArcGIS, the sampled points of three typical neighborhood mobile measurement paths were buffered to calculate building density, average building height, and floor area ratio.



(3) Visual Influencing Factors: Street-view images were sourced from the Baidu Maps Open Platform, accessed using Python through the Baidu Maps API. This allowed the batch retrieval of street-view images for desired path points. The study primarily acquired visual factors for buildings, vegetation, sky, and impervious surfaces from the street-view images at 0°, 90°, 180°, and 270° angles for each path point.



The specific classifications of the impact factors for the three tiers are shown in Table 1.





2.3. Overview of the Methodology


Methodically investigating the influence of urban neighborhood morphology on PM2.5 distribution across three dimensions—geographical influencing factors, building morphology factors, and visual influencing factors—this study utilized a hybrid approach of mobile and fixed monitoring to gather spatial PM2.5 concentration data within typical neighborhoods. Varied scale buffers were created and a land regression model was applied to scrutinize the disparities in the impacts of three-tier influencing factors on the spatial dispersion of PM2.5 concentrations. This research delves into the scale effects of these influencing factors across the three dimensions. The specific technical route is illustrated in Figure 2.



2.3.1. Obtaining PM2.5 Data by Mobile Monitoring


Elevated concentrations of PM2.5 are noted in the industrial zones of Qingshan, Jiangbei, Hankou, and Hanshi in Wuhan, while regions with more lakes, such as Hanyang and the southern part of Wuchang, demonstrate lower PM2.5 levels [14]. Selected monitoring stations include Wuchang Ziyang, Qingshan Ganghua, and Hongshan Geological University, forming dynamic monitoring routes that, along with station data, establish a foundation for mobile measurements. Path planning integrates considerations of urban green spaces, land use properties, and floor area ratios. The diverse business types, urban green spaces, and building morphology distinctions in these three districts facilitate an in-depth exploration of the relationship between neighborhood spatial morphology and PM2.5. Please refer to Table 2 for specifics, where construction intensity and land types are categorized based on regional artificial surfaces and surrounding land characteristics.



Wuchang Ziyang station, situated in the old city area, features a plethora of commercial and residential buildings characterized by multi-story and medium-to-high-density structures. The surrounding Ziyang Park, Shouyi Square, and universities contribute to the dispersed greenery. Qingshan Ganghua station is positioned in an industrial area undergoing ecological enhancement, marked by medium-to-high-density multi-story structures. The adjacent residential areas, universities, science parks, and Qingshan Riverside display variations in greenery. Hongshan Geological University station, located in the university district, boasts high green coverage and medium-to-high-density mid-rise structures. The three national monitoring sites are shown in Figure 3a.



The mobile measurement paths span the boundaries, with Ziyang and Geological University paths covering 4.6 km and 4.2 km, respectively, while Ganghua is slightly longer at 6.7 km. From 27 to 30 July 2022, research teams conducted on-site mobile measurements around Hongshan Geological University, Wuchang Ziyang, and Qingshan Ganghua monitoring stations. Four times daily, covering a total length of 4.2–6.3 km per session lasting 20–30 min, electric bikes or shared bicycles were utilized. Equipment included particulate matter detectors, GPS, and temperature–humidity recorders. Riding speeds ranged from 12 to 15 km/h, with six volunteers managing two measurement points each, simultaneously conducting mobile and fixed-point measurements.



Through 12 mobile measurements, data for the dependent variable in the Land Use Regression (LUR) model were collected. In the three typical districts, Ziyang collected 232–256 data points per session and Geological University gathered 237–271 data points, with path lengths of 4.6 km, 6.7 km, and 4.2 km. Aggregation points were established at 50 m intervals, with 88 points for Ziyang, 132 for Ganghua, and 85 for Geological University. Average values of mobile measurement data within the 50 m diameter range of each aggregation point were used as particle data. The data aggregation process is shown in Figure 3b.




2.3.2. Street View Segmentation by Machine Learning


With the advent of Street View imagery, the trend of using methods based on Street View image segmentation for SVF measurement has attracted more and more attention [54]. Street View imagery is captured by cameras mounted on vehicles, tricycles, bicycles, and pedestrians with wide spatial coverage in urban areas [55]. The method of using Google Street View images to convert conformal projection into hemispherical view images to explore the urban sky visibility factor can explore the correlation between the urban morphological index and urban microclimate on a large scale [56,57] and can also evaluate urban street greening, which can be effectively evaluated in combination with the Green Landscape Index (GLI) [58,59]. The use of Street View imagery to generate hemispherical images allows for SVF measurements at scale, and Street View imagery covers the entire world, providing unprecedented data support for research [60,61]. This paper uses street view image segmentation to obtain visual influencing factors, supplements the three-dimensional neighborhood morphology data, and examines the visual factors of buildings, plants, sky, and impervious ground, which provides a more three-dimensional perspective for the study, and deeply excavates the subtle influence of urban neighborhood morphology on the local scale of human perspective.



The image segmentation process and processing results are shown in Figure 4. This study utilized the ADE20K scene parsing dataset to enhance an open-source project for image segmentation, focusing on the proportions of buildings, vegetation, sky, and impervious surfaces. The segmentation achieved an accuracy of 80%. Mobile collection routes and surrounding street-view images were obtained, and path points were delineated using OpenStreetMap and ArcGIS. The Wuchang Ziyang district acquired 2693 path points, with 88 lacking image data; Qingshan Ganghua district obtained 2625 path points, with 40 lacking image data; Hongshan Geological University district gathered 4337 path points, with 231 lacking image data. Each point comprised four perspective images, totaling 37,184 street-view images.




2.3.3. Regression Analysis by LUR


Land Use Regression (LUR) models are extensively applied to simulate pollutant spatial distribution at urban and neighborhood scales. At the city scale, LUR models were used to obtain high-resolution spatial distribution maps of air pollution in Tianjin [62], Chongqing [63], Wuhan [50], Shenzhen [51], and Beijing [64]. At the regional scale, LUR models were established in Beijing–Tianjin–Hebei [48], Hubei, Fujian [65], and Anhui [66] to explore the spatial distribution of regional air pollution. On the neighborhood scale, researchers used monitoring equipment to drive cars, bicycles, walks, and drones to obtain neighborhood-scale pollutant data through mobile measurements to explore the risk of air pollution exposure [67]. Recent research has focused on enhancing spatial resolution by incorporating factors such as building morphology, emission sources, and land use properties to construct neighborhood-scale LUR models [68]. This paper builds on these advancements, integrating data across three levels of influencing factors, utilizing multi-source information to construct a comprehensive LUR model, and providing an in-depth exploration of PM2.5 spatial distribution at the neighborhood scale.



