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Abstract: There are disagreements regarding the accuracy of estimation and spatial dis-
tribution of carbon emissions in China. It is of great significance to estimate a more de-
tailed carbon emission inventory for China and analyze the carbon emission characteris-
tics of different regions. This study comprehensively estimated carbon dioxide and me-
thane emissions (and their spatial distributions) across eight carbon-emitting sectors in 
360 prefecture-level cities in China in 2020. The results indicated that total carbon emis-
sions in China amounted to 146.00 × 108 t, with carbon dioxide and methane accounting 
for 95.87% and 4.13%, respectively. The industrial sector was the main source of carbon 
emissions, accounting for 75.42% of the total. The North China Plain, the Northeast Plain, 
and the Sichuan Basin were identified as the carbon emission hotspot areas with the most 
intensive carbon emission densities. Among the clustered four carbon emission zones 
based on carbon emission density and economic carbon intensity, the High Carbon Emis-
sion Density and High Economic Carbon Intensity zones accounted for 41.73% of total 
carbon emissions. To achieve carbon neutrality, it is essential to devise emission reduction 
strategies for specific areas by thoroughly considering spatially explicit variation at the 
prefecture level, with a focus on primary carbon-emitting cities and sectors. 

Keywords: carbon emission estimation; prefecture level; carbon emission sources; carbon 
emission zoning; China 
 

1. Introduction 
Increasing carbon emissions from human activities have been regarded as the major 

contributor to global climate change [1,2], posing significant challenges to the sustainable 
development of human society and the environment [3]. In the past decades, China has 
experienced rapid economic growth, industrialization, and urbanization, resulting in sub-
stantial energy consumption and carbon emissions [4–6], making China the world’s larg-
est emitter of carbon. In response to the challenges posed by global climate change, the 
Chinese government has implemented a series of significant measures, i.e., improving 
energy efficiency, developing renewable energy sources, and advocating green travel [7–
9], with the objective of reducing carbon emissions and promoting sustainable 
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development. Nevertheless, it is worth acknowledging that despite the significant pro-
gress achieved, China continues to be one of the world’s foremost contributors to carbon 
emissions [6,10]. 

China’s carbon emissions originate from multiple sources. In the Guidelines for Com-
piling Provincial Greenhouse Gas Inventories issued by the Department of Climate 
Change under the National Development and Reform Commission in 2010, carbon emis-
sions were categorized into several sectors, including agriculture, industry, livestock 
farming, construction, transportation, tertiary industry, residential living, and waste dis-
posal. These eight sectors generally represent the overall carbon emission levels across 
regions in China. However, current research on China’s carbon emissions often focuses 
on several specific carbon-emitting sectors, such as agriculture [11,12], construction [13], 
residential living [14], industry [15,16], transportation [17], and food [18]. In addition, 
scholars have usually only estimated carbon dioxide (CO2) emissions from fossil fuel con-
sumption and industrial production processes [19–22] but have ignored methane (CH4) 
emissions. Differences in focus have led to certain differences in estimates of China’s car-
bon emissions, such as those reported by Kong et al. (2022) (121.92 × 108 t in 2019) [21], the 
International Energy Agency (IEA) (100.53 × 108 t in 2020), and the China City Greenhouse 
Gas Working Group (CCG) (127.3 × 108 t in 2020). Therefore, there is a pressing need to 
consider more potential sources of carbon emissions in order to accurately assess China’s 
carbon emissions and to provide data support for the early realization of carbon peaking 
and carbon neutrality in China. 

High-resolution networked data are the foundation for accurately identifying carbon 
emission hotspots and proposing targeted emission reduction strategies [23]. Several 
studies have employed data for population density [24] and nighttime lights [25] to model 
the spatial distribution of carbon emissions. However, it is important to note that these 
datasets are better suited for quantifying carbon emissions linked to population density 
and electricity usage but may not accurately capture emissions from other sources of en-
ergy consumption, such as industrial energy consumption [26]. Land use plays a crucial 
role in carbon emissions and mitigation efforts [27], as land use patterns directly influence 
energy consumption, transportation networks, industrial locations, and population distri-
bution. Changes in land use patterns and structures can significantly alter energy con-
sumption patterns, thereby impacting carbon emissions [28]. Optimizing land-use struc-
tures, such as reallocating industrial land, could serve as an important tool for reducing 
carbon emissions [29]. While some researchers have provided high-resolution (50–1000 
m) carbon emission data at the county level [30] or city level [31–35], comprehensive high-
resolution emission data covering the entirety of China remains scarce. Cai et al. (2018) 
developed the China High-Resolution Emission Database (CHRED) that incorporates 
both point source and gridded emission data at spatial resolutions of 1 km and 10 km [19]. 
This dataset significantly improved the precision and accuracy of regional emission esti-
mation, and demonstrated clear advantages in pinpointing carbon emission hotspots. 
However, further improving spatial resolution is essential for effective carbon emission 
management, as it allows for the identification of carbon emission patterns at finer scales. 
Such advancements can support more accurate and localized decision-making, including 
the development of emission reduction strategies tailored to specific land use types or 
addressing hotspot issues in industrial zones, where many factories are located just a few 
hundred meters from residential areas. High-resolution data also facilitate dynamic mon-
itoring of land use changes and their carbon impacts, providing valuable insights for sus-
tainable urban planning and industrial regulation. 

Therefore, the primary objective of this study is to achieve high-precision accounting 
and accurate spatial identification of carbon emissions in China by integrating multi-
source data with comprehensive analytical methods. Furthermore, the study aims to 
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examine the spatial patterns and characteristics of carbon emissions, offering insights into 
their dynamics and distribution across different regions. This approach not only enhances 
the understanding of regional emission trends but also provides a scientific foundation 
for formulating highly targeted emission reduction strategies, thereby supporting more 
refined and effective carbon emission management. Given this context, the three primary 
objectives of this study were to (1) conduct detailed carbon emissions accounting on a 
prefecture-level city basis, (2) provide high-resolution (500 m) carbon emissions data for 
China, and (3) determine carbon emission sources across different regions in order to pre-
sent tailored emission reduction recommendations. To achieve these objectives, we used 
statistical data at the prefecture-level scale that encompassed agriculture, industry, live-
stock farming, construction, transportation, tertiary industry, residential living, and waste 
disposal to compute the CO2 and CH4 emissions in 360 prefecture-level cities in China for 
2020. By leveraging high-resolution spatial data, including Point of Interest (POI) data, 
land-use data, road data, population density data, and nighttime light data, we were able 
to determine the spatial distribution of carbon emissions in order to achieve relatively 
comprehensive and high-resolution (500 m) carbon emissions data. The ultimate research 
objectives were to identify carbon emission hotspots and propose corresponding emission 
reduction suggestions for different regions in order to provide a theoretical basis for the 
precise implementation of carbon emission reduction strategies in specific regions of 
China in the future. The findings of this study provide detailed data support for the de-
velopment of scientifically sound and rational carbon reduction policies, enabling their 
precise implementation. Furthermore, the study offers valuable insights for more effective 
monitoring of carbon emissions across regions, particularly in improving the manage-
ment of key areas and industries. The results contribute to the Sustainable Development 
Goals (SDGs), including the “Climate Action” goal, by accurately assessing carbon emis-
sions and supporting the formulation of effective reduction strategies to address climate 
change. Additionally, in relation to the “Sustainable Cities and Communities” goal, the 
study provides data-driven insights to guide urban planning and management, fostering 
the green and low-carbon development of cities. 

