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Abstract: Grasslands are key components of land ecosystems, providing valuable ecosystem
services and contributing to local carbon sequestration. Australian grasslands, covering
approximately 70% of the continent, are vital for agriculture, pasture, and ecosystem
services. Ongoing climate change introduces considerable uncertainties about the dynamic
responses of different types of grasslands to changes in regional climate and its variation.
This study, bringing together high-resolution meteorological data, calibrated long-term
satellite NDVI data, and NPP and statistical models, investigated the spatiotemporal
variability of NDVI and NPP and their predominant drivers (temperature and soil water
content) across Australia’s grassland zones from 1992 to 2021. Results showed a slight, non-
significant NDVI increase, primarily driven by improved vegetation in northern savannah
grasslands (SGs). Areal average annual NPP values fluctuated annually but with a levelled
trend over time, illustrating grassland resilience. NDVI and NPP measures aligned spatially,
with values decreasing from the coastal to the inland regions and north to south. Most
of the SGs experienced an increase in NDVI and NPP, boosted by abundant soil moisture
and warm weather, which promoted vegetation growth and sustained a stable growing
biomass in this zone. The increased NDVI and NPP in northern open grasslands (OGs)
were linked to wetter conditions, while their decreases in western desert grasslands (DGs)
were ascribed to warming and drier weather. Soil water availability was the dominant
driver of grassland growth, with NDVI being positively correlated with soil water content
but being negatively correlated with temperature across most grasslands. Projections under
the SSP126 and SSP370 scenarios using ACCESS-ESM1.5 showed slight NPP increases
by 2050 under warmer and wetter conditions, though western and southern grasslands
may see declines in vegetation coverage and carbon storage. This study provides insights
into the responses of Australian grasslands to climate variability. The results will help to
underpin the design of sustainable grassland management strategies and practices under a
changing climate for Australia.

Keywords: Australian grasslands; grassland ecosystem; spatiotemporal distribution
pattern; vegetation dynamics; climate change

1. Introduction
Australian grasslands cover approximately 70 percent of the country’s surface area [1]

and play a significant role in multiple ecological services. In terms of agriculture, grasslands
contribute 40% to the gross agricultural production value for Australia [2], provide the
major and cheapest feed source for livestock [3], and sustain local food supply and food
security [4]. From an ecological conservation perspective, grasslands provide diverse
habitats and shelters for various small animal communities [5]. Australian grasslands act
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as a terrestrial carbon sink and mitigate climate change both locally and globally [6–10] as
they exchange CO2—a major greenhouse gas—with the atmosphere [11,12] and thereby
contribute to stored soil organic carbon [13]. Although grasslands have relatively lower
carbon stocks per unit area compared to forest ecosystems, they are major contributors
to interannual variations in Australia’s carbon storage. This is due to their vast coverage
across Australian landscapes and the high turnover rate of grassland carbon pools [7,8].

The growth, distribution, and function of grassland vegetation are mainly affected
by both soil temperature and water [14–16]. Australia—a land of drought and flooding
rain—is the driest inhabited continent in the world except for Antarctica, with 70% of
arid and semi-arid ecosystems [17]. The Australian climate has warmed by an average of
1.44 ± 0.24 ◦C since national records began in 1910, with over 1 ◦C of warming occurring
since 1960 [18]. This warming trend leads to higher temperatures, increased summer drying
intensity, more frequent heat waves, droughts, and wildfires in Australia [19]. Temperature
regulates grassland growth by affecting plant physiology and metabolic reaction rates, such
as photosynthesis and respiration [20–22]. The elevated temperatures lead to the decreased
soil nutrient availability and thereby reduce vegetation growth and production in grassland
ecosystems [23]. Australia exhibits highly fluctuating rainfall regimes, both temporally
and spatially [24,25]. Rainfall affects the distribution, growth, and greenness of grassland
ecosystems as it modifies the soil moisture available for plant use [26–30]. Precipitable
water is an essential component in plant photosynthesis and nutrient transport within
the plant [31] and promotes vegetation growth and carbon storage capacity of grassland
ecosystems [32–34].

Several studies have examined the growth dynamics of extensive Australian grass-
lands in response to regional climate patterns. Marchin et al. (2018) found the carbon
fluxes in montane grassland in the Snowy Mountains, New South Wales, were limited
by temperature despite long growing seasons. Their studies suggested that higher soil
temperatures will increase vegetation carbon productivity when the soil water content
is unrestricted. Chen et al. (2003) found the net ecosystem production (NEP) in Aus-
tralian tropical savannahs was overall positive (3.8 ton C ha−1 year−1), with a negative
value (−0.2 ton C ha−1 season−1) in the dry season (May to October) and a positive value
(4 ton C ha−1 per season) during the wet season (November to April). Their findings re-
vealed savannah growth was tightly coupled with seasonal climate patterns and resultant
changes to soil water content and non-limiting temperatures for growth, connecting the
seasonal climate dynamics with the grassland growth on a short-term scale. However,
the long-term series response of grasslands to climate factors in Australia on an annual
scale remains unclear. Rainfall has been shown to have a predominant positive effect
on grassland growth in Australia [6,9]; however, these studies focused on the relation-
ship between net terrestrial carbon sink and rainfall rather than the correlation between
grassland coverage and soil moisture. Another work [35] explored climate–vegetation
interactions in Australian grasslands, focusing on how vegetation responds to climate, with
particular emphasis on the increased fire risk associated with climate change. Consequently,
there are still research gaps and unanswered questions regarding the zonal response of
different types of grasslands to climate dynamics on a national scale, which require further
investigation and updating.

