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Abstract: Vegetation is a fundamental component of terrestrial ecosystems, and accurately
assessing the effects of seasonal climate variations, extreme weather events, and land use
changes on vegetation dynamics is crucial. The Ganjiang River Basin (GRB), a key region
for water conservation and recharge in southeastern China, has experienced significant
land use changes and variable climate in the past. However, comprehensive evaluations of
how these changes have impacted vegetation remain limited. To address this gap, we used
machine learning models (random forest and XGBoost) to assess the impact of seasonal and
extreme climate variables, land cover, topography, soil properties, atmospheric CO2, and
night-time light intensity on vegetation dynamics. We found that the annual mean NDVI
showed a slight increase from 1990 to 1999 but has decreased significantly over the last
8 years. XGBoost was better than the RF model in simulating the NDVI when using all five
types of data source (R2 = 0.85; RMSE = 0.04). The most critical factors influencing the NDVI
were forest and cropland ratio, followed by soil organic carbon content, elevation, cation
exchange capacity, night-time light intensity, and CO2 concentration. Spring minimum
temperature was the most important seasonal climate variable. Both linear and nonlinear
relationships were identified between these variables and the NDVI, with most variables
exhibiting threshold effects. These findings underscore the need to develop and implement
effective land management strategies to enhance vegetation health and promote ecological
balance in the region.

Keywords: NDVI; machine learning; driving factors; climate variable; land cover; Ganjiang
River Basin
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1. Introduction
In recent years, global vegetation has been greening, leading to debates about the

reasons and mechanisms behind this phenomenon, especially when considering different
regions [1]. Areas like China and India, known for intensive cultivation and afforestation
efforts, have shown significant greening trends [2]. There is a growing interest in unraveling
the driving mechanisms behind this greening phenomenon [3]. Understanding these forces
is crucial for comprehending vegetation dynamics in specific areas, evaluating ecosystem
health and resilience, and guiding land management and conservation efforts in the face of
climate change [4].

Numerous studies have established that human activities and climate change, es-
pecially variations in seasonal temperatures and precipitation patterns, are key drivers
of vegetation dynamics [5,6]. As manifestations of climate change become more pro-
nounced [7], the way that vegetation responds is also evolving. For instance, Liu et al. [8]
observed that rising minimum temperatures could enhance vegetation greening in subtrop-
ical areas. Moreover, seasonal climate changes warrant attention, as previous studies have
shown that seasonal patterns of rainfall and temperature significantly influence vegetation
health and productivity. However, their roles in long-term vegetation dynamics are often
underexplored. The climate–vegetation relationship varies across seasons [9], for example,
temperature and NDVI may exhibit a negative correlation in autumn but shift to a positive
correlation in winter. These shifts profoundly affect vegetation growth dynamics, highlight-
ing the importance of incorporating seasonality to better capture the temporal variability of
vegetation changes. Conversely, human actions, such as urbanization, significantly impact
vegetation by converting green spaces into impermeable surfaces, thereby diminishing
plant productivity [10]. Additionally, other elements like CO2 fertilization [11], night-time
light [12], soil properties [13], and elevation [14] also play crucial roles in vegetation dy-
namics. Despite these insights, ongoing debates about the factors affecting vegetation
changes over the past decades continue, fueled by climate variability, diverse research
methodologies, and inconsistencies in data availability. Insufficient knowledge of these
factors may interfere with the understanding of ecosystem interactions, and an accurate
method is needed to assess the impact of these factors on vegetation.

In recent years, many methods have emerged to study the dynamic drivers of vegeta-
tion in different regions, including regression analysis and geographic detectors [15–17].
However, there are still drawbacks associated with the identification of drivers of vege-
tation change. Concerning residual analysis, the response of vegetation to climate and
human behavior is often non-linear, making it challenging to describe the relationship
with a single regression equation [18]. As for geographic detectors, it is difficult to show
the mechanism between the NDVI and the different influencing factors [17]. In recent
years, the development of explainable machine learning methods has created certain con-
ditions for understanding the response mechanism of vegetation to different influencing
factors [19,20]. This method has achieved good results in the study of the influencing factors
of vegetation [20,21]. For example, Wang et al. [22] used machine learning methods and
found that higher water availability and a wetter environment are more likely to promote
positive changes in plant productivity on the Loess Plateau, while negative changes are
related to night-time light. The application of machine learning methods in these studies
demonstrates their advantages in identifying drivers of vegetation change and quantifying
their relative importance.

The Ganjiang River Basin (GRB) plays a critical role in conserving and recharging
water sources in the Yangtze River [23], which is of great importance in regulating the
hydrological balance of the Poyang Lake Basin and the flow of the Yangtze River. Since 1990,
ecological protection projects including the protected forest system projects in the middle
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and upper reaches of the Yangtze River, desertification control and plain afforestation,
and key projects of water and soil conservation [24], have been implemented, resulting
in an increase in forest coverage from 34.73% in 1983 to 63.10% in 2010 [25]. In recent
years, the basin has experienced pronounced climate changes, with an increasing trend
in precipitation extremes [26]. Rapid human development activities have also exerted a
comprehensive impact on vegetation [27]. However, there are still knowledge gaps in
identifying dominant drivers of vegetation dynamic in the GRB. Apart from the effects of
climate factors, the impacts of human activities (e.g., land cover changes), extreme climate
events, night-time light variations, and CO2 fertilization remain unclear and underexplored
in the GRB region.