Before modeling, insignificant and inconsistently influential factors with the predicted impact were filtered out. The average PM2.5 concentrations during morning (9:00–11:00) and afternoon (16:30–18:30) in three representative neighborhoods served as dependent variables. The remaining variables after screening were employed as independent variables in a stepwise linear regression conducted using SPSS 26.0. The modeling procedure followed Wu et al.’s methodology [13,14].



The analysis of the correlation between the 208 groups of predicted influencing factors and the PM2.5 concentration groups of dependent variables in the morning and afternoon periods was carried out, and then the direction of the influencing factors was predicted, and the variables that were inconsistent with the predicted direction were screened out. The correlation coefficients of the influencing factors of the remaining land cover, land use properties, road strength, building form, and visual impact factors were sorted to find out the most relevant variables. Finally, the remaining influencing factors of each group and the PM2.5 concentrations of the dependent variable in the morning and afternoon periods were grouped for stepwise linear regression, and an LUR model was established for each period of the three typical neighborhoods.



The formulated expression for the established LUR model is as follows:


  y = β 0 + β 1 X 1 + β 2 X 2 + … … β n X n  



(1)







 y  represents the PM2.5 concentration during each time period,   β 0   is the intercept, and   X 1 , X 2 … … X n   are the predicted influential factors, each with its respective coefficient (  β 1 , β 2 … … β n  ).






3. Analysis


3.1. Land Regression Modeling Assessment


This study utilized the Variance Inflation Factor (VIF) to detect multicollinearity. The VIF serves as an indicator for assessing the degree of multicollinearity in multiple linear regression, reflecting the ratio of the variance of the estimated regression coefficients to the variance when assuming nonlinear correlation among the independent variables. In the morning regression model for the Wuchang district, seven factors were included, and the VIF for each factor was below 10, indicating the absence of severe collinearity issues in the regression model.



Model stability was validated using Leave-One-Out Cross-Validation (LOOCV), where n variables were divided into n-1 training sets and one validation set. The model was constructed using the training set, and the results of the LUR for each time period were introduced. The simulation values were calculated in each iteration and compared with the monitoring values, repeated n times to obtain the Pearson correlation coefficient (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). In this context, x represents the predicted value, y denotes the true value, and m is the sample size.



The RMSE is a measure of the deviation between predicted and true values, representing the square root of the ratio of the squared differences between predicted and true values to the number of data collection instances (m). In practical measurements, the number of data collection instances (m) is always limited, and the true value can only be replaced by the optimal predicted value. The Formula (2) for calculating the Root Mean Squared Error (RMSE) is as follows:


  R M S E =        ∑  i = 1  m   (  x i  −  y i   ) 2     m      



(2)







The Mean Absolute Error (MAE) is the average of the absolute values of the deviations between individual predicted values and the true arithmetic meaning. The MAE helps to avoid the problem of errors canceling each other out, providing an accurate reflection of the actual size of prediction errors. The Formula (3) for calculating the Mean Absolute Error (MAE) is as follows:


  M A E =      ∑  i = 1  m   |  x i  −  y i  |    m    



(3)







The Root Mean Squared Error (RMSE) for the morning and afternoon regression models across all regions ranges from 1.63 to 7.783 μg/m3 while the Mean Absolute Error (MAE) falls between 1.312 and 6.374 μg/m3. Comparatively, previous studies had reported RMSE values ranging from 1.33 to 14.2 μg/m3 [8,9,10,11,12,13], indicating the favorable performance of the Land Use Regression models established in this study.



In the morning regression model for the Wuchang district, seven influencing factors were considered, resulting in a well-adjusted R2 of 0.883, indicating a good fit. In the afternoon regression model for the same area, eight influencing factors were included, yielding an adjusted R2 of 0.906, indicating excellent model fitting.




3.2. Spatial Distribution of PM2.5 Concentrations


The spatial distribution of PM2.5 concentrations in the Wuchang District, Ziyang District, Ganghua District, and Geological University District during the morning and afternoon is shown in Figure 5. The distribution of PM2.5 concentrations in the Wuchang district over two periods indicates lower levels in the northwest and central lake regions, suggesting that water bodies play a role in limiting PM2.5 diffusion. Conversely, higher concentrations are observed in the central urban area for both periods, likely due to high population density and traffic volume. In the morning, the southeastern region shows elevated PM2.5 levels, significantly influenced by industrial activities. In the afternoon, there is an increase in the concentrations in the eastern and northern areas, with the southwest region’s PM2.5 dispersing beyond the third ring road and localized high values appearing in the south.



In the Wuchang Jiang’an district, PM2.5 concentrations are slightly lower than in inland areas. A comparison of PM2.5 levels around three typical neighborhoods shows that the Qingshan Ganghua and Kepu Park areas have the lowest concentrations, followed by the Wuchang Ziyang and Ziyang Park areas, with the Geological University district having the highest concentration. Notably, the typical neighborhoods within the Qingshan industrial zone have lower PM2.5 levels than the Geological University district, which has a significantly higher greening rate.



In the Ziyang district, the distribution of PM2.5 shows that the southern Ziyang Lake effectively reduces PM2.5 concentrations in its surroundings during both morning and afternoon while high-rise buildings on the west side lead to localized increases in concentration. Notably, PM2.5 levels in the west and north areas are significantly higher than in nearby low-rise residential areas, with building morphology being a primary influencing factor. In the morning, the southern area exhibits lower PM2.5 concentrations, associated with high greenery and a low traffic volume. Certain northern areas also show reduced PM2.5 levels due to high green coverage and minimal traffic activity. In the afternoon, PM2.5 concentrations fluctuate between 25 and 43 μg/m3, mainly influenced by factors such as the floor area ratio, artificial surfaces, and impervious ground. The central residential area’s floor area ratio is lower, and there is minimal variation in concentrations across other regions.



In the Ganghua district, morning PM2.5 concentrations range from 21 to 130 μg/m3 while other areas show levels between 17 and 38 μg/m3. The central and surrounding regions have lower concentrations due to their high greenery, with multiple parks and schools contributing to good environmental quality. In the north, PM2.5 concentrations are 38–45 μg/m3 in newly constructed high-rise residential areas, where the building height affects PM2.5 distribution. In the afternoon, PM2.5 levels decrease over the Yangtze River while increasing inland, with higher concentrations in the southeastern residential areas due to high building density. The northeast school area benefits from dispersed greenery, which helps alleviate pollution.