2. Materials and Methods 
2.1. Study Area 

We chose the mainland of China as the study area due to the unavailability of the neces-
sary statistical data for Xizang, Hong Kong, Macau, and Taiwan. A total of 360 cities across 30 
provinces in the study area were selected for calculating carbon emissions (Figure 1). Among 
the 360 cities, there were 287 prefecture-level cities, 30 autonomous prefectures, four munici-
palities directly under the direction of the central government, and 39 other cities directly ad-
ministered by provincial governments, collectively referred to hereafter in this paper as pre-
fecture-level cities for the sake of simplicity. 
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Figure 1. Study area in China. 

2.2. Data Sources 

Two types of data were employed in this study: non-spatial data and spatial data. 
The non-spatial data primarily originated from official statistical publications issued by 
the Chinese government and provincial-level authorities. These publications are highly 
authoritative and systematically compile comprehensive data related to China and its re-
spective provinces. Such data are crucial for accurately analyzing economic activities and 
their associated carbon emissions across diverse regions. Furthermore, the data obtained 
from these sources are collected through official statistical websites, ensuring both its ac-
curacy and representativeness for carbon emission analysis. Non-spatial data included 
energy consumption data (sourced from the China Energy Statistical Yearbook) [36]; pop-
ulation data (sourced from the Seventh National Population Census of China) [37]; year-
end livestock inventory, raw coal production, industrial product output, agricultural in-
put, rice cultivation area, grain production, operating costs of various industrial sectors, 
construction area, road mileage, disposable income of residents, total output of the tertiary 
sector (sourced from Provincial Statistical Yearbooks and Prefecture-level City Statistical 
Yearbooks on the government websites of various provinces and cities); and sewage treat-
ment volume and solid waste disposal volume (sourced from the China Environmental 
Statistical Yearbook) [38]. All non-spatial data for this study were collected in 2020. The 
spatial data constituted road data (encompassing expressways, national highways, pro-
vincial roads, urban primary roads, urban secondary roads, urban tertiary roads, and ur-
ban quaternary roads) [39]; land use data with a spatial resolution of 30 m [39]; nighttime 
light data with a spatial resolution of 500 m [40]; and WorldPop population distribution 
data with a spatial resolution of 100 m [41]. The map of China was obtained from the 
official website of the Ministry of Natural Resources of China in 2022 [42]. Points of Inter-
est (POI) data, representing geospatial vector points based on mobile devices and location 
services, contain semantic information that cannot be derived from satellite images [43]. 
Different types of POI data reflect the spatial distribution of various carbon emissions, 
addressing the limitations of using remote sensing data to monitor carbon emissions in 
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complex urban environments. As a result, POI data are widely used in carbon emission 
estimation [44]. Therefore, we obtained POI data from various industries using the Gaode 
Maps API interface technology from Gaode Maps, including 1,837,202 entries of industrial 
data, 7238 entries of cement production plants, 6407 entries of steel production factories, 
46,911 entries of large-scale livestock farms, 662 entries of wastewater treatment plants, 
and 1191 entries of waste disposal facilities. The industrial POI data were categorized into 
40 carbon-emitting sectors based on industrial classification standards from the Provincial 
Statistical Yearbook (sourced from the government websites of various provinces) (Table 
A1). All of the spatial data were collected in 2020. Considering that the nighttime light 
data exhibit a native resolution of 500 m, in order to preclude potential errors that might 
arise from resampling to higher resolution data, all spatial data employed in this study 
were uniformly resampled to a consistent spatial resolution of 500 m. 

2.3. Estimating and Spatializing Carbon Emissions 

Two main steps comprised the process used in this study: 1. estimating carbon emis-
sions; 2. spatializing carbon emissions. 

2.3.1. Estimating Carbon Emissions 

Our first objective was to compute the carbon emissions from 17 different sources, 
encompassing the eight carbon-emitting sectors of agriculture, industry, livestock farm-
ing, construction, transportation, tertiary sector, residential living, and waste disposal (Ta-
ble 1). Given that the statistical yearbooks of prefecture-level cities contain energy con-
sumption data for only a limited number of major energy sources, we utilized provincial-
level energy consumption data to calculate carbon emissions. The majority of other non-
spatial data was at the prefecture-level city, with only a portion being at the provincial 
level. In the end, different proxy data varying by sector and data type were selected to 
distribute carbon emissions calculated from provincial-level data to individual prefecture-
level cities (Table A2). Due to the unavailability of location data for waste disposal facili-
ties in some prefecture-level cities, carbon emissions resulting from waste disposal were 
calculated and allocated at the provincial level. 

Table 1. Types, sources, and associated sectors of carbon emissions. 

Associated Sector Carbon Emission Source Carbon Emission Type 

Agriculture 
Agricultural Energy Consumption CO2 

Agricultural Input Materials CO2 
Methane Emissions from Rice Cultivation CH4 

Livestock Farming Livestock Manure Fermentation CH4 
Livestock Enteric Management CH4 

Industry 
Coal Mining CH4 

Industrial Energy Consumption CO2 
Industrial Production Processes CO2 

Construction Construction Energy Consumption CO2 
Transportation Transportation Energy Consumption CO2 

Residential Living Urban Residential living Energy Consumption CO2 
Rural Residential living Energy Consumption CO2 

Waste Disposal 
Sewage Treatment CH4 
Waste Incineration CO2 
Waste Landfilling CH4 

Tertiary Sector 
Wholesale, Retail, and Catering Services Energy Con-

sumption CO2 
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Other Energy Consumption CO2 

These calculations accounted for two greenhouse gases: CO2 and CH4. The equations 
for calculating carbon emissions are shown in Equation (1). All calculation results were 
ultimately converted into CO2 emissions and aggregated. 𝐶 = ෍ሺ𝐶௖ௗ௜ + 𝐶௠௘௞ሻ = ෍ሺ𝑄௜  × 𝑍௜ + 𝑄௞  × 𝑍௞  ×  21ሻ (1)

where C represents the total carbon emissions; Ccdi represents the carbon dioxide emis-
sions of the ith type; Cmek represents the methane emissions of the kth type (converted to 
carbon dioxide equivalent); Qi and Qk represent the quantities of the ith and kth related 
resource types, while Zi and Zk represent the carbon emission coefficients of the ith and 
kth source types, respectively. The conversion factor of 21 means that 1-tone CH4 is equiv-
alent to 21-tone CO2 equivalent [45]. The carbon emission coefficients for different sources 
are shown in Table A3. 