In this study, we employed two widely used machine learning models, extreme
gradient boosting (XGBoost) and random forest (RF), to explore the factors influencing
vegetation dynamics in the GRB. Specifically, we analyzed the impacts of climate change,
extreme climate events, atmospheric CO2 concentration, soil properties, topography, land
cover, and night-time light intensity on the NDVI within the GRB. The objectives of this
study were to (1) identify the trend in vegetation change within the GRB from 1990 to
2018, (2) develop machine learning methods with different predictors to estimate the
NDVI, and (3) identify dominant driving factors contributing to the NDVI change. We
expect the results will provide insights for effective environmental management, climate
change adaptation, and informed evidence-based policies for sustainable land use and
environmental conservation.

2. Materials and Methods
2.1. Study Area

The Ganjiang River is the largest and most significant waterway in Jiangxi Province,
with a mainstream length of 758 km [28]. It is also the seventh largest tributary of the
Yangtze River, covering an area of about 83,500 km2 and accounting for 51% of the territory
in Jiangxi Province (Figure 1) [29]. The GRB experiences a humid subtropical monsoon cli-
mate, influenced by monsoon climates and typhoons, and interacts with a complex terrain.
The basin has an average annual precipitation of 1400–1800 mm and an average tempera-
ture of around 18 ◦C. Precipitation is unevenly distributed throughout the year, with 78.6%
of the total annual precipitation occurring during the wet season (April–September) [29].
The main soil types found in the region are red, yellow, purple, and paddy soil [24]. The
GRB is characterized by superior natural conditions, including abundant forest resources
and diverse plant species nationwide. The basin is primarily composed of warm coniferous
forests and evergreen broadleaved forests [28]. In terms of land use types, the northern
part of the basin is mostly mountainous, while the southern and central regions are pre-
dominantly farmland [30]. The boundary of the Poyang Lake basin was recorded in 2000
and it was downloaded from National Earth System Science Data Center, National Science
& Technology Infrastructure of China (http://www.geodata.cn) (accessed on 1 July 2023).

2.2. Data
2.2.1. NDVI Data

The normalized difference vegetation index (NDVI), defined as the ratio of the differ-
ence between near-infrared reflectance and red visible reflectance to their sum, serves as a
crucial indicator of vegetation greenness [31,32]. To investigate the long-term variations
of the NDVI, an extended temporal scale was employed in this study. We integrated two
NDVI datasets representing different periods. The initial dataset comprised GIMMS NDVI
3g data spanning the years 1982 to 2015. Derived from a global dataset reliant on NOAA
weather satellite data and disseminated by NASA (https://data.nasa.gov/) (accessed on

http://www.geodata.cn
https://data.nasa.gov/
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1 July 2023), this dataset was developed by The Global Inventory Modeling and Mapping
Studies (GIMMS). The second dataset encompassed SPOT/VGT NDVI data covering the
period 1998–2018. This dataset was obtained from the National Cryosphere Desert Data
Center, China. (http://www.ncdc.ac.cn) (accessed on 3 July 2023). The amalgamation of
these datasets facilitates a comprehensive examination of NDVI dynamics, offering a robust
foundation for a nuanced exploration of vegetation trends over the specified temporal
range [33]. We used a pixel-scale linear regression method to fuse the two datasets. The
pixel scale linear regression fusion method tended to be more accurate in the short term
and small regions than the global model [34]. For example, Li et al. [35] used this method
to fuse the GIMMS and MODIS NDVI data to produce the PKU GIMMS NDVI product.

Figure 1. The location of Ganjiang River Basin and the weather stations used in this study. The fol-
lowing is the corresponding name of each weather station: AF—anfu, ANY—anyuan, CY—chongyi,
DY—dingnan, FC—dayu, FY—fenyi, GA—gaoan, GX—ganxian, HC—huichang, JAX—jianxian,
JGS—jinggangshan, JS—jishui, LA—lean, LH—lianhua, LN—longnan, ND—ningdu, NK—nankang,
QN—quannan, RJ—ruijin, SC—suichuan, SCH—shicheng, SG—shanggao, SY—shangyou, TH—taihe,
WA—wanan, WZ—wanzai, XF—xinfeng, XG—xingan, XGuo—xingguo, XJ—xiajiang, XP—xiaping,
XY—xinyu, YC—yichun, YD—yudu, YF—yifeng, YOF—yongfeng, YX—yongxin, ZS—zhangshu.

The MVC (maximum value composites) method was employed to amalgamate GIMMS
and SPOT/VGT data at a monthly scale [36]. Subsequently, the data underwent projection
onto the WGS 1984 UTM Zone 50N coordinate system, with a resolution resampled to 1 km.
The GIMMS and SPOT/VGT data for different months in the overlapping period 1999–2015
were disaggregated into 12-month segments, and pixel-wise conversion coefficients were
calculated through the application of the linear regression method. Ultimately, we obtained
the new monthly GIMMS NDVI data for the period 1982–1998. Subsequently, the regener-
ated monthly NDVI data for the same period were integrated with the SPOT/VGT NDVI
monthly-scale data spanning 1998–2018, yielding a comprehensive and uninterrupted time
series of NDVI data spanning 1982–2018. The NDVI data at an annual scale were also
acquired utilizing the maximum value composites method. For 38 meteorological stations,

http://www.ncdc.ac.cn
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the average of nine pixels around each meteorological site was chosen as the NDVI value,
representing the NDVI value for the corresponding sites at the corresponding times. Owing
to constraints posed by the availability of land cover and NDVI data, we opted for a data
period spanning from 1990 to 2018.