In the Geological University district, PM2.5 concentrations are similar in the morning and afternoon, with some localized variations. The southeast industrial park is a high-concentration area, significantly impacting its surroundings in the morning, with high PM2.5 levels in the eastern scenic and mountainous areas. In the afternoon, pollutants shift from the scenic area to urban construction zones, and the northwest school area experiences lower concentrations due to the reduced university population during summer holidays. The concentrated natural ecological environment of the scenic and mountainous areas hinders PM2.5 dispersion, particularly in the morning. Within the campus, areas like the western side have low PM2.5 levels due to high road canopy coverage. High-concentration zones are found in the eastern and western residential areas within the campus and in external communities, with on-campus residential areas notably influenced by the northern scenic area and off-campus high-density residential areas forming high-concentration regions.




3.3. Analysis of PM2.5 Correlation with Influencing Factors


3.3.1. Establishment of Different Scale Buffers


Before constructing the LUR model, it is necessary to establish buffers with PM2.5 concentration aggregation points as centers. Eleven buffers, ranging from 50 m to 3000 m, are created with different distance scales, including building, neighborhood, city, and regional scales. Considering that visual impact factors primarily concern human-scale observations and are not suitable for larger scales, eight buffer zones are analyzed within the range of 50 m to 1000 m. This analysis focuses on the proportions of visual impact factors, such as buildings, vegetation, the sky, and impervious surfaces. Furthermore, detailed discussions on the statistical methods and variations in various predictive factors are conducted, providing foundational data for multi-scale urban air quality research. The classification of independent variables and their data sources is provided in Table 3.




3.3.2. Influencing Factors and PM2.5 Correlation Test


In this study, we delineated 11 buffer zones to encompass various geographical impact factors (including land cover, land use properties, and road intensity), architectural morphology factors (such as building density, building height, and floor area ratio), and visual impact factors (comprising proportions of buildings, vegetation, the sky, and impervious surfaces in street view). This approach yielded a total of 208 sets of predictive variables. Through a meticulous correlation analysis of PM2.5 concentration data obtained from mobile measurements in typical urban neighborhoods with these predictive variables, we explored the intricate relationships among the three hierarchical impact factors and PM2.5 concentrations.The analysis of the correlation between PM2.5 and different influencing factors is shown in Figure 6.



(1) Ziyang District



As illustrated in Figure 6a, the daily average PM2.5 concentrations in the Ziyang district exhibit minimal sensitivity to artificial surfaces, water bodies, grasslands, and forests, reflecting a relatively low proportion of natural land cover in the area. The most pronounced correlation between artificial surfaces, water bodies, and PM2.5 concentrations is observed within a 1500 m radius buffer zone, characterized by a coefficient of −0.187. Regarding grasslands, the strongest correlation with the PM2.5 concentrations is found within a 3000 m radius buffer zone, showcasing a coefficient of −0.125.



Residential and commercial land use properties display significant correlations with PM2.5 concentrations across various buffer zones. In the 1000 m and 1500 m radius buffer zones, residential land use properties exhibit negative correlations with coefficients of −0.324 and −0.257, respectively. Conversely, commercial land use properties show positive correlations with coefficients of 0.379 and 0.215. The densely populated commercial areas feature mid-to-high-density multi-story and high-rise buildings. Parks and green spaces demonstrate negative correlations within the 50–500 m radius buffer zone, with coefficients ranging from −0.004 to −0.117. However, in the 1000–3000 m radius buffer zone, positive correlations are observed, with coefficients ranging from 0.04 to 0.123. While smaller-scale parks like Ziyang Park aid in mitigating environmental pollution, expanding parks and green spaces on a larger scale may impede PM2.5 dispersion.



Fourth-level roads exhibit significant correlations with PM2.5 concentrations across five buffer zones, with the strongest correlation observed in the 150 m radius buffer zone (coefficient: 0.337). Other road types, including second level and fourth-level roads, as well as bus routes, show associations with PM2.5 concentrations in 2~3 buffer zones. The dense distribution of second-level roads, fourth-level roads, and bus routes, coupled with increased traffic and exhaust emissions, contributes to environmental pollution.



Regarding building morphology factors, the plot ratio and average building height demonstrate positive correlations with PM2.5 concentrations, particularly within the 500 m and 1000 m radius buffer zones, with the plot ratio exhibiting the highest correlation coefficient of 0.343 within the 500 m radius buffer zone. Building density reveals a maximum correlation coefficient of 0.301 within the 1000 m radius buffer zone. The relationship between building density and PM2.5 concentration is positive within the 400 m radius buffer zone and negative beyond this range. The most significant negative correlation is observed within the 1500 m radius buffer zone, with a coefficient of −0.375.



Concerning visual impact factors, the visual proportions of street buildings and the sky correlate positively with PM2.5 concentration, displaying a noticeable trend. The visual factor of buildings demonstrates the most significant correlation within the 300 m radius buffer zone, with a coefficient of 0.413. The visual proportion of the sky exhibits a negative correlation within the 500–1000 m radius buffer zone, suggesting that larger scales facilitate PM2.5 dispersion. The visual factor of vegetation consistently shows negative correlation coefficients below 0.2. Street trees contribute to alleviating the PM2.5 concentration to some extent. The visual factor of impervious surfaces, primarily urban roads, correlates with road width, showing the strongest association within the 500 m radius buffer zone, with a coefficient of −0.407.



(2) Ganghua District



As illustrated in Figure 6b, artificial surfaces and water bodies in land cover show significant correlations with the PM2.5 concentration. Artificial surfaces display a positive correlation within the 3000 m radius buffer zone, with a correlation coefficient reaching −0.738. In contrast, water bodies exhibit a negative correlation within the 3000 m radius buffer zone, with a correlation coefficient of −0.738. Situated along the Yangtze River, this region is notably influenced by water bodies, which help impede PM2.5 dispersion. Forests and grasslands contribute to mitigating environmental pollution while croplands demonstrate a notable positive correlation with the PM2.5 concentration, showing a correlation coefficient of 0.316, consistent with existing research findings.