Australian grasslands are increasingly impacted by intensified environmental ef-
fects [15]. Due to their low stature and sparse coverage, grassland ecosystems are less
resilient to climate change and are more vulnerable to complex and unpredictable envi-
ronmental conditions [19]. Forecast climate change is likely to involve increased rainfall
variability, increased uncertainty in water availability, and a greater incidence of high-
temperature events, which is exacerbating the increasing loss and fragmentation of grass-
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lands in Australia [36]. These impending changes in temperature and soil water availability,
along with their consequences for grassland ecosystems, warrant further exploration. Such
research can inform projections of grassland dynamics and contribute to effective grassland
conservation and management in Australia. Additionally, advanced climate simulations
have not been widely used in grassland research, and this area requires further exploration.

Against this background, this study has three aims: (1) to explore spatial–temporal
patterns of Australian temperature and soil water content (SWC) during the period of
1992 to 2021; (2) to investigate the growth condition of three grassland zones in Australia
by using satellite-based NDVI; (3) to estimate vegetation development across Australian
grasslands in response to future climate under the projected emission scenarios by using
ACCESS-ESM1.5 in CMIP6. The outcome from this study will provide up-to-date knowl-
edge of Australian grasslands and help improve the policy and strategies for sustainable
development and effective management of grassland resources on a national scale.

2. Materials and Methods
2.1. Study Area

This study focused on regions where grasslands are the dominant species in Aus-
tralia. The grassland map was derived by reclassifying 27 subgroups from the gridded
climate classification map of Australia [37], which is available at: http://www.bom.gov.au/
climate/maps/ (accessed on 20 October 2024). The map was established by identifying the
classification and distribution of the dominant vegetation types and climate conditions [38].
The grassland cover categories include savannah grasslands (SGs), open grasslands (OGs),
and desert grasslands (DGs), respectively (Figure 1).
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The SGs are mostly in northern tropical and subtropical regions of Australia
(113.67◦ E–153.66◦ E and 10.12◦ S–33.98◦ S) where the climate is hot and humid with a pre-
dominance of savannahs and grasslands. In the central part of Australia (14.49◦ S–36.66◦ S
and 112.91◦ E–149.41◦ E), the combination of dry seasons and moderate rainfall gives rise to
extensive open grasslands that lie between the tropical and temperate zones. The DGs lie in

http://www.bom.gov.au/climate/maps/
http://www.bom.gov.au/climate/maps/
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the driest core of Australia (18.68◦ S–34.16◦ S and 113.07◦ E–144.42◦ E), where semi-deserts
and sparse shrublands dominate over there with scarce rainfall, high temperatures, and
a continuous dry condition throughout the year. The southwest and southeast corners
of Australia are dominantly covered by croplands and permanent woodlands and were
excluded from the scope of this study (grey areas in Figure 1).

2.2. Gridded Meteorological Data

The monthly gridded meteorological data used in this study spanned from 1992 to 2021,
with a spatial resolution of 0.01◦ (approximately 1 km) covering the terrestrial landmass of
Australia. This dataset was developed by the Fenner School of Environment and Society of
the Australian National University and interpolated from ground-based observations by
Xu and Hutchinson [39]. Annual averages were derived from those monthly layers using
ArcGIS Pro.

2.3. Temporal Soil Water Content Data from ERA5-Land

This study utilised the fifth-generation global atmospheric reanalysis dataset, ERA5-
Land, from the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5-
Land data are derived from high-resolution numerical integrations of the ECMWF land
surface model, driven by the downscaled meteorological forcing from the ERA5 climate
reanalysis [40]. This global reanalysis dataset provides hourly volumetric soil water content
[m3 m−3] with a spatial resolution of 0.1◦ × 0.1◦. It includes data for 4 soil layers; among
them, the second soil layer (7–28 cm depth, “layer 2”) was selected for this study, as the
topsoil (0–7 cm, “layer 1”) is more directly influenced by rainfall. Annual averages were
derived from hourly layers of this dataset using Python.