2.2.2. Climate and Atmospheric CO2 Data

Climatic data spanning the years 1960 to 2020 from 38 meteorological stations
within the GRB were acquired from the China Meteorological Data Service Center
(http://data.cma.cn/) (accessed on 15 July 2023). The selected climatic variables encom-
passed daily precipitation, air mean temperature, maximum and minimum temperatures,
air humidity, wind speed, and hours of solar insolation (Table 1). The dataset was stratified
into four distinct sections corresponding to seasons, with each season’s data determined
by computing the average or sum values of the corresponding months: 1 for spring
(March–May), 2 for summer (June–August), 3 for autumn (September–November), and 4
for winter (December–February); if no number is present, it indicates the entire year.

Table 1. The different types of data used in this study and their respective origins.

Type Item Temporal
Scale Indices Definition Data Source

Climate

Climate
data

Seasonal
and

annual

Rain Total precipitation

http://data.cma.cn/

Tem Mean temperature
Max_Tem Max temperature
Min_Tem Min temperature

Hum Air humidity
WS Wind speed
Sun Sun hour

Climate
extreme
indices

Annual

SU25 Count of days for daily max temperature
> 25 ◦C

CWD Max number of consecutive days with
daily precipitation ≥ 1 mm

FD0 Count of days for daily min
temperature < 0 ◦C

R95P
Computes the annual sum of

precipitation on days where daily
precipitation exceeds the 95th percentile

GSL

Annual count between the first span of at
least 6 days with daily mean temperature

> 5 ◦C and first span after July 1st of
6 days with <5 ◦C

TR20 Count of days for daily min
temperature > 20 ◦C

Atmosphere CO2 Annual CO2 Annual atmospheric CO2 concentration https://gml.noaa.gov/

Soil
Soil

properties \
T_OC 0–30 cm organic carbon content

http://data.tpdc.ac.cn
T_CEC_CLAY The cation exchange capacity of clay

layer soil

Topography DEM \ Elevation Elevation of station http://www.gscloud.cn/

Human
activities

Land cover
type Annual

Cropland Area change of cropland https://zenodo.org/
records/4417810Forest Area change of forest

Night-time
light Annual Light Light intensity at night http://data.tpdc.ac.cn

http://data.cma.cn/
http://data.cma.cn/
https://gml.noaa.gov/
http://data.tpdc.ac.cn
http://www.gscloud.cn/
https://zenodo.org/records/4417810
https://zenodo.org/records/4417810
http://data.tpdc.ac.cn
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Climate extreme indices had significant impacts on the growth of vegetation [37].
Here, we considered 27 climate extreme indices (http://etccdi.pacificclimate.org) (accessed
on 19 July 2023), including 16 annual climate extreme indices (TR20, FD0, R95P, SU25,
CWD, GSL, PRCPTOT, R99P, WSDI, CSDI, CDD, SDII, R25MM, R20MM, R10MM, and ID0)
(Table 1), while the remaining 11 climate extreme indices were not considered due to their
monthly scales.

Monthly CO2 concentration from January 1979 to July 2023 was obtained from the
Global Monitoring Laboratory (https://gml.noaa.gov/) (accessed on 20 July 2023). The av-
erage CO2 concentration of the 12 months of each year was taken as the CO2 concentration
for that year.

2.2.3. Land Cover Data

In previous studies, the temporal resolution of the exploited land use data was often
in the range of 5 years [38]. To account for the changes in vegetation conditions under
continuous land use patterns, we utilized a land cover dataset released from a recent study
with a temporal resolution of 1 year [39], representing the vegetation conditions under
continuous land cover changes. This data included a complete image of available land
cover for each year from 1990–2018 (https://zenodo.org/records/4417810) (accessed on
30 July 2023). The land cover types were classified into nine categories: cropland, forest,
shrub, grassland, water, snow and ice, barren, impervious, and wetland. As the spatial
resolution of the land cover data was 30 m, we resampled it to 1 km. We extracted the land
cover types of the nine pixels around each weather station site as the land cover status
at the corresponding time and location. The ratio distribution of land cover types within
each station was determined for the period 1990–2018. Notably, the main land cover we
extracted was forest and cropland for the study sites (Figure 2).

Figure 2. Land cover of Ganjiang River Basin for: (a) 1990 and (b) 2018.