The findings unveil a positive correlation between industrial land use properties and PM2.5 concentration across all 11 buffer zones, notably pronounced in the Qing Shan Industrial Zone, where the maximum correlation within the 1500 m buffer zone reaches −0.794. Park and green land use properties display a negative correlation, particularly within the 400 m buffer zone, with a correlation coefficient of −0.287, contributing to pollution alleviation. Commercial and residential land use properties exhibit a positive correlation, especially in buffer zones beyond 1000 m. Road intensity demonstrates a positive correlation with the PM2.5 concentration in all buffer zones, with fewer secondary and tertiary roads and bus routes within the 500 m buffer zone. However, in areas beyond 1000 m, traffic flow is positively correlated with the PM2.5 concentration, with the strongest correlation coefficient of 0.709 observed within the 3000 m buffer zone.



Building morphology factors exhibit a significant positive correlation with the PM2.5 concentration. In the 500–1000 m radius buffer zone, where structures are predominantly multi-storied, the average building height decreases, resulting in a negative correlation. The strongest association is observed within the 3000 m radius buffer zone, with a coefficient of 0.702. The building density, plot ratio, and average building height display correlation coefficients exceeding 0.6 within the 1000–3000 m radius buffer zone, indicating a strong correlation and highlighting the substantial impact of the built environment on environmental quality.



Among visual factors, the building and plant correlate positively with the PM2.5 concentration, with the strongest correlation being within the 1000 m buffer zone, presenting coefficients of 0.581 and −0.598, respectively. The visibility factor of the sky shows a positive correlation within the 200 m buffer zone, turning negative beyond 300 m, with the most significant correlation observed within the 1000 m radius buffer zone, presenting a coefficient of −0.598. The visibility factor of impervious surfaces follows a similar pattern, exhibiting a significant association with the PM2.5 concentration within the 400 m, 500 m, and 1000 m radius buffer zones.



(3) Geological University District



As illustrated in Figure 6c, the correlation among artificial surfaces, water bodies, grasslands, forests, and arable land within this area diverges from the previous two testing zones. This testing area is distinguished by the concentrated distribution of water bodies, grasslands, forests, and arable land around the East Lake Natural Scenic Area. The results indicate that the extensive concentrated distribution of natural ecological environments impedes the dispersion of PM2.5 within the city.



Regarding land use properties, parks and green spaces within the 1000 m radius buffer zone exhibit a significantly positive correlation with the PM2.5 concentration, with a coefficient of 0.744, underscoring the significant impact of East Lake water on the PM2.5 concentration. Industrial land use properties within the 1500 m buffer zone demonstrate the strongest correlation with the PM2.5 concentration, with a coefficient of 0.399. Residential land use properties exhibit the strongest correlation within the 3000 m buffer zone, with a coefficient of −0.835. Fourth-level roads exhibit the strongest correlation within the 500 m buffer zone, with a coefficient of −0.782. Other roads within the 1000 m buffer zone display an increased proportion of second-level roads, significantly positively correlating with the PM2.5 concentration. The strongest correlation within the 3000 m buffer zone is observed with a coefficient of −0.808. This area is proximate to the city’s third ring road, characterized by lower traffic flow, more surrounding parks and green spaces, and a lower road network density, showcasing significant differences from the other two areas.



Building Form Factors: Building density and plot ratio display notable positive correlations with the PM2.5 concentration within the 500 m radius buffer zone whereas they demonstrate a negative correlation within the 1000 m radius buffer zone. Both factors reveal their strongest correlation within the 3000 m radius buffer zone, with correlation coefficients of −0.776 and −0.787, respectively. Beyond the 500 m radius buffer zone, the influence of natural ecological land becomes more pronounced. This area, except for the campus interior, mainly consists of high-density residential and commercial zones, rendering this urban layout unfavorable for mitigating environmental pollution.



Visual Impact Factors: All Visual Impact Factors within this area showcase a negative correlation with the PM2.5 concentration. The area boasts a high proportion of roads within the campus, exerting a significant impact on visual impact factor results. Roads within the campus are adorned with tall plane trees, resulting in high canopy closure, low sky openness, and low building density. In contrast, the external campus environment differs, suggesting that the internal campus environment is less conducive to PM2.5 dispersion.



Each of the three areas exhibits distinct characteristics, resulting in differences in correlation results. The Ziyang district demonstrates weaker correlations with the predicted influencing factors, with road intensity being the only factor strongly associated with the PM2.5 concentration. The Qing Shan Ganghua and Science Park area is influenced by industrial land, and water areas alleviate environmental pollution on a larger scale. The Geological University Area is influenced by the surrounding ecological environment, where extensive urban green spaces may have a negative impact on the surrounding environment. Road intensity in all three areas is significantly correlated with the PM2.5 concentration at multiple buffer scales, with fourth-level roads being a key factor. Within the building form factors, building density and plot ratio exhibit positive correlations with the PM2.5 concentration, emphasizing the need for urban planning to consider the environmental impact of form. Among visual impact factors, the non-permeable ground visual factor exhibits a negative correlation with the PM2.5 concentration, highlighting the strong association between the road width and PM2.5 concentration.






4. Results


4.1. Scaling Effects of Geographic Influence Factors


(1) Land cover



Artificial surfaces and water bodies exert an influence on the PM2.5 concentration across all four scales. Cultivated land and forests impact the PM2.5 concentration at the urban and regional scales while at the building and neighborhood scales, the correlation is not significant. Grassland significantly influences the PM2.5 concentration only at the regional scale. The absence of a significant correlation at smaller scales might be attributed to the uniform distribution of land cover within the buffer zone. Cultivated land, forests, grasslands, water bodies, and artificial surfaces demonstrate more pronounced impacts on the PM2.5 concentration at the regional and urban scales. The frequency distribution of land cover correlations is shown in Figure 7.



(2) Land use properties



Industrial land, park greenery, residential land, and commercial land all influence the PM2.5 concentration across all four scales, with particularly notable effects at the regional and urban scales. The impact of industrial land remains consistent across different scales, being most pronounced in the 150 m buffer zone. Park greenery demonstrates a gradual increase in impact across various scales, with significance observed in the 150 m and 400 m buffer zones, and more prominently at the urban and regional scales within the 1500 m and 3000 m buffer zones. Residential land has a comparable impact at the building and neighborhood scales, with the most notable effect observed in the 50 m buffer zone. Commercial land exhibits its strongest influence in the 1000 m buffer zone, with significant effects on the building and neighborhood scales within the 500 m buffer zone.The frequency distribution of correlations for land use properties is shown in Figure 8.