2.4. Remote Sensing Normalised Difference Vegetation Index (NDVI) Data

Given the spatial and temporal heterogeneity and variability of grassland coverage,
traditional field measurements are not appropriate for large-scale and long-term monitoring
of grassland dynamics [41]. The satellite-based normalised difference vegetation index
(NDVI) can provide continuous and precise data for monitoring the spatiotemporal pattern
of grassland vegetation at a large scale [42]. NDVI, defined as the difference between
near-infrared (NIR, 841–876 nm) and red (RED, 620–670 nm) reflectance divided by their
sum, using the formula NDVI = (NIR − RED)/(NIR + RED) [43,44], is a direct indicator
used to quantify the greenness, health, and density of vegetation based on satellite remote
sensing data [45]. Monthly NDVI with a 0.01◦ (1 km) spatial resolution from 1992 to
2021 was used for characterising changes in vegetation greenness over time. This dataset,
provided by Dr. Tingbao Xu, is a calibrated combination of MODIS Terra NDVI and
AVHRR NDVI [46]. Monthly NDVI data were converted to annual averages to investigate
the vegetation dynamics of Australian grasslands at different time scales. The annual NDVI
was calculated by averaging monthly NDVI for each year.

2.5. Future Climate Scenarios

This study used projected monthly temperature and rainfall datasets for 2050, with a
spatial resolution of 0.1◦. The datasets were generated using the Australian Community
Climate and Earth System Simulator Earth System Model Version 1.5(ACCESS-ESM1.5) as
part of the Coupled Model Inter-comparison Project phase 6 (CMIP6) [47]. Two emission
scenarios were selected: shared socioeconomic pathways (SSPs) 126 and SSP370. SSP126
envisions an anthropogenic radiative forcing of 2.6 W/m2 by 2100 [48], assuming an
optimistic scenario where environmentally friendly technologies and renewable energy
lead to a green road of sustainable development. SSP370 represents a medium–high level
of emission pathway with a radiative forcing of 7 W/m2 by 2100 [48]. The datasets were
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sourced from the National Computational Infrastructure (NCI) platform and are accessible
at https://nci.org.au/ (accessed on 4 October 2024). The projected temperature and rainfall
data were used as essential inputs to drive the MIAMI model (details in Section 2.6) for
predicting the spatial distribution pattern of NPP for 2050, providing insights into grassland
growth conditions in the near future.

2.6. The Miami NPP Model for NPP Estimation

NPP is the difference between the amount of organic carbon fixed by an au-
totroph through photosynthesis and the amount of carbon lost by their own respiration
losses [49,50]. It reflects the net carbon fluxes from the atmosphere into grasslands, which
is used for assessing the stability and photosynthetic production capacity of grassland
ecosystems [8,51]. The observations of grassland NPP provide valid information on the
forage availability and herbivore-carrying capacity at the regional scale [52].

The Miami model is the first global-scale model for terrestrial NPP estimation, which is
based on empirical relationships between annual average temperature (◦C), annual rainfall
(mm), and NPP (gC/m2 per year) [53]. Because of its simplicity and relative accuracy, the
model has been widely adopted to calculate the climate-driven potential NPP for large
scales [54,55]. The function describing the relationship between rainfall and vegetation
productivity is based on the water ratio, where the NPP was observed to increase by
1.0 gC m−2 per millimetre of rainfall in arid regions [56]. The function describing the
relationship between temperature and vegetation productivity is based on the Van’t Hoff
rule, where vegetation productivity doubles for each 10 ◦C in the range of −10–20 ◦C [56].
The Miami model was used to simulate the NPP across the Australian grasslands from
1992 to 2021 based on ArcGIS Pro software and the ArcPy processing module and was
calculated as follows (Equations (1)–(3)):

NPPT,P = min{ f1(T), f2(P)} (1)

f1(T) =
3000

1 + e1.315−0.119T (2)

f2(P) = 3000
(

1 − e−0.000664×P
)

(3)

where 3000, 1.315, and 0.119 in Equation (2) are the temperature response parameters, and
T is the annual average temperature (◦C); 3000 and 0.000664 in Equation (3) are the rainfall
response parameters, and P is the annual average rainfall (mm).

2.7. The Mann–Kendall Trend Analysis

The Mann–Kendall trend test was calculated to determine the overall trends of differ-
ent variables over time and their reliability, including SWC, temperature, NDVI, and NPP
estimates. The Mann–Kendall trend test is a non-parametric test. It is used to statistically
assess if there exists a monotonic upward or decreasing trend in long-term sequence vari-
ables and has been widely used in meteorological, hydrometeorological, and vegetation
productivity studies [57–59].