2.2.4. Other Data

DEM data were obtained from the Geospatial Data Cloud (http://www.gscloud.cn/)
(accessed on 25 July 2023) and resampled to a 1 km resolution. We considered elevation
because its variation was thought to have a dramatic effect on vegetation growth [14,40].
The intensity of night-time light has been considered in numerous studies investigating
the driving factors of vegetation change [12,41]. The Prolonged Artificial Nighttime-light
Dataset of China (1984–2020) was provided by the National Tibetan Plateau/Third Pole
Environment Data Center (http://data.tpdc.ac.cn) (accessed on 19 July 2023) [42].

http://etccdi.pacificclimate.org
https://gml.noaa.gov/
https://zenodo.org/records/4417810
http://www.gscloud.cn/
http://data.tpdc.ac.cn
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The Harmonised World Soil Database (HWSD) version 1.1, a collaborative effort
between the Food and Agriculture Organization of the United Nations (FAO) and the
International Institute for Applied Systems Analysis (IIASA) in Vienna, was utilized. These
datasets were accessible through the National Tibetan Plateau/Third Pole Environment
Data Center [43]. We selected T_OC (0–30 cm organic carbon content) and T_CEC_CLAY
(0–30 cm cation exchange capacity of clay layer soil) as soil property indicators because
they were commonly used and more relevant to vegetation growth [44,45].

2.3. Methods
2.3.1. Feature Selection

In the study, a total of 58 diverse indicators were considered to estimate NDVI values.
These included 35 climatic mean variables, 16 climate extreme indices, 1 atmospheric
indicator, 2 land cover indicators, 1 elevation indicator, 1 night-time light indicator, and
2 soil indicators. Data anomalies were excluded using the principle of three times the
standard deviation for NDVI data. We first conducted correlation analysis for the NDVI
and 58 predictors. Then 38 indicators with a p-value of less than 0.1 (Table 2) were selected
for following analysis.

Table 2. Correlation between NDVI and input variables. Selected features with a p-value less than 0.1
are shown in italics.

ID Variable Pearson p-Value ID Variable Pearson p-Value ID Variable Pearson p-Value

1 Forest 0.57 <0.001 21 Min_tem_4 −0.125 <0.001 41 PRCPTOT 0.038 0.209
2 Light −0.538 <0.001 22 sun_1 −0.121 <0.001 42 rain 0.037 0.223
3 Min_tem_2 −0.381 <0.001 23 WS_2 −0.121 <0.001 43 R99P 0.036 0.24
4 Min_tem −0.34 <0.001 24 T_CEC_CLAY −0.114 <0.001 44 Max_tem −0.033 0.274
5 TR20 −0.309 <0.001 25 Cropland 0.111 <0.001 45 Max_tem_4 0.031 0.304
6 Min_tem_3 −0.305 <0.001 26 sun_3 −0.105 0.001 46 rain_4 −0.031 0.318
7 DEM 0.297 <0.001 27 Max_tem_2 −0.099 0.001 47 WS_4 −0.028 0.355
8 tem_3 −0.29 <0.001 28 sun_4 −0.094 0.002 48 WSDI 0.027 0.379
9 Min_tem_1 −0.257 <0.001 29 R95P 0.088 0.004 49 CSDI 0.027 0.384

10 Hum 0.256 <0.001 30 WS_3 −0.081 0.008 50 rain_1 0.023 0.46
11 FD0 0.241 <0.001 31 WS −0.073 0.016 51 CDD −0.018 0.547
12 Hum_3 0.237 <0.001 32 tem_4 −0.073 0.017 52 SDII 0.017 0.586
13 Hum_4 0.224 <0.001 33 SU25 −0.072 0.019 53 R25MM 0.016 0.611
14 tem −0.221 <0.001 34 CWD −0.065 0.033 54 R20MM 0.015 0.62
15 Hum_2 0.219 <0.001 35 Max_tem_1 −0.061 0.046 55 sun −0.012 0.694
16 sun_2 −0.201 <0.001 36 GSL −0.06 0.051 56 rain_3 0.009 0.765
17 T_OC 0.193 <0.001 37 CO2 −0.058 0.057 57 R10MM 0.006 0.845
18 tem_2 −0.188 <0.001 38 Max_tem_3 −0.058 0.058 58 ID0 0.004 0.89
19 Hum_1 0.179 <0.001 39 rain_2 0.045 0.138
20 tem_1 −0.134 <0.001 40 WS_1 −0.043 0.156

2.3.2. Trend Analysis

In this study, we analyzed the NDVI trends in the GRB from 1990 to 2018 using
the Theil–Sen slope test and evaluated their statistical significance through the Mann–
Kendall significance test [46,47]. The Theil–Sen slope estimation was more robust than
traditional slope analysis because of its resistance to noise and capability to mitigate
the effects of outliers, measurement errors, and discrete data [48]. A positive slope (>0)
denoted an upward trend in the study period for the time series data, while a negative
slope indicated the opposite. The Mann–Kendall (MK) significance test was used to
evaluate the significance of the observed change trend. Integrating these statistical tests
not only mitigates the impact of anomalous NDVI values but also visually represents the
spatial distribution of NDVI variability through NDVI variability partitioning, a method
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recognized and widely used in assessing NDVI trends [49,50]. The calculation process is
as follows:

Slope = Median

[(
xj − xi

)
(j − i)

]
1990 ≤ i < j ≤ 2018 (1)

where Slope is the value of the slope estimated by the Theil–Sen median; x is the value
of the NDVI of each year in this study; and i and j are the different years between 1990
and 2018.