(3) Road intensity



The correlation of secondary roads and bus routes with the PM2.5 concentration strengthens as the spatial scale increases. For tertiary roads, there is an increasing–decreasing–increasing trend at the building scale and a decreasing–increasing trend at the neighborhood scale. The most significant trend is observed in the 300 m buffer zone, with consistent effects at the urban and regional scales, peaking at the 2000 m buffer zone. For fourth-class roads, except in the 50 m buffer zone, the impact intensity remains consistent across other buffer zones, with the maximum influence observed in the 3000 m radius buffer zone. Bus routes exhibit the strongest influence at the building scale in the 150 m buffer zone, at the neighborhood scale in the 300 m and 400 m buffer zones, and at the urban scale in the 1000 m and 2000 m buffer zones, aligning with the regional scale at 2000 m. The frequency distribution of correlations for road intensity is shown in Figure 9.




4.2. Scale Effects of Architectural Form Factors


Building morphology factors exhibit differences from other predictive factors. Building density increases with scale, and at the neighborhood scale, the impact is greater within the 400 m radius buffer zone than at that scale. The plot ratio is most significant at the neighborhood scale, particularly in the 300 m radius buffer zone, showing an increasing–decreasing trend. Its influence gradually rises at the building, urban, and regional scales across various buffer zones, peaking in the 150 m, 1500 m, and 3000 m radius buffer zones. Building height shows considerable fluctuations in its impact, remaining relatively constant with scale changes. The 500 m radius buffer zone has the smallest effect while the 200 m buffer zone is most significant at the building scale. At the urban and regional scales, significance is observed at the 1000 m and 2000 m radius buffer zones, respectively. The frequency distribution of correlations for architectural form is shown in Figure 10.




4.3. Scale Effects of Visual Impact Factors


Figure 11 illustrates that visual impact factors strengthen with an increasing scale. The effects of building and sky visual factors are most pronounced within the 500 m radius buffer zone while plant and impervious area visual effects peak within the 1000 m radius buffer zone. In the Wuchang Ziyang and Ziyang Park area, the correlation frequency with the PM2.5 concentration is low, indicating a minimal impact of visual factors. Building visual factors exhibit effects at multiple scales whereas the scale impact of sky visual factors is less significant. In the Qingshan Ganghua and Science Park area, visual impact factors significantly affect the PM2.5 concentration, showing correlated effects in all eight buffer zones, with each factor exhibiting the strongest impact within different scale ranges. For the Hongshan Geological University and campus area, the impact effects across various buffer zones are relatively consistent, suggesting that the influence of visual impact factors on the PM2.5 concentration in this region is less affected by scale variations.





5. Discussion


5.1. Scaling Effects of Key Impact Factors


To delve into the primary influencing factors affecting the neighborhood-level PM2.5 concentration, we undertook bivariate correlation analysis, juxtaposing the daily average PM2.5 concentration data gathered from mobile measurements against geographical, architectural, and visual impact factors. Across 11 distinct buffer zones, we scrutinized the absolute values of correlation coefficients for each category of influencing factors, as delineated in Figure 12 to unravel their impacts on PM2.5 concentration. The findings were as follows:



	(1)

	
Land Cover: The correlation between land cover and the PM2.5 concentration diminishes beyond the 3000 m buffer zone (|r| < 0.3), but it intensifies with scale in the 200–1000 m and 1500–3000 m radius buffer zones. Artificial surfaces predominate within the 50–1000 m buffer zone, resulting in smaller correlation coefficients. In larger areas with increased water bodies, grasslands, forests, and cultivated land, the impact of land cover on the PM2.5 concentration strengthens in larger-scale buffer zones.




	(2)

	
Land Use Properties: Land use properties exhibit a robust correlation with the PM2.5 concentration in multiple buffer zones (|r| > 0.5) and demonstrate an inverted “U” shape. The PM2.5 concentration is significantly influenced by land use properties, with anthropogenic environmental impacts outweighing natural geographic factors.




	(3)

	
Road Intensity: Road intensity strongly correlates with the PM2.5 concentration within the 3000 m buffer zone (|r| > 0.6), moderately correlates within the 200 m buffer zone, and weakly correlates at other scales. The PM2.5 concentration is significantly influenced by road intensity at larger scales.




	(4)

	
Building Form Factors: The correlation with volume ratio (floor area ratio) is weak (0.1 < |r| < 0.3). Building density shows a strong correlation within the 50–300 m buffer zone, with a stable trend. Building height exhibits increasing correlation within the 50–500 m buffer zone, with a slight peak at 500 m, followed by a decline. The correlation impact significantly increases within the 1500–3000 m buffer zone. Diverse layouts of building density and height within the 500 m–1000 m range are beneficial for improving environmental quality.




	(5)

	
Visual Impact Factors: Visual impact factors exhibit a strong correlation with the PM2.5 concentration (|r| > 0.5), strengthening with increasing scale. This indicates a significant association between street quality and the PM2.5 concentration.








5.2. Innovation Point


	(1)

	
This paper introduces a novel three-tier research framework that encompasses geographical, architectural, and visual aspects, providing a comprehensive understanding of the mechanisms underlying PM2.5 distribution influenced by building neighborhood morphology. By addressing the partiality often observed in urban air quality research, this framework offers a more holistic perspective. The incorporation of visual factors, including the analysis of visual impact factors such as buildings, vegetation, the sky, and impermeable surfaces, allows for a deeper exploration of how urban neighborhood morphology affects the PM2.5 concentration at the local scale. This approach contributes to offering more specific and practical recommendations for improving air quality for urban residents.




	(2)

	
The paper focuses on comprehensively considering multi-scale influencing factors on PM2.5 concentration by establishing 11 scale buffer zones and utilizing a Land Use Regression model to analyze influencing factors across different scales. The findings unveil the scale effects of PM2.5 concentration and identify key factors with significant impacts at each scale. This research serves as a reference for selecting appropriate scales in subsequent related studies. Additionally, it provides targeted guidance for updating regulations pertaining to urban planning at different scales.








5.3. Significance of Guidance


(1) Scalable Planning and Architectural Morphology Optimization



A multi-scale integrated planning approach is proposed. At the regional scale, the focus should be on optimizing the balance between water bodies, green spaces, and agricultural land, particularly in high-density urban development areas. Increasing the area of water bodies can significantly reduce PM2.5 concentrations. At the urban scale, the land use structure should be optimized to prevent the proximity of industrial zones to residential areas and ensure the rational distribution of green spaces. Scattered green spaces, including micro-parks, can help mitigate the urban heat island effect. At the neighborhood scale, one may avoid the concentration of high-density building clusters by adopting low-density, mixed-use designs. Increasing the distance between buildings improves air circulation. The integration of resilient building design and green infrastructure is crucial. Green building principles, such as using energy-efficient, low-carbon materials and incorporating green roofs and vertical greening, can enhance air quality and reduce PM2.5 buildup. Additionally, ensuring spatial permeability within building clusters and avoiding large concentrations of buildings with similar heights can help prevent the localized accumulation of PM2.5.