2.3.2. Spatializing Carbon Emissions 

Our second objective was to allocate carbon emissions spatially. Diverse spatial allo-
cation methods were adopted based on data characteristics. For point data, carbon emis-
sions from the same source were evenly distributed among various POIs. For linear and 
areal data, different proxy data were selected as weights based on the unique characteris-
tics of different carbon emission types, and then carbon emissions were allocated to spe-
cific grid units with prefecture-level cities as the basic units (Equations (2) and (3)). Addi-
tionally, for areal data, different carbon emissions were assigned to different land use 
types (Table A4). 𝐶௚ = ෍ 𝐶௚௜ = 𝐶௖௜௧௬௜  ×  𝑊௚௜ (2)

𝑊௚௜ = 𝑍௚௜ 𝑍௖௜௧௬௜⁄  (3)

where Cg represents the carbon emissions of grid unit g; Cgi represents the carbon emis-
sions of type i on grid unit g; Ccityi represents the total carbon emissions of type i for the 
respective prefecture-level city; Wgi represents the weight assigned to type i carbon emis-
sions for grid unit g; Zgi represents to the proxy data value for type i carbon emissions on 
grid unit g; and Zcityi represents the summation of proxy data values for type i carbon 
emissions within the same prefecture-level city. 

2.4. Carbon Emission Zoning 

Our final objective was to divide all 360 prefecture-level cities into different zones 
based on their carbon emission characteristics and propose carbon reduction recommen-
dations. Carbon emission density is defined as the amount of CO2 per land area [46], and 
economic carbon intensity is defined as the amount of CO2 per unit of gross domestic 
product (GDP) [47]. The prefecture-level cities were zoned into four zones based on car-
bon emission density and economic carbon intensity: low carbon emission density and 
low economic carbon intensity zone (LD-LI), low carbon emission density and high eco-
nomic carbon intensity zone (LD-HI), high carbon emission density and high economic 
carbon intensity zone (HD-HI), and high carbon emission density and low economic car-
bon intensity zone (HD-LI). The LD HD means the carbon emission density of prefecture-
level cities is less or more than that of the average in China, and LI (HI) means the eco-
nomic carbon intensity of prefecture-level cities is less or more than that of the average in 
China. 

2.5. Kernel Density Method 
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The kernel density method directly reflects the density of point data within a certain 
area [48]. The kernel density method was used to detect the spatial distribution character-
istics of carbon emissions in China after the spatial data were converted into point data. 
The resolution of the kernel density method was 500 m, and the specified search radius 
was 10 km. 

3. Results 
3.1. Carbon Emission Status in China 

Total carbon emissions in China amounted to 146.00 × 108 t in 2020 (Table 2), among 
which CO2 contributed 139.97 × 108 t (accounting for 95.87% of the total carbon emissions, 
and CH4 accounting for only 4.13%). Industry was the dominant sector among the eight 
designated carbon-emitting sectors, contributing 110.12 × 108 t (accounting for 75.42% of 
the total). Carbon emissions from residential living, transportation, tertiary sector, and 
agriculture accounted for 7.44%, 5.16%, 4.89%, and 3.82%, respectively, of the total. The 
highest contributor to CO2 emissions was industry (accounting for 77.43% of the total CO2 
emissions). Livestock farming and industry had the largest CH4 emissions (accounting for 
36.98% and 28.86%, respectively, of total CH4 emissions. 

Table 2. Carbon emissions from different sources in 2020 (108 t). 

Carbon Emission Source 
Carbon Emissions 

Total CO2 CH4 
Agriculture 5.58 4.24 1.34 

Livestock Farming 2.23 0 2.23 
Industry 110.12 108.38 1.74 

Construction 1.48 1.48 0 
Transportation 7.53 7.53 0 

Residential Living 10.85 10.85 0 
Tertiary Sector 7.14 7.14 0 
Waste Disposal 1.07 0.35 0.72 

Total 146.00 139.97 6.03 

Significant spatial variation in carbon emissions in China was detected, with higher 
emissions in the southeastern area than in the northwestern area (Figure 2a). Based on the 
kernel density analysis, the identified high carbon emission aggregation areas were the 
North China Plain (including Beijing, Tianjin, Hebei, Henan, Shandong, Anhui, and 
Jiangsu), the Northeast Plain (including Heilongjiang, Jilin, Liaoning, and eastern Inner 
Mongolia), and the Sichuan Basin (including eastern Sichuan and western Chongqing) 
(Figure 2b). The five highest carbon-emitting provinces were Hebei (16.72 × 108 t), Shan-
dong (13.65 × 108 t), Jiangsu (11.23 × 108 t), Liaoning (7.62 × 108 t), and Inner Mongolia (7.11 
× 108 t), all five of which accounted for 38.57% of the total carbon emissions in China. The 
five provinces with the lowest carbon emissions were Chongqing, Ningxia, Beijing, Qing-
hai, and Hainan, all five of which contributed to only 4.65% of the total national carbon 
emissions. 
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Figure 2. Spatial distribution characteristics of carbon emissions in China in 2020: (a) spatially ex-
plicit carbon emissions (t/grid cell); (b) kernel density analysis. 

As with the spatial distribution trends of total carbon emissions for the entire county, 
the carbon emissions from the selected eight carbon-emitting sectors were higher in south-
eastern China than in northwestern China (Figure 3). The areas with higher carbon emis-
sions from the industrial sector were located in Hebei, Liaoning, Shanxi, and Inner Mon-
golia, provinces that are famous for steel production and coal mining. Areas with more 
intensive carbon emissions from residential living were mainly located in Shandong, He-
nan, Hebei, Jiangsu, and Anhui, where population densities were higher. Carbon emis-
sions from transportation and agriculture were more concentrated, while carbon emis-
sions from tertiary industry, construction, and waste disposal were relatively dispersed. 
Carbon emissions from livestock farming were more concentrated in the North China 
Plain, but higher emissions were produced in the southwest. 
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Figure 3. Spatially explicit carbon emissions from eight carbon-emitting sectors in China in 2020: (a) 
industry; (b) residential living; (c) transportation; (d) tertiary sector; (e) agriculture; (f) construction; 
(g) waste disposal; (h) livestock farming. 