S =
n−1

∑
i=1

n

∑
j=i+1

Sgn
(
xj − xi

)
(2)

Sgn
(
xj − xi

)
=


1

(
xj − xi

)
> 0

0
(
xj − xi

)
= 0

−1
(
xj − xi

)
< 0

(3)

Var(s) =
n(n − 1)(2n + 5)

18
(4)

Z =


(S−1)√
Var(S)

S > 0

0 S = 0
(S+1)√
Var(S)

S < 0

(5)

where Z is the standardized test statistic; n is the number of time series data, which equals
29 in this study; and Sgn is the function symbol.

2.3.3. Random Forest

Random forest (RF), developed by Breiman in 2001, is a widely adopted ensemble
learning technique capable of performing both classification and regression tasks [51].
This approach improves upon the classification and regression trees (CART) method by
combining multiple decision trees. In the RF algorithm, at each node of the forest, the
optimal feature for splitting is determined using a random subset of available features. This
random feature selection strategy enhances the model’s accuracy and robustness, ensuring
precise and resilient results [52].

2.3.4. XGBoost

The extreme gradient boosting (XGBoost) algorithm, initially proposed by Chen and
Guestrin in 2016 [53], is an efficient implementation of the gradient boosting decision
tree (GBDT). The XGBoost model utilizes the decision tree as its base classifier. This
technique involves a series of gradient-enhanced decision trees [54], where each tree learns
from its predecessor and influences the subsequent tree, thereby enhancing the model
and constructing a robust learner. This iterative process improves model generalization,
addressing decision trees’ tendency to overfit. XGBoost is known for its high accuracy, fast
processing speed, and low computational cost and complexity. Moreover, as a decision
tree algorithm, XGBoost is not negatively impacted by multicollinearity [55]. This further
contributes to its robustness in handling complex datasets.

2.3.5. Model Performance Assessment

Both the RF and XGBoost model were run 100 times. In each run, 70% of the total
data was randomly chosen for training the model, and the remaining 30% was used to
evaluate the model’s performance. Model performance was evaluated using the coefficient
of determination (R2) and root-mean-squared error (RMSE) [56]. Higher R2 values and
lower RMSE values generally indicate superior model performance [57]. Data processing
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and machine learning was carried out using Python 3.9, mainly utilizing computational
packages like “sklearn”, “xgboost”, “pandas, “numpy”, “matplotlib”, and “seaborn”.

Initially, we trained the model using climate and atmospheric CO2 data. Then, we
incorporated elevation and soil data into the training. Lastly, we included land cover and
night-time light data in the final round of training (Figure 3).

R2 = 1 − ∑N
i=1

(
NDVI − NDVIpre

)2

∑N
i=1

(
NDVI − NDVI

)2 (6)

RMSE =

√
∑N

i=1
(

NDVI − NDVIpre
)2

N
(7)

where NDVI is the measured value, NDVIpre is the predicted value, NDVI is the average
value of measured NDVI, and N is the number of measured NDVI samples.

Figure 3. Framework of NDVI estimation integrating different sources of data with RF and XGBoost
models. Rain, rainfall; Tem, mean temperature; Tmax, max temperature; Tmin, min temperature;
Hum, air humidity; WS, wind speed; Sun, sun hour; SU25, summer days; CWD, consecutive wet
days; DEM, elevation; T_OC, soil organic carbon content at 0–30 cm; T_CEC_CLAY, 0–30 cm cation
exchange capacity of clay layer soil; Light, night-time light.

3. Results
3.1. Spatial and Temporal Change of the NDVI in the Study Sites

In this study, the years 1990 to 2018 were segmented into three distinct periods:
1990–1999, 2000–2009, and 2010–2018 (Figure 4). For each period, linear regression analysis
was conducted on the NDVI data. The findings revealed trends in the NDVI across the
38 sites in the GRB, with specific trends varying across these time intervals. During 1990 to
1999, NDVI values showed an increasing trend, with an R2 of 0.44 and p < 0.05, indicating
a clear upward trend. From 2000 to 2009, NDVI values exhibited a slight upward trend,
with the slope decreasing from 0.0021 to 0.0003, and the R2 decreasing to 0.01 with p > 0.05,
indicating no clear upward or downward trend during this period. Subsequently, from 2010
to 2018, the trend of the NDVI became negative (−0.009), with the R2 increasing to 0.75 and
p < 0.005, indicating a strong linear relationship. These trend changes reflected variations
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in environmental conditions or vegetation dynamics over time. The NDVI initially showed
a clear upward trend in the early 1990s but began to gradually weaken from the early 2000s
onwards (Figure 4). Additionally, compared to the 1990–1999 and 2000–2009 periods, the
NDVI exhibited a downward trend during the 2010–2018 period, suggesting the presence
of significant interference during these times.

Figure 4. Temporal change of annual mean NDVI across the 38 sites in the GRB between 1990 and
2018, where the black solid-line box, the red solid-line circle, and the blue solid-line triangle represent
three time spans: 1990–1999, 2000–2009, and 2010–2018, respectively.

Among the 38 weather stations analyzed, the majority exhibited a unsignificant trend
(Figure 5). A total of 15 stations displayed an increasing trend, with 6 of these stations
showing statistically significant results. The station with the strongest upward trend was
ANY station, with a slope of 0.0036. Conversely, 23 stations demonstrated a declining trend,
with 6 stations indicating a statistically significant decrease. NK station showed the steepest
downward trend, with a slope of −0.0065. Analysis in conjunction with Figure 2 suggested
that stations surrounded by impervious surfaces predominantly showed negative trends,
while those near cropland and forests exhibited positive trends. This implied that land use
around weather stations has a significant impact on NDVI variations.