For a given time series {Xi, i = 1, 2. . ., n}, the null hypothesis H0 assumes that it is
independently distributed without a monotonic trend, and the alternative hypothesis H1

assumes that a monotonic trend is present [59]. The Mann–Kendall trend test examines
whether to reject the null hypothesis (H0) and accept the alternative hypothesis (H1).
The α is the level of the significance test. The significance of the trend can be tested by
comparing the value of Z with the critical value α of the desired significance level: when
|Z| ≤ Z1 − α/2, it accepts the null hypothesis, that is, there is no trend with statistical
significance; if |Z| > Z1 − α/2, it rejects the null hypothesis, that is, there is a trend with

https://nci.org.au/
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statistical significance. Significance test levels for |Z| ≥ 1.645, 1.960, and 2.576 correspond
to α being 0.1, 0.05, and 0.01, respectively, which suggest that a temporal series passes 90%,
95%, and 99% of the confidence level of the Mann–Kendall trend test. The formula of the
Mann–Kendall trend is calculated as follows (Equations (4)–(7)):

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
Xj − Xi

)
(4)

Z =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(5)

sgn
(
Xj − Xi

)
=


+1, Xj − Xi > 0

0, Xj − Xi = 0
−1, Xj − Xi < 0

(6)

Var(S) = [n(n − 1)(2n + 5)]/18 (7)

where Xi and Xj are variables of sequence i, j; n is the length of the study period (30
years: 1992–2021) in Equation (4); a positive value of Z indicates that the data tend to
increase within time series, and conversely, a negative value of Z indicates that the data
tend to decrease within time series in Equation (5); sgn

(
Xj − Xi

)
is an indicator function in

Equation (6); Var(S) is the variance of S in Equation (7).

2.8. Pearson Correlation Analysis Between NDVI and Climate Factors

Pearson correlation coefficients were calculated to diagnose the spatial distribution of
the relationship between NDVI and two variables (temperature and soil water content).
The correlation coefficient ranges from −1 to +1. When the correlation coefficient is closer
to −1/+1, the NDVI and climate variables are better negatively/positively correlated [60].
When it is close to 0, there is no correlation between the climate variables. The ratio of
the covariance between the two layers and the product of their standard deviations is
called the correlation coefficient. It is a ratio without a unit, and it is calculated as follows
(Equations (8)–(10)):

Covij =
∑N

k=1 (Xik − µi)
(

Xjk − µj

)
N − 1

(8)

σ =

√
∑(X − µ)2

N − 1
(9)

Corrij =
Covij

σiσj
∈ [−1, 1] (10)

where Covij is the covariance of the variables i and j, σ is the standard deviation of the
variables, Corrij is the correlation coefficient between the two variables, X is the value of
a cell, i and j are the two layers of a stack, k denotes a particular cell, Xik is the value of a
particular cell k in layer i, µ is the mean of a layer, and N is the number of cells.

2.9. Flow Chart of This Study

Figure 2 is the flow chart of this study.
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3. Results
3.1. Meteorological Conditions from 1992 to 2021

The averages of mean annual temperature (MAT) and soil water content (SWC) across
Australian grasslands from 1992 to 2021 were 23.01 ◦C and 0.1785 m3 m−3, respectively
(Figure 3). MATs exhibited a statistically significant upward trend over the past 30 years
(|Z| = 2.926, p = 0.0034), whereas SWC did not (|Z| = 1.428, p = 0.153). The year 2019
marked the hottest (driest) year, while 2000 was the coldest (wettest) year. Among the
grassland zones, SGs had the highest average annual temperature at 24.21 ◦C, followed by
OGs and DGs, with 22.76 ◦C and 22.79 ◦C, respectively. The MATs of all three grassland
zones, SGs (|Z| = 2.462, p = 0.0138), OGs (|Z| = 2.819, p = 0.0048), and DGs (|Z| = 2.926,
p = 0. 0034), experienced increasing trends from 1992 to 2021 (Figure 3b). SWC fluctuated
considerably across three zones, without a trend exhibited (|Z| = 0.107, for SGs). The SGs
received the highest annual average water availability (0.2188 m3 m−3), followed by OGs
(0.1815 m3 m−3) and DGs (0.1387 m3 m−3) (Figure 3d).

Spatially, MATs decreased from north to south, with the highest temperature observed
in northwestern SGs (Figure 4a). Most Australian grasslands have been warming at a rate
of 0.2–0.3 ◦C per decade, except for small areas in the northeast, where a slight cooling was
observed (Figure 4b). In the SG and OG regions, the eastern parts experienced stronger
warming than the west. The spatial pattern of SWC indicated that eastern grasslands had
higher water content than those in the west over the last three decades (see Figure 4c). The
highest SWC was found in eastern OGs and SGs, while the lowest SWC was concentrated
in the DGs, the arid core of Australia. SWC showed increasing trends in northeastern SGs
but decreasing trends across most of the areas in the OGs and DGs (Figure 4d). Notably, a
dramatic decrease in SWC was observed in the eastern DGs.
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Figure 4. Spatial distributions of annual averages and trends of MATs (a,b) and SWC (c,d) across
Australian grasslands from 1992 to 2021. The black contours represent the three grassland zones: SGs,
OGs, and DGs, respectively, from north to south. The grey area refers to non-study areas.