The industry sector accounted for more than 50% of total carbon emissions from most 
of the provinces except Beijing and Heilongjiang (Figure 4). Specifically, the industry sec-
tor contributed to more than 70% of the total carbon emissions in 17 provinces, and the 
top three industrial carbon-emitting provinces were Ningxia (88.56%), Hebei (88.08%), 
and Shanxi (85.84%). It is worth noting that residential living and transportation carbon 
emissions also accounted for a large proportion of carbon emissions in dense population 
areas such as Beijing (25.22%), Heilongjiang (15.85%), and Guangdong (10.00%). The top 
three transportation carbon-emitting provinces were Shanghai (17.78%), Beijing (16.37%), 
and Hainan (12.58%), and the top three tertiary industry carbon-emitting provinces were 
Beijing (32.29%), Guizhou (16.72%), and Shanghai (11.79%). Not surprisingly, the largest 
agricultural carbon-emitting province was Heilongjiang (13.30%) due to it being the main 
grain-producing area of China, followed by Hainan (10.45%) and Hunan (9.87%). 
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Figure 4. The proportion of total carbon emissions in China coming from each province (green shad-
ing of provinces) and the proportion of total carbon emissions in each province attributed to each 
carbon-emitting sector (segmented color bars in each province). 

3.2. Carbon Emission Characteristics at Prefecture-Level Cities 

The industry sector accounted for more than 50% of carbon emissions from the 309 
prefecture-level cities. Specifically, the industry sector contributed to more than 80% of 
the carbon emissions in 83 prefecture-level cities mainly located in the north of China (Fig-
ure 5a). The carbon emissions from residential living and tertiary sector showed obvious 
agglomeration in Heilongjiang and Guizhou, respectively (Figure 5b,d). The 36 cities with 
transportation carbon emissions exceeding 15% were mainly located in the southwest, 
southern coastal, and northeastern regions (Figure 5c). For agriculture, the 27 cities with 
carbon emissions exceeding 15% were mainly located in Heilongjiang, Xinjiang, Henan, 
and Hainan (Figure 5e). Relative to other sectors, carbon emissions from construction, 
waste disposal, and livestock farming accounted for a smaller proportion of the total car-
bon emissions in each prefecture-level city (Figure 5f–h). 
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Figure 5. Proportions of total carbon emissions from eight carbon-emitting sectors in China: (a) in-
dustry; (b) residential living; (c) transportation; (d) Tertiary sector; (e) Agriculture; (f) Construction; 
(g) Waste disposal; (h) Livestock farming. 

As shown in Figure 6a, there were 76 cities with carbon emissions exceeding 60 mil-
lion tons that contributed carbon emissions of 83.72 × 108 t (Table 3), accounting for 57.34% 
of the total carbon emissions in China. The top five carbon-emitting prefecture-level cities 
were Tangshan with 502.39 million tons, Tianjin with 282.35 million tons, Shanghai with 
260.14 million tons, Suzhou with 245.35 million tons, and Handan with 233.82 million 
tons, accounting for a total of 10.44% of the total carbon emissions in China. 
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Figure 6. Carbon emission characteristics of prefecture-level cities in China: (a) total carbon emis-
sions (104 t); (b) carbon emission density (t/km2); (c) economic carbon intensity (t/104 RMB). 

Table 3. Number of prefecture-level cities and total carbon emissions for different levels of total 
carbon emissions, carbon emission density, and carbon emission intensity in China. 

Classification 
Number of  

Prefecture-Level 
Cities 

Total Carbon  
Emissions (108 t) 

Total carbon emissions (104t) 

0–500 34 0.77 
500–1000 31 2.34 

1000–2000 76 11.35 
2000–4000 109 31.95 
4000–6000 34 15.88 
6000–8000 25 17.32 

8000–10,000 26 23.48 
>10,000 25 42.91 

Carbon emission density 
(t/km2) 

0–500 46 5.74 
500–1000 47 8.41 

1000–1500 46 9.84 
1500–2000 42 11.91 
2000–2500 23 7.92 
2500–5000 62 21.99 

5000–10,000 53 34.25 
>10,000 41 45.94 

Carbon emission intensity 
(t/104 RMB) 

0.0–0.8 34 15.39 
0.8–1.0 46 15.55 
1.0–1.2 37 13.67 
1.2–1.4 42 15.86 
1.4–1.8 50 15.37 
1.8–2.2 30 14.41 
2.2–4.0 79 28.02 

>4.0 42 27.73 

Significant spatial variation in carbon emission density in China was detected, with 
higher carbon emission density in the southeastern region than in the northwestern region 
(Figure 6b). Ninety-four cities had carbon emission densities exceeding 5000 t/km2, 
contributing a total carbon emission of 80.19 × 108t and accounting for 54.92% of the total 
carbon emissions in China. The top five carbon emission density prefecture-level cities 
were Wuxi (3.96 × 104 t/km2), Tangshan (3.64 × 104 t/km2), Dongguan (3.55 × 104 t/km2), 
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Shenzhen (3.46 × 104 t/km2), and Shanghai (3.17 × 104 t/km2), accounting for total carbon 
emissions of 7.53%. 

Eighty-one cities had carbon emission intensities exceeding 3 t/104 RMB (Figure 6c), 
contributing a total carbon emission of 42.63 × 108 t and accounting for 29.20% of the total 
carbon emissions in China. The top five economic carbon intensity prefecture-level cities 
were Hainan Tibetan Autonomous Prefecture (11.54 t/104 RMB), Benxi (7.28 t/104 RMB), 
Tangshan (6.97 t/104 RMB), Wuhai (6.80 t/104 RMB), and Shizuishan (6.68 t/104 RMB), 
accounting for total carbon emissions of 4.39%. 

The carbon emissions of prefecture-level cities gradually decreased from the city 
center to the periphery, but different spatial distribution characteristics in different cities 
were shown based on the degree of urban development (Figure 7). By utilizing high-
resolution data, the localized patterns of carbon emissions in cities with varying levels of 
development can be accurately identified patterns that would otherwise be obscured in 
coarse-resolution analyses. For instance, in super-first-tier cities such as Shanghai and 
Shenzhen, high carbon emission areas were not only larger but also more spatially 
concentrated, reflecting dense industrial and commercial activities. In contrast, in first-tier 
cities like Dongguan, Suzhou, and Tianjin, as well as the second-tier city Wuxi, high-
emission areas were moderately distributed, highlighting a mix of urban and peripheral 
industrial zones. In third-tier cities, such as Tangshan and Handan, the areas of high 
carbon emissions were smaller and scattered, often concentrated in specific industrial 
hubs or county capitals. 

 

Figure 7. Positions and spatial distribution of the top five prefecture-level cities with the highest 
carbon emissions (a, a1–a5) and the top five prefecture-level cities with the highest carbon emission 
densities (b, b1–b5) in China. 

3.3. Characteristics of Carbon Emissions in Different Zones 

The average carbon emission density for China in 2020 was 1765.81 t/km2, with an 
average economic carbon intensity of 1.44 t/104 RMB. Therefore, this study divided China 
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into four zones (Figure 8a). The four zones exhibited significant differences in spatial 
concentrations of emission characteristics, with the LD-LI zone predominantly situated in 
southern China (including 58 cities), the LD-HI zone located in northern China (including 
103 cities), and the HD-LI and HD-HI zones primarily located in eastern China, distinctly 
divided along a north-south axis (including 109 and 90 cities, respectively). There were 
also significant differences in carbon emission values among the four regions, with the 
HD-HI zone having the highest carbon emissions and accounting for 41.73% of the total 
carbon emissions, while the LD-LI zone contributed to only 5.62% of total carbon 
emissions (Figure 9a). In addition, there were significant discrepancies in average carbon 
emission density between the LD zone (411.61–1002.07 t/km2) and the HD zone (5200.48–
6377.09 t/km2), as well as in average economic carbon intensity between the LI zone (0.86–
1.11 t/104 RMB) and HI zone (2.45–2.88 t/104 RMB) (Figure 9b,c). 