3.2. NDVI Estimation with Machine Learning

Both RF and XGBoost models were utilized to assess the impact of different data
sources on NDVI variations. The results clearly demonstrated that the performance of both
the RF and XGBoost models consistently enhanced with the inclusion of additional input
data. When only climate and atmospheric data (CO2 concentration) were used as input, the
RF model attained an R2 value of 0.41 and an RMSE of 0.079 (Figure 6). Upon retraining the
model for the second time with the addition of DEM and soil data, the R2 value increased
to 0.744 and the RMSE decreased to 0.052. Subsequently, after incorporating land cover
and night-time light data into the second model training, the accuracy of the RF model
improved, resulting in an increased R2 value of 0.814 and a decreased RMSE to 0.044. It
was observed that the performance of the XGBoost model and the RF model varied when
subjected to the same data source. Although both models initially exhibited comparable
performance using only climate and atmospheric data, the XGBoost model consistently
outperformed the RF model as additional data were introduced during the second and
third training rounds. Ultimately, the XGBoost model trained with the Data_3 data source
(Climate + CO2 + DEM + Soil + Light + Land cover) was selected as the optimal model,
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demonstrating the highest degree of accuracy with an R2 value of 0.848 and an RMSE
of 0.04.

Figure 5. The change of NDVI slope trends and significance levels at 38 sites across the GRB
during 1990–2018. The ascending arrows are for significant positive trends, descending arrows for
significant negative trends, and double-headed arrows for no significant trend. The following is the
corresponding name of each weather station: AF—anfu, ANY—anyuan, CY—chongyi, DY—dingnan,
FC—dayu, FY—fenyi, GA—gaoan, GX—ganxian, HC—huichang, JAX—jianxian, JGS—jinggangshan,
JS—jishui, LA—lean, LH—lianhua, LN—longnan, ND—ningdu, NK—nankang, QN—quannan,
RJ—ruijin, SC—suichuan, SCH—shicheng, SG—shanggao, SY—shangyou, TH—taihe, WA—wanan,
WZ—wanzai, XF—xinfeng, XG—xingan, XGuo—xingguo, XJ—xiajiang, XP—xiaping, XY—xinyu,
YC—yichun, YD—yudu, YF—yifeng, YOF—yongfeng, YX—yongxin, ZS—zhangshu.

Figure 6. Evaluation of model performance using different sources of data based on the random
forest (RF) and extreme gradient boosting (XGBoost) model. Data_1: Climate + CO2 data; Data_2:
Data_1 + DEM + Soil data; Data_3: Data_2 + Light + Land cover data; (a) coefficient of determination;
(b) root mean squared error.

3.3. The Response of the NDVI to Predictors

The top 20 indicators of model importance are shown in Figure 7a and the results indi-
cate that the area of forest was the most important factor influencing the NDVI. The change
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in cropland area ranked as the second most influential factor, followed by soil organic
carbon content as the third most significant influencer. Regarding climate, temperature was
more significant than rainfall. The minimum temperature in spring emerged as the most
influential climate factor, with minimum temperature generally outweighing maximum
temperature in importance, except in summer.

Figure 7. Variable importance of input features for the XGBoost model predicting the NDVI: (a) the
relative importance of the first 20 predictor variables, (b) the relative importance of climate variables
at different time scales, (c) the relative importance aggregated by feature type. For each category, the
relative importance shown is the sum of that calculated for all features in each category. Note that 1,
2, 3, and 4 represent the different seasons (1 for spring, 2 for summer, 3 for autumn, and 4 for winter).
For example, WS_1 indicates spring wind speed and tem_2 indicates summer temperature. Climate:
climate variables and climate extreme index; Human: land cover and night-time light. Error bar is
based on 100 runs for the model.

The relative importance of climate indicators for each season is shown in Figure 7b.
Minimum temperature emerged as the most influential factor on both an annual and spring
scale, exerting the greatest impact during spring. The importance of humidity remained
consistent across seasonal scales. Sunshine hours held greater importance in summer
compared to other seasons, serving as the primary forcing factor during this period. Wind
speed was highest in autumn and was the main influence factor in autumn. Overall,
minimum and mean temperatures wielded greater influence compared to other factors.
Climatic factors in winter exhibited a weaker influence on the NDVI, while those in spring
and autumn demonstrated a more significant impact. When categorizing each indicator
(Figure 7c), it was revealed that climatic factors contributed approximately 29.19%. Human
activities accounted for 43.36% of the relative importance, with changes in forest area
exerting the greatest influence, followed by alterations in cropland area. Elevation and soil
factors contributed 22.7% of the total importance, with soil organic carbon content being
more significant than other soil factors.

