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Abstract: In recent years, machine learning methods have garnered significant attention
in the field of crop recognition, playing a crucial role in obtaining spatial distribution
information and understanding dynamic changes in planting areas. However, research in
smaller plots within mountainous regions remains relatively limited. This study focuses
on Shangzhou District in Shangluo City, Shaanxi Province, utilizing a dataset of high-
resolution remote sensing images (GF-1, ZY1-02D, ZY-3) collected over seven months
in 2021 to calculate the normalized difference vegetation index (NDVI) and construct
a time series. By integrating field survey results with time series images and Google
Earth for visual interpretation, the NDVI time series curve for maize was analyzed. The
Random Forest (RF) classification algorithm was employed for maize recognition, and
comparative analyses of classification accuracy were conducted using Support Vector
Machine (SVM), Gaussian Naive Bayes (GNB), and Artificial Neural Network (ANN). The
results demonstrate that the random forest algorithm achieved the highest accuracy, with
an overall accuracy of 94.88% and a Kappa coefficient of 0.94, both surpassing those of the
other classification methods and yielding satisfactory overall results. This study confirms
the feasibility of using time series high-resolution remote sensing images for precise crop
extraction in the southern mountainous regions of China, providing valuable scientific
support for optimizing land resource use and enhancing agricultural productivity.
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1. Introduction
Maize (Zea mays L.) is one of China’s three major food crops, known for its high pro-

duction potential and significant economic benefits. It serves multiple purposes, including
as food and animal feed, and various industrial uses, making it strategically important
for ensuring food security [1]. Maize is widely cultivated across China due to its high
yield, strong drought resistance, cold tolerance, adaptability to poor soils, and overall
environmental resilience. As a typical dryland crop, maize has distinct water requirements
at different growth stages. According to relevant studies, under high-yield conditions,
the total water demand for summer maize throughout its growth period ranges from
417.30 mm to 507.45 mm. Specifically, the water requirement during the seedling stage is
16.80–33.75 mm; during the jointing stage, it is 94.35–130.8 mm; during the tasseling stage,
it is 92.85–108.15 mm; and during the grain-filling stage, it is 181.05–267.0 mm [2]. Crop
coefficient (Kc) refers to the ratio of the water requirement of a crop during different growth
stages to the reference crop evapotranspiration [3]. It is a key parameter in calculating
evapotranspiration and water demand and plays an important guiding role in precision
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irrigation and water conservation in agriculture. According to FAO56, the crop coefficients
for maize during the early, mid, and late growth stages are 0.3, 1.2, and 0.6, respectively [4].
The crop coefficient is influenced by various factors, such as crop type, soil properties,
climatic conditions, and irrigation methods. The crop coefficient varies for different crops.
Even for the same crop, the coefficient fluctuates as vegetation grows and as surface charac-
teristics and environmental conditions change [5]. Therefore, in practical applications, it is
necessary to adjust the crop coefficient appropriately based on local factors such as climate,
soil, irrigation methods, and crop varieties.

In recent years, both the area under maize cultivation and its yield have shown stable
growth. Timely and accurate acquisition of spatial distribution information for maize
planting can assist agricultural departments in optimizing resource allocation, rationally
planning maize farmland, and providing data for the formulation of local agricultural
subsidy policies. This is crucial for improving agricultural production efficiency [6–10].

With the rapid development of remote sensing technology, it has been widely applied
in areas such as vegetation classification, environmental pollution monitoring, earthquake
monitoring, land-use planning, crop pest and disease monitoring, and crop yield sur-
veys [11]. By acquiring high-resolution images and multispectral data through satellites,
drones, and sensors, a wide range of surface information can be captured, accurately
identifying crop types, boundaries, shapes, and environmental changes. Some scholars
have combined these data with machine learning methods, providing an important tool
for crop monitoring [12]. This approach enables the automatic identification, classification,
and yield prediction of different crop types and has been widely applied in the field of
crop area identification. For example, Chen Yuehao et al. [13] used GF-2 satellite data and
two different classifiers—Maximum Likelihood and Support Vector Machine—to identify
and extract tomatoes in the Yuanmou hot zone. Similarly, Yang Yanjun [14] constructed
an NDVI time series covering the full growth cycle of crops using GF-1 satellite images
and employed various classification methods such as Maximum Likelihood, Minimum
Distance, Mahalanobis Distance, Support Vector Machine, and Artificial Neural Network
to classify crops in the southern region of Tangshan City, Hebei Province. Wei Pengfei
et al. [15] used multi-temporal GF-1 satellite remote sensing images and combined typical
vegetation indices of major crops in the study area, employing classification methods such
as Maximum Likelihood, Support Vector Machine, and Decision Trees to classify the crops.
Their results indicated that the Decision Tree method was the best, successfully extracting
the spatial distribution of soybean, rice, maize, and sweet potato planting areas in the study
region. Qiao Shuting et al. [16] used time-series Sentinel-2 satellite remote sensing data,
combined with field survey data of typical ground features, and applied the Random Forest
classification algorithm to successfully extract a remote sensing dataset of the main crop
planting distribution in the Sanjiang Plain for the years 2020–2022.