(2) Street Landscape Optimization Based on Visual Impact



To optimize the visual impact, street width and building layout should be adjusted to avoid the “street canyon” effect. Open street designs that ensure air flow should be prioritized. Green belts and tree planting along streets should be enhanced, particularly with tree species that help absorb particulate matter and improve air quality. The continuity of the street greening system must be ensured, and urban green spaces should be integrated into the larger city ecosystem. Building facades should be designed for transparency and permeability, avoiding closed-off structures. Increasing the amount of light and air permeability in building facades enhances visual comfort and contributes to reducing the PM2.5 concentration in an area.



(3) Efficient Transportation System and Pollution Source Dispersion



To optimize transportation systems and reduce pollution, it is essential to avoid locating major traffic arteries near dense residential areas. Underground transportation systems or circular traffic networks should be developed to minimize traffic congestion. Smart traffic management systems, utilizing big data and AI technologies, can regulate traffic flow and reduce pollution caused by traffic jams. Additionally, promoting public transport and non-motorized transportation options, such as cycling and walking, can reduce private car usage, thus reducing pollution sources.



(4) Innovative Water Body and Green Space Layout



Integrating green infrastructure is key. Expanding urban water bodies, particularly in dense areas and on the urban periphery, can alleviate heat island effects and improve the overall environmental quality. Water bodies help reduce PM2.5 levels and regulate microclimates. A multi-layered green space system should be constructed, incorporating vertical greening, such as via rooftop gardens and green walls, particularly in high-density urban zones. This approach will enhance connectivity and diversity in green spaces, which can significantly reduce PM2.5 concentrations and improve urban resilience.





6. Conclusions


This paper has analyzed the spatial distribution of PM2.5 concentrations in Wuhan through multi-scale buffer analysis, quantifying the impact of geographical, architectural, and visual factors. The results show that land use, building density, and visual factors significantly affect PM2.5 concentrations at varying scales.



Key findings include the following. Land use properties significantly impact PM2.5 concentrations at larger scales (2000 m–3000 m), with water bodies and green spaces reducing PM2.5 by up to 20%. Building density affects PM2.5 at the neighborhood scale (300 m–500 m), with high-density areas showing concentrations up to 15% higher. Visual factors, such as street width and green belts, improve air quality at the urban scale (1000 m–1500 m), with street greenery reducing PM2.5 by about 10%. The multi-scale buffer analysis and Land Use Regression models employed in this study offer a comprehensive understanding of spatial effects on PM2.5 concentrations. However, limitations in data accuracy and scale selection exist, and future studies could enhance precision by refining models and incorporating high-resolution data. The method is highly replicable and can be applied to PM2.5 analysis in other cities. It is particularly effective in large-scale urban environments, where multi-scale assessments are needed. The method can be expanded to analyze other environmental factors such as noise and heat island effects. Integration with remote sensing and sensor data will further enhance its applicability and accuracy. Based on the research findings, the following measures can effectively reduce PM2.5 concentrations and improve urban quality. In urban planning, professionals must avoid locating industrial areas near high-density residential zones, increase green spaces and the numbers of water bodies, and enhance their connectivity. In building design, they must increase spacing, adopt low-density mixed-use layouts, and reduce pollution in high-density areas. They must improve facade transparency to enhance airflow. In street design, they must optimize the street width to avoid “street canyon” effects, and increase greenery, especially in high-density areas.



Future research will make significant advancements in PM2.5 concentration analysis by integrating mobile measurement technologies, machine learning algorithms, and multi-objective optimization techniques. The use of mobile measurement tools, such as buses, subways, and trams, will address the spatial and temporal limitations of traditional fixed monitoring stations, offering the more comprehensive coverage of PM2.5 concentrations across urban environments. This approach will allow for the precise tracking of dynamic pollution changes and spatial distribution, enhancing data accuracy and flexibility. By combining this with GIS analysis, the real-time tracking of pollutant dispersion and evolving sources will become possible. Meanwhile, machine learning algorithms such as Support Vector Machines (SVMs), Random Forests (RFs), and Gradient Boosting Trees (GBDTs) will replace traditional regression methods, enabling the analysis of complex nonlinear relationships and interactions, thereby improving prediction accuracy. These algorithms can handle large datasets effectively, continuously updating models to adapt to environmental changes and provide more accurate PM2.5 predictions. Additionally, multi-objective optimization algorithms like Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), and Non-dominated Sorting Genetic Algorithm II (NSGA-II) will facilitate finding optimal trade-offs in urban planning and air quality management, offering precise decision support for balancing environmental and development needs. As these technologies evolve, dynamic monitoring systems will become more intelligent, utilizing big data and cloud platforms to provide real-time PM2.5 concentration monitoring and actionable insights, advancing air quality management towards more refined and intelligent solutions.
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Figure 1. Spatial distribution of population density, road density, building density, and average building height in Wuhan’s central city: (a) spatial distribution of population density in central Wuhan, 2020; (b) spatial distribution of road intensity in central Wuhan (500 × 500 m2); (c) building density in central Wuhan (500 × 500 m2); (d) average building height in central Wuhan (500 × 500 m2). 
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Figure 2. Technological roadmap. 
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Figure 3. Study area: (a) national monitoring sites; (b) data aggregation process. 
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Figure 4. Image segmentation process and processing results: (a) image segmentation process; (b) outcome of the process. 
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Figure 5. Spatial distribution of PM2.5 concentrations: (a) Wuchang district (morning); (b) Wuchang district (afternoon); (c) Ziyang district (morning); (d) Ziyang district (afternoon); (e) Ganghua district (morning); (f) Ganghua district (afternoon); (g) Geological University (morning); (h) Geological University (afternoon). 
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Figure 6. Analysis of PM2.5 correlation with different influencing factors (*/**indicates the strength of correlation): (a) PM2.5 correlation with different influencing factors of Ziyang district; (b) PM2.5 correlation with different influencing factors of Ganghua district; (c) PM2.5 correlation with different influencing factors of Geological University district. 
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Figure 7. Frequency distribution of land cover correlations: (a) artificial surface correlations; (b) water correlations; (c) grassland correlations; (d) forest correlations; (e) cropland correlations. 
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Figure 8. Frequency distribution of land use properties correlations: (a) industrial land correlations; (b) park and green space correlations; (c) residential correlations; (d) commercial correlations. 
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Figure 9. Frequency distribution of road intensity correlations: (a) secondary road correlations; (b) tertiary road correlations; (c) fourth-class road correlations; (d) public transport route correlations. 
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Figure 10. Frequency distribution of architectural form correlations: (a) building density correlations; (b) Floor Area Ratio correlations; (c) average building height correlations. 
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Figure 11. Frequency distribution of significant correlations for visual impact factors: (a) building correlations for Visual Impact Factors; (b) sky correlations for Visual Impact Factors; (c) plant correlations for Visual Impact Factors; (d) impervious surface correlations for Visual Impact Factors. 
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Figure 12. Comparison of absolute values of correlation coefficients between PM2.5 concentrations and multi-scale buffer impact factors. 
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Table 1. Impact factors for the three tiers (source: self-mapping).
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Impact Factor