Land cover strongly influenced vegetation growth. Changes in forest and cropland
exerted a significant impact on the NDVI (Figure 8). An increase in the forest and cropland
area ratio had a positive effect, and this relationship was found to be near-linear. However,
the influence diminished when the proportion of forest exceeded 60%. Additionally,
increased night-time lighting due to human development negatively affected the NDVI,
and this effect was also near-linear (Figure 8f). Regarding soil properties, there was a
positive linear relationship between the soil organic carbon content and the NDVI within
the range of 1–1.5%, with the NDVI reaching its maximum value at approximately 1.5%.
Conversely, there was a negative near-linear relationship between the cation exchange
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capacity and the NDVI in the range of 10–40 cmol/kg. Elevation affected the NDVI
by about 6.4%, with a gradual increase in the NDVI observed in the 100–350 m range.
NDVI values steadily increased with rising CO2 concentrations. However, at high CO2

concentrations, particularly in the range of 380–390 ppm, there was minimal to no increase
in the NDVI despite rising CO2 levels (Figure 8g). Beyond this range, the NDVI showed a
rapid increase with further CO2 elevation. An increase in spring minimum temperature
(Figure 8h) negatively impacted the NDVI, higher spring minimum temperatures correlated
with decreased NDVI values. Additionally, it was worth noting that the adverse effect of
spring minimum temperature on the NDVI diminished once it surpassed 16 ◦C. Similarly,
the annual minimum temperature began to demonstrate a decreasing effect only after
exceeding 14.5 ◦C.

Figure 8. Partial dependence plots for the most important nine features based on the XGBoost
model: (a) forest ratio; (b) cropland ration; (c) organic carbon content; (d) DEM; (e) cation exchange
capacity of clay layer; (f) night −time light; (g) CO2 concentration; (h) spring min temperature; (i) min
temperature. The black lines are smoothed representations of the response, with fitted values (model
predictions) for the training data. The trend of the line, rather than the actual values, describe the
nature of the dependence of the NDVI on the predictors.

At the 38 sites, the proportion of cropland area had consistently been higher than
that of forest area (Figure 9), indicating that cropland was the primary land cover type
near the weather stations. Notably, both the proportions of forest and cropland area
showed a significant declining trend from 1990 to 2018. Forest area decreased at a rate of
approximately 0.2% per year, while cropland area decreased at a faster rate of 0.8% per
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year. This indicated that while the overall trend in the past 30 years has been a decline in
forest and farmland area, there were exceptions, such as in 1993, 2000, and 2010, when the
trend shifted to an increase.

Figure 9. Temporal changes in the average ratio of (a) forest and (b) cropland across the 38 sites in
the GRB between 1990 and 2018.

4. Discussion
4.1. The Change Trend of the NDVI in the GRB

From the analysis of 38 weather stations, we observed that the greening trend at
most stations was either negligible or had deteriorated. Between 1990 and 1999, the NDVI
exhibited an upward trend, likely due to the relatively small decrease in forest and farmland
areas near the stations and minimal temperature variation during this period. These factors
had limited negative effects on the NDVI, while the rising CO2 concentration exerted a
stronger positive influence, leading to a modest increase in vegetation. However, from
2000 to 2018, intensified human activities caused a more significant reduction in nearby
forest and farmland areas. Concurrently, the rise in minimum temperatures exacerbated
the negative impacts on vegetation, outweighing the positive effects and resulting in a
noticeable decline in the NDVI during this period. These findings suggest that the NDVI
changes were driven by the combined interactions of multiple factors rather than by
individual influences, which aligns with prior research [58,59].

4.2. The Application of the Machine Learning Approach in the GRB

In this study, we employed two widely used machine learning models, RF and XG-
Boost, to evaluate the driving factors of the NDVI. This approach allowed us to reveal
complex variable interactions influencing vegetation changes, yielding accurate and inter-
pretable results [20,21]. Our results demonstrated the feasibility of developing machine
learning models at the site scale. Previous studies also investigated NDVI driving factors.
For instance, Zeng et al. [60] used RF to explain browning in the Dosso Reserve, Niger,
achieving an R2 value greater than 0.71. Similarly, a study in the Amazon region combined
XGBoost with SHAP, resulting in an R2 of 0.92 [61]. Roy [62] applied SVR, RF, linear, and
polynomial models for NDVI prediction, with R2 values exceeding 0.8. On a larger scale,
research on NDVI prediction across China also reported an R2 above 0.8 [63]. Compared to
these previous studies, our prediction results were similar, with an R2 of 0.85. The slight
variations may be due to differences in scale and geographic region across the studies.
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4.3. The Dominant Driving Factors on the NDVI in the GRB

We found that human activities emerged as the dominant driving factor of NDVI
change, constituting 43.36% of the total importance. This finding aligns with previous stud-
ies suggesting that land cover changes in southeastern China exert a significant influence
on vegetation dynamics [2,64]. Cropland and forest were the primary contributors to NDVI
variation in the GRB, with their fluctuations having a substantial impact on vegetation. Pre-
vious studies showed that NDVI values for cropland and forest were higher than for other
land use types [65], indicating that if the ratio of forest and cropland decreases, the NDVI
value will also decrease. From a spatial perspective, land retirement and afforestation con-
vert farmland into forest, increasing vegetation cover. Since the NDVI measures vegetation
density and health, this increase in cover leads to more sunlight absorption and reflection,
thus raising NDVI values. In contrast, reclamation often transforms forests into farmland,
reducing vegetation cover and lowering the NDVI. Future research should consider spatial
variability, such as the conversion between land use types like forests, farmland, urban
areas, grasslands, and water bodies, which requires more detailed spatial datasets and
research methods. Additionally, while natural disasters like mudslides, earthquakes, and
floods can alter land use, their frequency determines that their impact is small. We found a
negative correlation between night-time lights and the NDVI, as night-time lights reflected
regional economic development, human activity intensity, and the expansion of built-up
land. Higher levels of night-time light typically indicated stronger human interference [41].
The impact of human activities is mainly related to the development policies adopted by the
government. If human behavior is allowed to affect the environment without regulation,
further reductions in cropland and forest areas (Figure 9) may impede vegetation greening
trends and contribute to environmental degradation.