3.2. Spatiotemporal Distributions of NDVI and NPP

The mean annual NDVI of Australian grasslands experienced a slight upward trend
from 1992 to 2021, though it was not statistically significant (|Z| = 1.231, p = 0.218)
(Figure 5). The highest NDVI was recorded in 2011, while the lowest was observed in
2019, consistent with variations in SWC. NDVI varied notably between the three grassland
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zones in Australia owing to the differences in dominant vegetation types and density. SGs,
where dense savannahs dominate, had the highest average NDVI (0.338), followed by
OGs (0.221), characterised by extensive grasslands, and DGs (0.154), where desert and
sparse bush prevail. The mean annual NDVI of SGs experienced a statistically significant
increasing trend from 1992 to 2021 (|Z| = 4.318), while no such trend was found in OGs
(|Z| = 1.178) or DGs (|Z| = 1.499). Grassland NPP fluctuated considerably, with an
average of 719.31 gC m−2 yr−1 over the last 30 years. Extremely high average annual NPP
values were found in 2000 and 2011, while the lowest was recorded in 2019. Although the
NPP of Australian grasslands experienced a slight downward trend, it was not statistically
significant (|Z|= 0.535). SGs had the highest average NPP (1372.43 gC m−2 yr−1), followed
by OGs (733.97 gC m−2 yr−1) and DGs (462.48 gC m−2 yr−1).
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Figure 5. Interannual variations in vegetation condition indicators of Australian grasslands and their
three grassland zones from 1992 to 2021: NDVI (a,b) and NPP (c,d).

The mean annual NDVI and NPP exhibited notable spatial consistency across different
grassland zones (Figure 6). The spatial distribution of average annual NDVI in Australian
grasslands from 1992 to 2021 revealed that northern and eastern coastal regions had higher
NDVI values compared to the western coast and inland areas, with the western part of
DGs showing higher values than the east. Most of the SGs exhibited an increasing trend in
mean annual NDVI (Figure 6b). In DGs, there was a rising NDVI trend in the eastern part,
while a declining trend was observed in the central and western parts, generally consistent
with the SWC patterns. The spatial distribution of average annual NPP in Australian
grasslands indicated that the coastal regions had higher NPP values than inland areas,
and northern regions had higher NPP values than southern regions over the past three
decades (Figure 6c). The northern part of SGs exhibited the highest NPP, while the interior
of Australian grasslands, particularly eastern DGs, had the lowest average annual NPP.
The northeast of SGs experienced a remarkable increase in NPP, whereas a decrease was
observed in the western parts of DGs and OGs from 1992 to 2021 (Figure 6d).
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Figure 6. Spatial distributions of annual averages and trends of NDVI (a,b) and NPP (c,d) of
Australian grasslands from 1992 to 2021.

3.3. The Relationship Between NDVI and Climate Variables

From 1992 to 2021, the average annual NDVI across Australian grasslands exhibited
a negative correlation with temperature (PCCs = −0.3624, p < 0.05) (Table 1). The most
pronounced negative correlation between NDVI and temperature was observed in DGs
(PCCs = −0.5743, p < 0.01), followed by OGs (PCCs = −0.4576, p < 0.05). Conversely, a
positive correlation between NDVI and temperature was identified in SGs (PCCs = 0.1876).
In contrast to temperature, the average annual NDVI of Australian grasslands exhibited
a statistically significant positive correlation with SWC (PCCs = 0.6748, p < 0.01). The
strongest positive correlation between NDVI and SWC was found in DGs (PCCs = 0.7930,
p < 0.01), followed by OGs (PCCs = 0.7112, p < 0.01) and SGs (PCCs = 0.4923, p < 0.01).

Table 1. Pearson correlation coefficients between annual mean NDVI and temperature and rainfall
across different grassland types during the period of 1992 to 2021.

Grassland Type NDVI—Temperature NDVI—SWC

Total Australian grasslands −0.3624 * 0.6748 **
Desert grasslands (DGs) −0.5743 ** 0.7930 **
Open grasslands (OGs) −0.4576 * 0.7112 **
Savannah grasslands (SGs) 0.1876 0.4923 **

Note: ** Passed the test at the significance level of 0.01. * Passed the test at the significance level of 0.05.
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The spatial correlation coefficient distributions (Figure 7) align with the results pre-
sented in Table 1. NDVI exhibited a positive correlation with SWC across most of the
grasslands over the past 30 years while showing a negative correlation with temperature,
except in the northern coastal regions of SGs.
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Figure 7. The spatial correlation coefficients between annual NDVI and temperature (a) and soil
water content (b) in Australian grasslands from 1992 to 2021.