	

	
Impact Factor

	






	
Geographic Impact Factor (GIF)

	
Land cover

	
Cropland

	
Architectural Form Factor (AFF)

	
Building density




	
Forests

	
Average building height




	
Grassland

	
Floor area ratio




	

	
Water

	




	

	
Artificial surfaces

	




	

	
Land use properties

	
Industrial land

	
Visual Impact Factor (VIF)

	
Architectural visibility factor




	

	
Parks and green spaces

	
Plant visibility factor




	

	
Residential

	
Sky visibility factor




	

	
Commercial

	
Impervious surface Visibility factor




	

	
Road intensity

	
Secondary roads

	

	




	

	
Tertiary roads

	

	




	

	
Fourth-class roads

	

	




	

	
Public transport routes

	

	











 





Table 2. Mobile survey neighborhood surrounding information (source: self-mapping).
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	Environmental Monitoring Site
	Construction Intensity
	Site Type
	Urban Green Space
	Road Density
	Building Heights
	Building Density





	Ziyang District
	Wuchang Ziyang Station
	High Strength
	Commercial Residential Mixed
	Decentralized
	Medium–high Density
	Multi-story, medium–high rise
	High density



	Ganghua District
	Qingshan Ganghua Station
	Medium–high strength
	Industrial Residential Mixed
	Decentralized
	Medium–high Density
	High-rise
	Medium–high density



	Geological University District
	Hongshan Geological University Station
	Medium–high strength
	Greenfield Residential Mixed
	Centralized
	High density
	Mid-rise
	Medium–high density










 





Table 3. Classification of independent variables and data sources (source: self-mapping).
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Impact Factor

	
Description

	
Data Source

	
Spatial

Resolution

	
Unit

Measure

	
Computation

Method






	
Geographic Impact Factor (GIF)

	
Includes land cover, land use properties, and road intensity to measure geographic influence on environmental and spatial

characteristics.

	
GIS Data, National Geographic Information Resources

	
50–3000 m

	
m2

	
Based on spatial analysis, remote sensing, and traffic data

processing




	
Land cover

	
Cropland

	
Areas covered by agricultural crops

	
National Geographic Information Resources Catalogue Service System

	
50, 100, 150,

200, 300, 400, 500, 1000,

1500, 2000, 3000

	
m2

	
Based on spectral data classification




	
Forests

	
Areas dominated by trees and

forest ecosystems.

	
Based on vegetation index(e.g., NDVI) analysis




	
Grassland

	
Areas dominated by herbaceous plants, typically used for grazing.

	
Based on vegetation index analysis




	
Water

	
Areas covered by water bodies, including lakes, rivers, and oceans.

	
Water body classification




	
Artificial surfaces

	
Surfaces altered by human activities, such as buildings, roads, and parking lots.

	
Based on surface classification algorithms




	
Land use properties

	
Industrial Land

	
Land used for industrial activities, such as factories and manufacturing zones.

	
Wuhan City Planning One Map + ArcGIS

	
50, 100, 150,

200, 300, 400, 500, 1000,

1500, 2000, 3000

	
m2

	
Based on land use classification algorithms




	
Parks and Green

Spaces

	
Areas for public recreation and greenery typically include parks and gardens.

	
Based on green space lists and spatial analysis




	
Residential

	
Land used for residential buildings, including urban, suburban, and rural areas.

	
Based on land use classification analysis




	
Commercial

	
Land used for commercial activities, such as shops, offices, etc.

	
Based on land use classification analysis




	
Road intensity

	
Secondary roads

	
Roads connecting arterial roads with secondary streets.

	
OpenStreetMap

	
50, 100, 150,

200, 300, 400, 500, 1000,

1500, 2000, 3000

	
m

	
Road classification analysis




	
Tertiary roads

	
Smaller roads providing access to individual properties or neighborhoods.

	
Road classification analysis




	
Fourth-class roads

	
Smaller roads, often unpaved, are found in rural or remote areas.

	
Road classification analysis




	
Public transport routes

	
Routes for public transportation systems (buses, metro, trains, etc.).

	
Based on transport network analysis




	
Architectural Form Factor

(AFF)

	
Building Density

	
The number of buildings per unit area, indicating the concentration of buildings in an area.

	
Baidu Architecture + ArcGIS

	
50, 100, 150,

200, 300, 400, 500, 1000,

1500, 2000, 3000

	
%

	
Building base area/Plot area × 100%




	
Average Building Height

	
The average height of buildings in an area, reflecting the scale and intensity of development.

	
/

	
Height measurement and digital modeling analysis




	
Floor Area Ratio

(FAR)

	
The ratio of total building floor area to the land area it occupies.

	
m

	
Total floor area/Plot area calculation




	
Visual Impact Factor (VIF)

	
Architectural

Visibility Factor

	
Measures the visibility of buildings from different vantages points.

	
Baidu Street View + Image Segmentation

	
50, 100, 150,

200, 300, 400, 500, 1000

	
%

	
Based on building features and sightline analysis




	
Plant Visibility

Factor

	
Measures the visibility of plants or green spaces in a given area.

	
Based on plant visibility analysis and segmentation




	
Sky Visibility

Factor

	
Measures the extent of sky visibility from a given point.

	
Sky visibility analysis




	
Impervious Surface Visibility Factor

	
Measures the visibility of impervious surfaces (such as roads, buildings) in the landscape.