We identified CO2 as a major influencing factor due to its role as a crucial substrate for
photosynthesis. The rise in atmospheric CO2 concentration can enhance photosynthesis by
increasing the rate of carboxylation [66], a phenomenon known as the “CO2 fertilization
effect”, which has been confirmed in previous work [1]. Regarding soil factors, soil organic
carbon and clay cation exchange capacity contributed approximately 16% to NDVI changes.
Higher organic carbon content enriched the soil, providing essential nutrients for vegetation
growth [67], thus promoting plant development. Additionally, vegetation luxuriance
was often linked to cation exchange capacity, as noted in previous research [68]. It was
important to note that human activities impact SOC and CEC [69]. The application of
fertilizers can increase organic carbon in soil [70], while land use changes, such as the
conversion of forests to farmland, reduce SOC [71]. Fertilization and land management
practices can raise soil pH, thereby increasing the amount of variable negative charges and
subsequently enhancing CEC [69]. Future studies could quantify the extent of these indirect
effects to better understand these interactions. Elevation also emerged as an important
factor, particularly at altitudes below 400 m, where the NDVI and altitude exhibited a
nearly linear relationship. This can be attributed to increased human activity at lower
elevations. As altitude rises, human influence on vegetation diminishes [40]. However,
if altitude continues to rise, the growth of vegetation will be inhibited due to the drop in
ambient temperature.

We found that climate is a secondary driver of vegetation dynamics, with temperature
playing a more significant role than rainfall. In the subtropical humid monsoon climate of
the GRB, abundant rainfall ensures that water is not a limiting factor for vegetation growth,
making temperature the primary constraint [72]. However, during the rainy season, cloud
cover reduces the solar radiation available to vegetation, which may weaken the positive
impact of rainfall on growth [37]. This does not mean that rainfall is a limiting factor,
but rather that its benefits for vegetation growth may be less pronounced under specific
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conditions. These findings align with previous studies that highlight the greater importance
of temperature over rainfall in driving vegetation changes in the GRB [28,37].

4.4. Limitations

Our study has certain limitations that should be acknowledged. Firstly, we relied
on data from only 38 weather stations in the GRB. Although this approach ensured the
accuracy of the climate data, it limited the overall scope of the study. Future research could
benefit from using gridded high-resolution meteorological data to facilitate large-scale
basin analyses. Second, other factors such as population density, economic development,
and grazing conditions have been shown to influence the NDVI [41]. However, we did
not consider them due to their mismatched conditions, low impact levels, and difficulty in
downscaling at the site level. Third, it is important to acknowledge that statistical models
are data-driven, and their efficacy heavily relies on data quality [56]. Machine learning
models may be constrained by data and algorithms [73]. In addition, the relationships
identified between environmental factors and vegetation growth through machine learning
may be statistical rather than causal [74], which limits our comprehensive understanding
of the mechanisms driving NDVI changes. Finally, vegetation dynamics are shaped by the
interaction of multiple factors, including climate conditions, land use changes, and human
activities. While our study identifies the primary drivers, the potential interactions among
these factors remain underexplored. For instance, the synergistic effects of deforestation
and climate change may lead to a compounded decline in vegetation health [75], while
afforestation can mitigate soil degradation [76]. To better understand these combined effects,
future analyses could employ multivariate statistical models to assess interactions among
predictive factors, providing more reliable insights into the drivers of vegetation change.

5. Conclusions
In this study, we investigated the spatiotemporal dynamics of the annual mean NDVI

in the GRB and applied machine learning techniques to estimate the NDVI and identify
the key factors driving vegetation changes. These factors included climate variables,
atmospheric conditions, soil characteristics, topography, and land cover patterns. The main
findings of the study are as follows:

1. The annual mean NDVI experienced a slight increase from 1990 to 1999 but has
significantly declined over the last 8 years.

2. XGBoost outperformed the RF model in simulating the NDVI, yielding the best
performance when incorporating all data sources (R2 = 0.85; RMSE = 0.04).

3. The most influential variables affecting the NDVI were forest and cropland ratio,
followed by organic carbon content, elevation, cation exchange capacity, night-time
light intensity, CO2 concentration, and spring minimum temperature.

4. Partial dependence plots revealed both linear and nonlinear relationships between the
NDVI and the variables, with most variables exhibiting threshold effects on NDVI.

Our results underscored the large impact of land cover changes on NDVI variations in
the GRB over the past 30 years. The expansion of human settlements has notably altered
forest and crop cover, contributing to the observed NDVI decline. This highlights the urgent
need to develop and implement effective land management strategies that can regulate
and mitigate the adverse effects of these changes. By prioritizing sustainable land use
practices, such as protecting forested areas and optimizing agricultural land management, it
is possible to enhance vegetation health and support ecological balance in our study region.
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