 

Figure 8. Carbon emission zones in China: (a) spatial distribution of four carbon emission zones; (b) 
industrial carbon emissions in the HD-HI zone; (c) industrial carbon emissions in the HD-LI zone; 
(d) transportation carbon emissions in the LD-LI zone; (e) agriculture carbon emissions in the LD-
LI zone; (f) industrial carbon emissions in the LD-HI zone; (g) tertiary carbon emissions in the HD-
HI zone. 
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Figure 9. Characteristics of carbon emissions in different zones: (a) proportions of total carbon 
emissions; (b) carbon emission density; (c) carbon emission intensity; (d) proportions of total carbon 
emissions in each zone attributed to each carbon-emitting sector. 

Industry has been identified as the predominant source of carbon emissions across the 
four emission zones, significantly influencing both carbon emission density and intensity 
(Figure 9d). Notably, the proportion of industrial carbon emissions in the HD zones is 
markedly higher than in the LD zones, with the HD-HI zone exhibiting an exceptional share 
of 84.24% (Figure 8b,c). This zone, primarily encompassing provinces such as Shanxi, Hebei, 
Shandong, and Liaoning, is characterized by the dominance of heavy industries, including 
steel, cement, and chemical manufacturing. These sectors are highly energy-intensive, relying 
extensively on fossil fuels for production processes, which results in substantial carbon 
emissions due to their large-scale operations and high energy consumption. In contrast, the 
LD zone, with a relatively lower level of industrial development, exhibits a smaller proportion 
of carbon emissions from industry. However, industrial activities still contribute to carbon 
emissions in these regions. In the LD-LI zone, despite a smaller overall industrial scale 
compared to the HD zones, specific industries continue to play a significant role in carbon 
emissions. 

Beyond industry, other sectors also exhibit distinct differences in carbon emission 
patterns, largely influenced by the unique industrial structures and socio-economic 
characteristics of each zone. In the LD-LI zone, transportation accounts for 11.74% of total 
carbon emissions. This is largely attributed to the region’s relatively sparse urban layout 
and underdeveloped public transportation infrastructure, leading to increased reliance on 
private vehicles for commuting and the transportation of goods over longer distances, 
thereby elevating carbon emissions from the transportation sector (Figure 8d). 
Additionally, agriculture contributes 7.34% of the carbon emissions in this zone, driven 
by traditional farming practices such as the use of fossil fuel-powered machinery and the 
application of fertilizers, which release greenhouse gases during decomposition. The rural 
characteristics of the LD-LI zone, with a significant portion of the population engaged in 
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agriculture, further emphasize the role of this sector in overall carbon emissions (Figure 
8e). In the LD-HI zone, residential living contributes 8.64% of carbon emissions, which 
can be attributed to several factors (Figure 8f). The colder climate in certain areas of this 
region results in higher energy demand for heating during winter months. Moreover, the 
lifestyle and consumption patterns in this zone likely involve elevated energy use for 
household appliances and other daily activities. In the HD-HI zone, the tertiary sector 
accounts for 6.79% of total carbon emissions (Figure 8g). The rapid development of the 
tertiary sector in this region, which includes commercial services and logistics, leads to 
emissions from various sources. Commercial buildings in urban areas are significant 
energy consumers, utilizing large amounts of energy for lighting, heating, ventilation, and 
air conditioning. Additionally, the logistics and transportation services associated with 
the tertiary sector, such as the movement of goods and people, contribute further to 
carbon emissions. The high population density and intense economic activity in the HD-
HI zone further amplify the carbon emissions associated with the tertiary sector. 

4. Discussion 
This study provided a more detailed, higher spatial resolution and broader coverage 

of carbon emission spatial distribution data in China, providing crucial support for 
developing more accurate and effective carbon reduction strategies, which have not been 
reported in the scientific literature. This study calculated emissions across eight sectors 
that encompass nearly all carbon-emitting activities while also accounting for emissions 
from coal mining, agricultural inputs, rice cultivation, livestock farming, and waste 
disposal. Notably, this research utilizes more detailed data on the consumption of 40 types 
of fossil fuels. Furthermore, it elevates the carbon emission analysis to a spatial resolution 
of 500 m, covering all 360 cities in China except Tibet, Hong Kong, Macao, and Taiwan. In 
contrast, previous studies, such as those by Cai et al. (2018), included only four sectors 
[19], while Shan et al. (2022) focused solely on emissions from 17 types of fossil fuels and 
considered only 275 prefecture-level cities [22]. More comprehensive carbon emission 
data are essential for formulating cross-sectoral collaborative reduction strategies, 
balancing regional emission disparities, and achieving refined carbon management. In 
addition, Cai et al. (2018) found that China’s carbon emission hotspot area was in central 
east China (including Beijing, Tianjin, Liaoning, Hebei, Shanxi, Shandong, Henan, 
Jiangsu, and Anhui) [19]. Shan et al. (2022) found that Tangshan, Tianjin, Shanghai, 
Suzhou, Handan, and Chongqing were six of the top ten locations for total carbon 
emissions [22]. These results were consistent with the findings of our study. On the other 
hand, our study also showed a good correlation with the total carbon emission results of 
CCG (R2 = 0.7047) (Figure 10). 
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Figure 10. Comparison of total carbon emission values in China estimated by this study and CCG. 

Significant differences in carbon emissions exist across regions, closely linked to local 
policies, stages of economic development, and land use characteristics. For instance, 
economically developed HD-HI regions tend to have higher emissions due to industrial 
concentration and high energy consumption, whereas LD-LI regions, dominated by 
agriculture or with low levels of industrialization, typically exhibit lower total emissions. 
Exploring these relationships in greater depth provides valuable insights for developing 
regional and targeted emission reduction policies. However, this study has certain 
limitations in data sources and methodology that may influence the interpretation of 
regional differences. For example, emissions from certain sectors might be 
underestimated due to incomplete data, while spatial data distribution inconsistencies 
could either exaggerate or downplay regional disparities. Additionally, the lack of 
historical carbon emission data limits the analysis of dynamic changes across regions, 
making it difficult to assess long-term trends or the effectiveness of mitigation policies. 
Future research should incorporate more comprehensive historical data and employ 
refined spatial analysis methods to better understand regional carbon emission disparities 
and their underlying causes. 