	
Impervious surface visibility analysis

















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file8.jpg





media/file13.png
200

300

oo e

Wochang Ziyang
e v
| University

400 500 1000 1500 2000 3000 150 200 300 400 500 1000

Buffer radius (m) Buffer radius (m)

-anphlnﬁanlhu ]

Unbverslty

1500 2000 3000

distrib Surface cover

(a) (b)

T T T T
50 100 150 200 300 400 500 1000 1500 2000 3000
Buffer radius (m)

(d)

Surface cover

\
U

=
1

| NIRRT T T M T T | MR PR |
50 100 150 200 300 400 500 1000 1500 2000 3000
Buffer radius (m)

Surface cover

- Qingshan Ganghua

50

T Ll Ll
100 150 200 300 400 500 1000 1500 2000 3000
Buffer radius [m_)

(e)

Surface cover -





media/file12.jpg
(b)






media/file18.jpg
| =

(b)

=






media/file9.png
35.08






media/file14.jpg
® @





media/file20.jpg
@

()






media/file23.png
0.8 l‘#____“______.,__i /L\

—
0.6 A A ——M-—Surface Cover
// AT ~—®— Nature of the site
E}{——EJ——__[]_———E] o /V\ —@&— Road Intensity

= 0.4 \[] / \ / /4} —A— Visual Factor

~—[1~ Building Density

0
0.2 r T —{SZW{ \EJ‘ U/ . o ~(O - Floor Area Ratio
’7< ; < / Average Building Height
0.0 ——TﬁT
T |

20 100 150 200 300 400 500 1000 1500 2000 3000
Buffer radius (m)

\
\
}






media/file5.png
L
Qingshan Ganghua 3
monitoring station ‘

Qnunes

Wucha
monitoring statio Osenhy
gI‘kmgg‘l;aen Geologi-
“cal University

monitoring’station

;'?*"\——
(a)

Dengribu —
District
Qi )

s J - / /';,é'\‘ T

Cigtrict \
/ Jianghan y 2 V\

/ |

/ \

1 |u-|gpi
Distr

X 5
dv.;v'
/ omuu e

District
p/

No ) Queckow
> Dictriet e

Hanyang
D strict

Caichian e
Distiict
e~ Jangxa
District = :""'"’
—— T g ese
Aarursd
B

)
\
N
Y
“
., A
- Y
2 \,
\\
.
N hY
N\
\_\ N
X,
™,/
I /x\
A —-
e
AN

W-‘@y‘-@ =
P s j -‘*O Buffer - “
{ ™ meetmg\point

Mobile col]ect1on data pomts e

-
4
N

b

"





media/file15.png
Strongly correlated (frequency)

50

100

150 200 300 400 500
Buffer radius (m)

1000 1500 2000 3000

(a)

Strongly correlated (frequency)

50

100

150 200

300 400 500 1000 1500 2000 3000

Buffer radius (m)

distribution of the site

(b)

Strongly correlated (frequency)

Hongshan Geological
University

50 100 150 200 300 400 500 1000 1500 2000 3000
Buffer radius (m)

()

Strongly correlated (frequency)

150 200 300 400 500 1000 1500 2000 3000

Buffer radius (m)

(d)





media/file19.png
Strongly correlated (frequency)

I
92 -w-xcwg Ziyang,
tveesa

Strongly correlated (frequency)

50 100 150 200 300 400 500 1000 1500 2000 3000 50 100 150 200 300 400 500 1000 1500 2000 3000

Buffer radius (m) Buffer radius (m)

() (b)

Strongly correlated (frequency)

50

100

150

200

300 400 500
Buffer radius (m)

1000

500 2000 3000

(c)





media/file2.jpg
(O O G [ e |

Visual Impact Fact Correlation analysis
Levels | Stroctscape imago segmeniation =
Screening of independent variables.
Impact | Building Impact Factor: =
Eachrml) | octs fratrss PSS 26.0 stepwise linear regression |
Geographic Impact Factor analysis
Geospata dta

& 11 Buffers Zones at Different Scale:
e Ranging rom 50m {0 3000m.
(b) Measured case impact factors data ‘
Regression analysis at diferent scales buffers

PM2.5 Data: 3 types of neighbourhoods

Mobile | Ziyang Area:
Monitoring | Commercial Residential Mixed

mewwn

TESUS oo eects of ey mpact
factors

Geological University Area:
Incusial Residental Mixed

Fixed
Monitoring

the Scale

e

Ganghua Area:
Greenfield Residentil Mixed






nav.xhtml


  land-14-00007


  
    		
      land-14-00007
    


  




  





media/file11.png
Impervious Ground . D . E: ..
L]

Plants

sky

Architecture

Average Building Height
Floor Area Ratio
Building Density

Public Transport Roads
Fourth Class Roads
Tertiary Roads

Secondary Roads D

Commercial

Residential .

Parks and Green Space
Industrial Land
Forests

GrassLand

Water

Man-made Surfaces

50

EI

N .

- EEE EN
.|

- EHE
[=]

e

=

IIII N

‘,I'

| .
il

=

il

100 150 200 300 400 500 1000 1500 2000 3000

(a)

Buffer radius (m)

0.6

Impervious Ground
Plants

sky

Architecture

Average Building Height ...

- HHEE
FEN

Floor Area Ratio ...........

Building Density . . . ..... .-.
| |

Public Transport Roads
Fourth Class Roads

Tertiary Roads ...........
Secondary Roads . ..

Commercial
Residential

Parks and Green Space

Industrial Land . . .

Farmland
Forests
GrassLand
Water

Man-made Surfaces

HE - =HE
III=

@
THEE ' B E
M

=
- AN
&
[]
[=]
- EEEEE
- - -EFHEN

50 100 150 200 300 400 500 1000 1500 2000 3000
Buffer radius (m)

(b)

Impervious Ground .....
Plants . . . .-
™

Architecture . . ...

Average Building Height = . D
Floor Area Ratio ...-.
Building Density ..-..

Public Transport Roads
Fourth Class Roads =~ ...
Tertiary Roads [_l
Secondary Roads

Commercial

Residential

Parks and Green Space ....
Industrial Land E....

Farmland

Forests

GrassLand

Water

Man-made Surfaces

50 100 150 200 300 400 500 1000 1500 2000 3000
Buffer radius (m)

(c)





media/file6.jpg





media/file1.png
Population density
3510

511 - 648
649 - 851
@852 - 1707
B 1708 - 4456
B 4457 - 7506
B 7507 - 7560
B 7561 - 12024
B 12025 - 16642
W 16643 - 17067
 —— W 17068 - 22903

14° 10'0" East

[ Low censtry [ Low-meduum density

Medium density

(c)

Med