The significant positive correlation between grassland NDVI and SWC suggested
that rainfall was the predominant factor influencing grassland dynamics in Australian
grasslands. To further investigate this relationship, the time lag of grassland NDVI in
response to rainfall was analysed by calculating PCCs between monthly NDVI and rainfall
from 2018 to 2021 across three grassland zones. The time lag was assessed up to two
months, covering a total of three months: “no time lag”, “one-month lag”, and “two-month
lag” (Table 2). “No time lag” refers to the correlation between rainfall in month N and
grassland NDVI in the same month (N); “one-month lag” refers to the correlation between
rainfall in month N and NDVI in the subsequent month (N + 1); and “two-month lag”
refers to the correlation between rainfall in month N and NDVI two months later (N + 2).
The strongest positive correlation occurred when water availability was one month ahead
of the NDVI response across all three grassland zones (Table 2).

Table 2. The average monthly PCCs between rainfall and NDVI for three different time lags.

PCCs DGs OGs SGs

No time lag 0.158584 0.334899 0.365565
One-month lag 0.230830 0.438527 0.421997
Two-month lag 0.220880 0.401584 0.389339

3.4. Potential Development of Grasslands Under Future Climate Scenarios

Grassland ecosystems are sensitive and vulnerable to climate fluctuations [4]. To pre-
dict future vegetation dynamics and carbon production capacity of Australian grasslands,
spatial patterns of temperature and rainfall for 2050 were assessed under two emission
scenarios, SSP126 and SSP370, using ACCESS-ESM1.5 simulations in CMIP6. The projected
average temperatures for Australian grasslands for 2050 are expected to be 24.68 ◦C under
SSP126 and 24.79 ◦C under SSP370, which would be warmer by 1.67 ◦C and 1.78 ◦C than
the average temperature during 1992–2021 (23.01 ◦C) (Figure 8a,c). In line with histori-
cal trends (1992–2021), projected temperatures for 2050 show a gradient decreasing from
north to south, with higher temperatures in the northwestern and northern regions. Most
Australian grasslands would experience higher temperatures than the 1992–2021 averages,
especially in the western, eastern, and southwestern regions.
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Figure 8. Spatial distributions of projected temperatures across Australian grasslands for 2050 under
the SSP126 (a) and SSP370 (c) climate scenarios, as simulated by ACCESS-ESM1.5 in CMIP6. The
spatial distribution of temperature differentials between the projected 2050 temperatures and the
MATs during 1992–2021 is shown for SSP126 (b) and SSP370 (d) climate scenarios.

The projected rainfall for Australian grasslands for 2050 would be 492.56 mm under
SSP126 and 537.25 mm under SSP370, representing increases of 41.11 mm and 85.80 mm,
respectively, compared to the rainfall from 1992 to 2021 (451.45 mm) (Figure 9a,c). The
spatial pattern of rainfall for 2050 was projected to decrease from the eastern coastal regions
to the interior and from northern to southern Australia. Under SSP126, northeastern and
central grasslands would receive more rainfall than during 1992–2021, while western and
eastern grasslands were going to become drier. Given the ongoing warming in western
and eastern grasslands, it was anticipated that vegetation cover may decline in these
areas, particularly in eastern SGs and northern and eastern OGs. Under SSP370, northern
and eastern grasslands would receive more rainfall compared to the historical records,
while southern and western Australia are expected to become drier. Consequently, it was
projected that there would be a decline in vegetation coverage in western and southern
grasslands. Notably, under both SSP126 and SSP370 scenarios, western grasslands are
expected to experience higher temperatures and reduced rainfall compared to 1992–2021,
which may negatively impact grassland growth in 2050.

The projected NPP across grasslands for 2050 would be 778.87 gC m−2 yr−1 un-
der SSP126 and 808.02 gC m−2 yr−1 under SSP370, which would be 59.56 gC m−2

yr−1 and 88.71 gC m−2 yr−1 higher than the average annual NPP during 1992–2021
(719.31 gC m−2 yr−1) (Figure 10). Among the three grassland zones, SGs are expected
to remain the largest contributor to the local carbon sink in 2050, followed by OGs and
DGs, in line with historical patterns during 1992–2021. Under the SSP370 scenario, the
potential contribution of southern and western grasslands to the carbon sinks was expected
to decline by 2050 due to the increased temperature and reduced rainfall in these regions.
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Figure 9. Spatial distributions of projected temperatures across Australian grasslands for 2050 under
the SSP126 (a) and SSP370 (c) climate scenarios, as simulated by ACCESS-ESM1.5 in CMIP6. The
spatial distribution of rainfall differentials between the projected 2050 rainfall and the rainfall during
1992–2021 is shown for SSP126 (b) and SSP370 (d) climate scenarios.
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Figure 10. Spatial distributions of projected NPP across Australian grasslands for 2050 under the
SSP126 (a) and SSP370 (c) climate scenarios, as simulated by ACCESS-ESM1.5 in CMIP6. The spatial
distribution of NPP differentials between the projected 2050 NPP and the mean annual NPP during
1992–2021 is shown for SSP126 (b) and SSP370 (d) climate scenarios.
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4. Discussion
4.1. Meteorological Conditions from 1992 to 2021