4.1. Strengths and Uncertainty in Carbon Emission Estimation 

Carbon emissions in China have received extensive attention from the rest of the 
world. Accurately estimating carbon emissions is dependent not only on identifying 
emission sectors but also on access to data resources. Our study showed obvious 
advantages in the spatial resolution of carbon emissions, especially in the identification of 
carbon emission hotspots. As shown in Figure 11, six large areas in Shanghai with carbon 
emissions exceeding 50 × 103 t/grid cell were accurately identified in our study: industrial 
and logistics center park in Baoshan District (Figure 11b), Shanghai Hongqiao 
International Airport (Figure 11c), Centralized chemical industry park (Figure 11d), 
Shanghai Port Container Waigaoqiao Marina (Figure 11e), Shanghai Pudong International 
Airport (Figure 11f), and Shanghai Disney Resort (Figure 11g). These areas all involve 
significant energy consumption and carbon emissions in their operations, especially 
Shanghai Hongqiao International Airport and Shanghai Pudong International Airport, 
which both rank among the top ten airports in China in terms of passenger traffic. 
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Figure 11. Example of carbon emission precision in Shanghai: (a) carbon emissions in Shanghai City; 
(b–g) true-color images (sourced from Baidu Maps): (b) industrial and logistics center park in 
Baoshan District; (c) Shanghai Hongqiao International Airport; (d) centralized chemical industry 
park; (e) Shanghai Port Container Waigaoqiao Marina; (f) Shanghai Pudong International Airport; 
(g) Shanghai Disney Resort. 

In general, the calculation results of this study reflected the amount and spatial 
distribution of China’s carbon emissions more accurately. However, the following 
limitations and uncertainties associated with our study should be considered: 

(1) Obtaining detailed data at the prefecture-level was challenging. Since some 
prefecture-level city-level statistical data were not published in the statistical year book, 
this study used available proxy data (such as per capita income and grain production) to 
allocate provincial-level data to prefecture levels. For instance, among 26 provinces and 
autonomous regions, 19 disclosed fertilizer usage at the prefecture level in 2020, while 
seven did not stop the usage. Grain output is affected by the use of chemical fertilizers to 
a certain extent. Therefore, this study allocated provincial fertilizer usage totals to 
prefecture levels using grain production as proxy data. However, the limited availability 
of relevant data in statistical yearbooks for some provinces, coupled with the fact that 
most prefecture-level cities do not publish statistical yearbooks or include only partial 
data, resulted in certain cities relying heavily on proxy data for carbon emission 
calculations. This reliance introduced notable limitations and potential uncertainties in 
the carbon emission estimates. Additionally, the data in statistical yearbooks is 
predominantly derived from departmental reports, meaning that some figures may be 
based on estimations rather than actual measurements. For example, industrial 
production data are often derived from reports submitted by medium and large-scale 
industries, while production data from smaller processing facilities are typically excluded. 
This omission could adversely affect the accuracy of carbon emission calculations, 
especially in regions with a high prevalence of small-scale industries. 

In future research, governments and statistical agencies should prioritize the 
establishment of more detailed data collection systems that account for contributions from 
smaller industries and provide more granular reporting at the county level. Strengthening 
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coordination among different administrative levels can further enhance data availability 
and accuracy. (2) The temporal precision of high-resolution spatial data also constrained 
the calculation and spatial representation of carbon emissions, especially the POI data. 
Large-scale reporting of POI data in China generally began in 2010 [44], resulting in a 
relatively short study period for the spatialization of carbon emissions using POI data. 
This limitation hinders the ability to conduct long-term carbon emission monitoring. 
Furthermore, some POI entries may contain errors, such as incorrect location tagging or 
misclassification of industries. Additionally, certain areas may suffer from missing POI 
data, particularly in remote regions or for small enterprises and establishments that might 
not be recorded, leading to gaps or inaccuracies in spatialized carbon emission results. 
POI data updates are not real-time, and as urban development and industrial 
restructuring progress, new emission sources continuously emerge, while older sources 
may disappear or change in scale. The coverage of POI data also varies significantly across 
regions. In urban centers and densely populated commercial areas, POI data are rich and 
detailed, offering a comprehensive reflection of various emission sources. However, in 
rural areas, remote regions, or economically underdeveloped areas, the density and 
richness of POI data are substantially lower, potentially omitting many emission sources. 
This disparity compromises the completeness and accuracy of spatialized carbon emission 
results across different geographic regions. Moreover, POI data only indicate the location 
of emission sources but do not provide information on their scale. Consequently, within 
the same prefecture-level city, emission sources of varying scales within the same industry 
are treated equally, which adversely impacts the accuracy of the calculation results. In 
future research, it is possible to consider cooperating with platforms that provide POI data 
to speed up the update frequency of POI data. Additionally, it would be beneficial to 
incorporate descriptive fields related to the scale of carbon emissions within the POI data, 
such as production scale, building area, and employee numbers. By collecting and 
organizing this information, a more accurate assessment of the emission intensity of 
sources of varying scales can be achieved. 

4.2. Spatial Variation in Carbon Emissions in China 

There were obvious spatial distribution differences in carbon emissions in China, 
especially the carbon emission density and economic carbon intensity (see Section 3.2). Carbon 
emissions are affected by multiple factors, such as population, GDP, and industrial structure 
[49]. Analysis of the causes of the spatial distribution pattern of carbon emissions in China can 
provide a basis for formulating precise emission reduction recommendations. 

The spatial distribution of China’s population (Figure 12a) and GDP (Figure 12b) in 
2020 both had obvious distribution trends of higher in the southeast and lower in the 
northwest, which is consistent with the spatial distribution pattern of carbon emissions. 
These maps show that the distribution of carbon emissions was largely affected by 
population and GDP, and population (R2 = 0.4748) was more highly correlated with carbon 
emissions than GDP (R2 = 0.4040) (Figure 12c). However, both population and GDP had a 
limited impact on carbon emissions within China as a whole, so we conducted further 
analysis for different regions (Figure 13). The results showed that compared to the whole 
of China, the population and GDP of different regions had a higher impact on carbon 
emissions, and the impact of GDP on carbon emissions was greater than population, 
especially in the LD-LI area where carbon emissions were more affected by population 
and GDP, and where the correlation coefficient between GDP and carbon emissions 
reached 0.9102. 
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Figure 12. Population and gross domestic product (GDP) of prefecture-level cities in China and their 
relationship with carbon emissions: (a) Population; (b) GDP; (c) The relationships of carbon 
emissions with population and GDP. 

 

Figure 13. Correlations of carbon emissions with population and gross domestic product (GDP) in 
different carbon emission density and intensity zones of China. 

In view of the different impacts of GDP on carbon emissions in different regions, we 
further analyzed the impact of industrial structure on carbon emissions. The results in 
Figure 14 show that the GDP share of the secondary industry in areas with high carbon 
emission density was significantly higher than in areas with low carbon emission density, 
while the proportion of primary industry in areas with high carbon emission density was 
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relatively low, indicating that the secondary industry was the main factor affecting carbon 
emissions, proving the previous research results. 