Temperature and rainfall play a dominant role in affecting plant growth by regulating
plant structure and physiological processes [61,62]. Our findings revealed that the inter-
annual variability of MATs and SWC varied across the three grassland zones (Figure 3),
consistent with an earlier study [63]. From 1992 to 2021, the MATs of Australian grasslands
showed an upward trend, aligning with previous findings [64]. Spatially, the MATs in Aus-
tralia decreased from north to south. Across most of the grasslands, MATs have increased
by 0.2–0.3 ◦C per decade (Figure 4), exceeding the 0.1–0.2 ◦C rise observed across most of
Australia from 1950 to 2000 [65]. The most significant warming occurred in western DGs,
largely driven by the enhanced greenhouse effect [66].

The increased SWC in northeastern Australia over the last 30 years indicated a trend
towards wetter conditions (Figure 3), primarily driven by the remote influence of low-
frequency variations in the El Niño–Southern Oscillation [67]. Northern SGs received the
highest rainfall in Australia but did not retain the most soil moisture. In contrast, south-
western and southeastern grasslands have become drier over the last three decades, accom-
panied by warmer temperatures [66]. These observations were closely related to reduced
rainfall, driven by changes in the intensity and position of the subtropical ridge [66,68,69],
as well as human-induced vegetation clearing for developments [70].

4.2. Spatiotemporal Distributions of NDVI

The remotely sensed NDVI directly reflects both vegetation growth status and cover-
age, which can be employed for assessing shifts in grasslands over large spatiotemporal
scales [71,72]. The analysis revealed a slight upward trend in NDVI during the period of
1992 to 2021 across Australian grasslands (Figure 5a). The highest average annual NDVI
was recorded in 2011, aligning with the findings of [10]. Additionally, the spatial pattern of
grassland NDVI observed in this study closely corresponds to the NPP patterns reported
by [73]. Among the three grassland zones, SGs exhibited the highest NDVI, in agreement
with the results of [6,73], despite differences in study periods (Figure 5d). SGs, with their
hot and wet climate, supported rich plant species, large plant size, and greater resilience
to environmental changes, resulting in a stronger positive response of NDVI and to local
climates. Conversely, low NDVI values were observed in OGs and DGs, where hot and
dry climates predominated. The OGs and DGs had sparser vegetation density and smaller
vegetation sizes, making them less resistant to environmental changes. Both OGs and
DGs experienced hotter and drier conditions over the past few decades, leading to weaker
vegetation responses to regional climate compared to SGs. However, OGs had a wetter
climate and more favourable growing conditions than DGs, leading to higher NDVI levels
in OGs than in DGs.

Grassland NDVI exhibited spatial heterogeneity across the three grassland zones,
primarily due to variations in water availability and temperature conditions [6] (Figure 6).
NDVI displayed a decreasing gradient from coastal to inland regions and from northern to
southern Australia, corresponding to the SWC distribution (Figure 6a). This pattern was
particularly evident in the eastern grasslands, which received more SWC than the western
grasslands and exhibited higher NDVI values compared to the west. The slight increase in
NDVI indicated the improved vegetation greenness in SGs (Figure 5b), which is consistent
with earlier findings by [10,55]. This trend indicated that the relatively abundant rainfall
and warm weather have promoted vegetation growth and maintained stable growing
biomass levels over SGs. Additionally, the implementation of vegetation conservation ini-
tiatives over the past three decades has reduced vegetation degradation and facilitated the
establishment of permanent vegetation in the region. Conversely, the decreased grassland



Land 2025, 14, 296 15 of 20

coverage in western DGs can be ascribed to warming and increasingly arid conditions
(Figure 6b).

4.3. The Relationship Between NDVI and Climate Variables

As shown in Table 1, the correlation between average annual NDVI and tempera-
ture was negative (−0.3624) from 1992 to 2021 (Table 1). The annual average NDVI was
positively correlated with SWC (PCCs = 0.6748) across grasslands, consistent with the
findings of [74]. The most significant correlations between NDVI and both temperature and
SWC were observed in DGs and OGs, consistent again with the result of [6]. Notably, the
average annual NDVI across all grassland zones showed a statistically significant positive
correlation with SWC (Table 1), indicating that soil water availability is the primary factor
influencing the vegetation status of grassland ecosystems.

The spatial distribution of PCCs (Figure 7) reaffirmed that NDVI was positively corre-
lated with SWC but negatively correlated with temperature across most grasslands. This
relationship arises because water availability enhances changes in plant structure, physio-
logical processes, and soil microbiological processes that supply the nutrients necessary for
growth [75,76]. Conversely, heat-induced moisture stress diminished plant biomass and
photosynthetic activity [76,77], thereby suppressing grassland growth. An exception to
this general trend was observed in coastal regions, where NDVI showed a positive corre-
lation with temperature. In these areas, abundant SWC ensured that high temperatures
promote grassland growth, as soil water availability is not a limiting factor. This finding
was consistent with previous research conducted by [78].

Australian grasslands exhibited a general one-month time lag in response to rainfall
across all three grassland zones (Table 2). This finding agrees with the results of [74], who
found vegetation NDVI generally lagged one month with respect to soil moisture in most
semi-arid ecosystems. This phenomenon can be attributed to the finite time required for
both vegetation structure (such as grassland coverage, density, and species composition)
and soil structure (such as hydraulic characteristics and nutrient availability) to respond to
water supply [52].

4.4. Potential Development of Grasslands Under Future Climate Scenarios

We finally investigated the impact of predicted future temperatures and rainfall for
2050 on Australian grasslands by adopting SSP126 and SSP370 emission scenarios from
ACCESS-ESM1.5 in CMIP6 (Figures 8 and 9). Both temperature and rainfall would increase
in Australia by 2050 under these scenarios. Grassland NPP for 2050 is also projected to
increase slightly compared to the mean annual NPP during 1992–2021 (Figure 10). This
slight increase in NPP may be associated with a higher ratio of C4 grasses to C3 grasses due
to climate change, as C4 grasses, which fix carbon through a more efficient photosynthesis
pathway, are better adapted to hot and dry conditions [79,80].

The temperature and rainfall in 2050 are expected to lead to declines in vegetation
coverage and carbon storage capacity in western OGs and DGs. Additionally, increased
fluctuations in rainfall events and a higher frequency of climate extremes will contribute
to greater fragility and variability in Australia’s arid and semi-arid ecosystems in the
future [81–83].

From a grassland resource management perspective, the vegetation in western and
southern Australian grasslands will be severely threatened by climate change. These
regions are particularly vulnerable to rising temperatures and decreasing rainfall, which
may lead to reduced grassland coverage and productivity. In response, it is essential
to implement appropriate grassland management practices to promote the sustainable
development of these vital ecosystems. Such practices include adaptive grazing strategies,
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the restoration of native species, and careful monitoring of ecological indicators to ensure
the sustainable use of grassland resources amid ongoing environmental changes.

4.5. Limitations and Future Work

More can be carried out to improve this study. Involving more variables in the analysis,
apart from temperature and soil moisture, would further strengthen these findings. It is
certainly worth fully benefiting from the high quality of climate, soil water content, and
NDVI data used in this study and enriching the spatial analysis. In addition, a higher-
precision and timely grassland distribution map will boost the practical significance of
the results.

5. Conclusions
We assessed the vegetation status of three types of Australian grasslands and their

response to a changing climate from 1992 to 2021. The mean annual temperature of the
grasslands showed a moderate upward trend, with temperatures in most Australian grass-
lands increasing by 0.2–0.3 ◦C per decade, particularly in western and eastern regions. Soil
water content (SWC) exhibited large annual fluctuations without a statistically significant
trend. Eastern grasslands received more SWC than the western grasslands. Under these
climate conditions, grassland NDVI in three grassland zones increased slightly from 1992
to 2021, primarily due to the improved vegetation conditions in the savannah grasslands
(SGs). The spatial distribution patterns of NDVI generally declined from north to south and
from the coast to the interior, consistent with SWC distribution. High NDVI values were
recorded in the SGs, where a hot and wet climate predominates, indicating the abundant
soil moisture and warm weather in this zone promoted vegetation growth and sustained
stable biomass. The hot and dry conditions in the desert grasslands (DGs) resulted in low
and highly variable NDVI. The grassland NDVI was negatively correlated with temper-
ature but positively correlated with SWC across most Australian grasslands. The NDVI
exhibited a negative correlation with temperature across most central regions, while a
positive correlation was found in the northern coastal areas, where abundant rainfall occurs.
This suggests that the suppressive effect of high temperatures on vegetation growth can
be mitigated by adequate soil moisture in grasslands. Australian grasslands generally
displayed a one-month time lag in response to rainfall across all three zones.

Climate projections under the SSP126 and SSP370 emission scenarios of ACCESS-
ESM1.5 in CMIP6 indicated that in the near future, Australian grasslands will experience
warmer and slightly wetter conditions. NPP was projected to slightly increase by 2050 com-
pared to the mean NPP from 1992 to 2021. However, the western and southern grasslands
were expected to face declines in both vegetation coverage and carbon storage capacity in
2050. This study enhances the understanding of grassland dynamics in Australia under
ongoing climate change and provides valuable insights to inform better policymaking in
grassland resource management. More efforts could be made to investigate the relationship
between grassland conditions and other variables, including solar radiation, soil nutrients
and components, and human-induced land changes.
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