 

Figure 14. Proportions of gross domestic product (GDP) associated with different industry 
classifications in different carbon emission density and intensity zones in China (the lower and 
upper box boundaries indicate the 25th and 75th percentiles; the horizontal line in the box is the 
mean; the square symbol in the box is the median; the lower and upper whiskers indicate the 
minimum and maximum values). 

It is worth noting that the industrial structures of the HD-LI zone and the HD-HI 
zone were similar, but they showed huge differences in economic carbon intensity. 
Therefore, we compared the secondary industrial structure of three provinces in the HD-
HI zone (Shanxi, Liaoning, and Hebei) and three provinces in the HD-LI zone (Jiangsu, 
Henan, and Hubei) (Figure 15). The results showed that the heavy industry operating cost 
ratio of the three provinces in the HD-HI zone was significantly higher than in the HD-LI 
zone, especially in Shanxi Province, where the heavy industry operating cost contributed 
to 96% of the total industrial operating cost. These results show that the development of 
heavy industry was the main reason for the high economic carbon intensity in the region. 
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Figure 15. Proportion of operating costs of light industry and heavy industry for six provinces in 
China. 

4.3. Suggestions for Carbon Emission Reduction 

Proposing targeted suggestions based on the carbon emission sources in different zones 
is of great significance in achieving carbon emission reduction, but the actual development 
conditions of different zones should also be considered when making suggestions. 

In the HD-HI region, carbon emission density is notably high, ranging from 5200.48 
to 6377.09 t/km2, far surpassing that of the LD regions. This region, located primarily in 
provinces such as Shanxi, Hebei, Shandong, and Liaoning, relies heavily on heavy 
industry, including sectors like steel, cement, and fertilizers. As shown in Figure 9c, 
industrial emissions account for 84.24% of total emissions in this area. The high energy 
consumption and carbon emissions associated with heavy industry processes result in 
elevated carbon emission density and economic carbon intensity (2.45–2.88 t/104 RMB). 
Due to the region’s energy-intensive industrial structure, economic growth is strongly 
dependent on carbon emissions. Consequently, policy efforts should focus on 
encouraging heavy industries to switch to cleaner energy sources, such as natural gas and 
solar power, while promoting low-carbon materials and energy-efficient technologies. 
Given the contribution of residential and transportation emissions, improving public 
transportation systems and promoting low-carbon lifestyles, such as using energy-
efficient appliances and building materials, should also be prioritized. 

The HD-LI region has a lower carbon emission density, ranging from 411.61 to 
1002.07 t/km2. While the emission density is relatively lower than in the HD-HI region, 
the economic carbon intensity (0.86–1.11 t/104 RMB) remains relatively high. This is 
primarily due to the region’s reliance on light industry and the tertiary sector. The region’s 
industrial structure is more optimized, particularly in light industry and services, which 
have contributed to more effective control of carbon emissions. In this region, policy 
should encourage light industry companies to upgrade their technologies and improve 
energy efficiency in production processes, with financial incentives such as tax breaks and 
subsidies for adopting advanced energy-saving equipment. At the same time, energy 
efficiency standards should be implemented in the service sector, including commercial 
buildings and hotels, which would reduce energy consumption and carbon emissions. 
Moreover, promoting the decarbonization of public transportation by increasing the use 
of electric buses and optimizing traffic networks can significantly reduce emissions. Public 
education campaigns that encourage low-carbon lifestyles will also help raise awareness 
and further reduce the region’s carbon footprint. 

In the LD-HI region, emissions from agriculture and transportation make up a 
substantial share of total carbon emissions, presenting a significant challenge for low-
carbon development. Despite the region’s relatively low carbon emission density, its 
economic carbon intensity is higher, primarily due to the high proportion of emissions 
from agriculture (7.34%) and transportation (11.74%). Traditional agricultural practices, 
which rely heavily on chemical fertilizers and machinery, contribute to significant 
emissions. Additionally, the region’s scattered urban layout and inadequate 
transportation infrastructure exacerbate the carbon emissions from the transport sector. 
Furthermore, residential emissions also contribute to the total carbon output. Therefore, 
policies should focus on promoting sustainable agricultural practices, such as organic 
farming, precision fertilization, and the adoption of low-carbon production technologies. 
Simultaneously, optimizing urban and transportation planning to reduce travel distances 
and congestion and promoting the use of green transportation options, such as electric 
vehicles, will help lower emissions. Public awareness campaigns, especially through 
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schools and community-based programs, should encourage low-carbon living and the 
adoption of energy-saving habits, which will further support emissions reduction efforts. 

The LD-LI region, while having lower carbon emission density and economic carbon 
intensity, still faces challenges due to its relatively single-industrial structure, which relies 
on traditional sectors such as agriculture and small-scale industry. In this region, 
emissions from industry, agriculture, and transportation each represent a significant share 
of total emissions, indicating that reducing emissions while promoting economic 
development remains a challenging task. To address this, policies should foster industrial 
synergy by integrating agriculture, industry, and services, such as through the 
development of agro-processing industries, which would increase the added value of 
agricultural products and drive low-carbon transformation in related sectors. 

In conclusion, policymakers should adopt differentiated carbon reduction strategies 
based on the unique emission characteristics of each region. For regions dominated by heavy 
industry, efforts should focus on energy substitution and technological innovation; in regions 
where agriculture and transportation emissions are prominent, emphasis should be placed on 
agricultural emissions reduction and transportation system optimization; and in areas with 
lower carbon efficiency, promoting industrial synergy and green transformation should be the 
priority. Future research could further assess the effectiveness of these policies and provide 
additional insights to optimize carbon reduction strategies. 
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5. Conclusions 
In this study, carbon emissions from a larger scope and more sources in 2020 were 

estimated by using data from 360 prefecture-level cities in China that included 500-m 
resolution data for CO2 and CH4 emissions in eight carbon-emitting sectors (agriculture, 
industry, livestock farming, construction, transportation, tertiary sector, residential living, 
and waste disposal). We then divided China into four carbon emission density and 
intensity zones, LD-LI, LD-HI, HD-LI, and HD-HI, and analyzed the sources of carbon 
emissions in different regions. China’s total carbon emissions in 2020 were 146.00 × 108 t, 
and carbon emissions in the southeastern region were significantly higher than carbon 
emissions in the northwest. The main source of China’s carbon emissions was industry, 
accounting for 75.42% of total carbon emissions. Therefore, adjusting the industrial 
structure and optimizing industrial production technology will be important tasks for 
China in order to reduce emissions for a long time to come. Residential living and 
transportation contributed to 7.44% and 5.16%, respectively, of total carbon emissions. 
Implementing energy-saving measures in daily life and promoting environmentally 
friendly transportation methods will be essential actions for reducing carbon emissions. 
There was obvious heterogeneity in the carbon emission characteristics of different zones, 
so proposing targeted opinions based on the sources and development levels of carbon 
emissions in different zones is of great significance to reducing carbon emissions. From a 
global perspective, the methodology and findings of this study are not only relevant to 
China but also provide a valuable model for other nations with significant regional 
heterogeneity in carbon emissions. Countries undergoing rapid industrialization and 
urbanization can draw upon this research to better understand their emission patterns 
and formulate region-specific strategies for sustainable development. To further advance 
the understanding and management of carbon emissions, future research could focus on 
continuous temporal monitoring to capture dynamic changes over time, offering more 
comprehensive insights into emission trends. Moreover, leveraging emerging 
technologies such as high-resolution satellite imagery and machine learning algorithms 
could significantly enhance data accuracy and spatial precision. These advancements 
would enable more detailed assessments of emission sources and patterns, refine emission 
inventories, and support the effective implementation of tailored carbon reduction 
strategies. Ultimately, such efforts would contribute to global initiatives aimed at 
addressing climate change. 
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Abbreviations 
The following abbreviations are used in this manuscript: 

CO2 Carbon dioxide 
CH4 Methane 
LD-LI Low carbon emission density and low economic carbon intensity zone 
LD-HI Low carbon emission density and high economic carbon intensity zone 
HD-LI High carbon emission density and low economic carbon intensity zone 
HD-HI High carbon emission density and high economic carbon intensity zone 

Appendix A 

Table A1. Selected carbon-emitting sectors and proportional quantities of industrial POI data. 

Industrial Sector Proportion  Industrial Sector Proportion 
Mining and washing of coal 0.20% Manufacture of medicines 2.39% 

Extraction of petroleum and natural gas 0.02% Manufacture of chemical fiber 0.26% 
Mining of ferrous metal ores 0.01% Manufacture of rubber and plastic 5.19% 

Mining of non-ferrous metal ores 0.02% Manufacture of non-metallic mineral products 9.95% 
Mining and processing of non-metal ores 0.53% Smelting and pressing of ferrous metals 2.78% 

Support activities for mining 0.07% Smelting and pressing of non-ferrous metals 0.89% 
Processing of food from agricultural products 2.59% Manufacture of metal products 11.25% 

Manufacture of food 4.70% Manufacture of general-purpose machinery 9.92% 
Manufacture of liquor, beverages, and refined tea 2.81% Manufacture of special-purpose machinery 3.93% 

Manufacture of tobacco 0.18% Manufacture of automobiles 2.05% 

Manufacture of textile 4.64% 
Manufacture of railway, ship, aerospace, and 

other transport Equipment 
0.43% 

Manufacture of textiles, wearing apparel, and 
accessories 

5.00% 
Manufacture of electrical machinery and 

apparatus 
7.03% 

Manufacture of leather, fur, feather and its 
products, footwear 

1.68% 
Manufacture of computers, communication, and 

other electronic equipment 
3.52% 

Processing of timber, manufacture of wood, 
bamboo, rattan, palm, and straw products 

2.20% 
Manufacture of measuring instruments and 

machinery 
0.46% 

Manufacture of furniture 2.63% Manufacture of other products 0.06% 
Manufacture of paper and paper products 1.78% Utilization of waste resources 0.88% 

Printing, reproduction of recording media 1.92% 
Repair service of metal products, machinery, and 

equipment 
0.09% 

Manufacture of articles for culture, education, arts 
and crafts, sport and entertainment activities 

1.95% 
Production and supply of electric power and 

thermal power 
1.54% 

Processing of petroleum, coking, processing of 
nuclear fuel 

0.91% Production and supply of gas 0.38% 

Manufacture of raw chemical materials and 
chemical products 

2.77% Production and supply of water 0.39% 

Table A2. Data levels and processing for non-spatial data. 

Statistical Data Type Data Level Proxy Data 
Agricultural energy consumption Provincial Grain production 

Agricultural input materials 
Provincial, prefecture-

level city Grain production 

Rice cultivation area Provincial Rice production 

Number of free-range livestock Provincial, prefecture-
level city 

Production of beef, lamb, and 
pork 

Number of livestock raised in 
confinement 

Provincial, prefecture-
level city 

Production of beef, lamb, and 
pork 

Industrial energy consumption Provincial 
Operating costs of various 

industries 
Raw coal production Prefecture-level city - 
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Industrial product output 
Provincial, prefecture-

level city 
Number of various types of 

factories 

Construction energy consumption Provincial 
Construction area of 

buildings 
Transportation energy 

consumption 
Provincial Road mileage 

Urban residential energy 
consumption Provincial Urban resident income levels 

Rural residential energy 
consumption Provincial Rural resident income levels 

Sewage treatment volume Provincial - 
Waste incineration volume Provincial - 
Waste landfilling volume Provincial - 

Wholesale, retail, and catering 
services energy consumption Provincial 

Total output value of the 
tertiary sector 

Other energy consumption Provincial 
Total output value of the 

tertiary sector 

Table A3. Sources of carbon emission factors for different emission types. 

Carbon Emissions Sources Description Sources of Carbon Emission Coefficients 

Energy consumption 

CO2 emissions from the 
consumption of 30 types of 
energy sources (such as raw coal, 
crude oil, and natural gas). 

[50-52] 

Coal mining CH4 emissions from coal mining [45] 

Industrial production processes 
CO2 emissions from cement, pig 
iron, and steel production 
processes 

[50-51] 

Agricultural input materials 

CO2 emissions from agricultural 
input materials, including 
pesticides, agricultural films, 
fertilizers, and irrigation 

[11-12] 

Waste incineration CO2 emissions from waste 
incineration 

[50] 

Livestock farming CH4 emissions from pig, cattle, 
and sheep farming 

[50][50] 

Rice cultivation 
CH4 emissions from rice 
cultivation [50][50] 

Sewage treatment 
CH4 emissions from sewage 
treatment [50][50] 

Landfilling of waste CH4 emissions from waste 
landfilling 

[50][50] 
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Table A4. Proxy data of different carbon emission types. 

Carbon Emission Source Data Type Proxy Data Land Use Type 
Industrial energy consumption  

Point 

POI for 40 industrial sectors - 
Coal mining POI for coal mining industries - 

Industrial production process  POI for cement, pig iron, and steel 
production industries 

- 

Livestock farming  POI for large-scale pig, cattle, and sheep 
farming facilities 

- 

Waste disposal  POI for sewage treatment plants, landfill 
sites, and waste incineration plants 

- 

Transportation energy consumption Line 
Maximum traffic volume and road length 

for different road levels - 

Agricultural energy consumption 

Area 

Cropland area Farmland 
Agricultural input materials Cropland area Farmland 

Rice cultivation  Paddy field area Paddy field 
Energy consumption in construction Nighttime light data Other construction land 

Energy consumption in tertiary 
sector Nighttime light data Other construction land 

Urban residential living energy 
consumption Population density in urban areas Urban constructive land 

Rural residential living energy 
consumption 

Population density in rural areas Rural constructive land. 

Free-range livestock farming  Rural population density Rural constructive land 
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