Previous research has demonstrated that the integration of remote sensing technology
with machine learning significantly enhances the ability to process and analyze remote
sensing data, particularly achieving remarkable results in crop information extraction.
However, most studies have focused on large, relatively flat plain areas, with relatively
few studies on small, irregular plots in southern mountainous regions where the terrain is
more complex. In small, irregular plots, the spatial resolution of medium- to low-resolution
images (such as Sentinel-2) is insufficient to capture subtle changes, making it difficult to
reveal the complexity of mountainous terrain and plot diversity. Additionally, due to the
low temporal resolution of high-resolution images, relying solely on it makes it challenging
to provide continuous time-series data, complicating the monitoring of crop growth and
land-use changes in mountainous areas.
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To address this challenge, this study encompasses the entire crop growth cycle by
utilizing multi-source satellite remote sensing images from GF-1, ZY-3, and ZY1-02D to
construct an NDVI time series for seven months in 2021 (January, February, March, May,
August, November, and December). Drawing on the rich texture and spectral characteristics
of the data, along with field survey results, visual interpretation was conducted to select
training samples. Four classification algorithms—Gaussian Naive Bayes, Artificial Neural
Network, Support Vector Machine, and Random Forest—were employed to classify the
study area, accompanied by a comparative accuracy analysis of the results. The Random
Forest algorithm, which demonstrated the highest accuracy, was chosen to identify and
extract maize planting areas in Shangzhou District. This study serves as a reference for
crop classification and precision agricultural management using remote sensing technology
in mountainous and hilly regions with complex terrain.

2. Materials and Methods
2.1. Study Area

The study area is located in Shangzhou District, Shangluo City, Shaanxi Province
(Figure 1). The main crop in this area, maize (Zea mays L.), typically enters the sowing and
seedling stage from mid-April to early June; the jointing stage occurs from mid-June to
early July; the tasseling stage occurs from mid-July to early August; the grain-filling and
maturity stage occurs from mid-August to early September; and the harvesting stage occurs
from mid-September to early October, as shown in Figure 2. The NDVI curve changes
during the phenological periods of maize are shown in Figure 3. Shangzhou District lies in
the southeastern part of the Shaanxi province, on the southern slopes of the eastern section
of the Qinling Mountains and the upper reaches of the Danjiang River. It borders Danfeng
County to the east, Shanyang County to the south, and connects to Lantian and Zhashui
counties to the west via the Qinling mountain range. To the north, it adjoins Luonan County
and is situated between latitudes 33◦38′–34◦11′ N and longitudes 109◦30′–110◦14′ E. The
district extends 67.5 km from east to west and 65 km from north to south, covering a total
area of 2672 km2 [17].

Shangzhou, positioned in the mid-latitudes, benefits from the natural barrier of the
Qinling Mountains to the northwest, which protects the region from cold air intrusions. The
southeast-facing valleys promote the influx of warm temperate air, resulting in a monsoon,
semi-humid mountainous climate typical of the transitional zone at the southern edge
of the warm temperate belt. The area experiences four distinct seasons, characterized by
mild winters and cool summers. Winters and springs are prolonged, while summers and
autumns are brief, with the region enjoying a balance of water and heat resources. However,
there are significant interannual variations in temperature and precipitation, along with
frequent natural disasters such as droughts, floods, and hailstorms. The annual average
temperature is 12.8 ◦C, with July being the hottest month (averaging 24.8 ◦C) and January
the coldest (averaging 0.3 ◦C).

The combined effects of climate, terrain, and soil conditions have established maize
as one of the main crops in the region. Irrigation methods primarily rely on traditional
channel irrigation as well as modern sprinkler and drip irrigation systems. Proper irrigation
practices can effectively reduce water resource waste and ensure the normal growth of
crops during dry seasons. In 2022, the gross domestic product (GDP) of Shangzhou
District reached 16.168 billion yuan. By industry, the added value of the primary industry
(agriculture, forestry, animal husbandry, and fisheries) was 2.030 billion yuan, the secondary
industry (mining; manufacturing; production and supply of electricity, heat, gas, and water;
and construction) was 4.3403 billion yuan, and the tertiary industry (services) was for
9.798 billion yuan.
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2.2. Data and Preprocessing
2.2.1. Remote Sensing Images

Based on the administrative boundaries of Shangzhou District and the phenological
period of maize, remote sensing images from 2020 to 2024 were selected. However, each
year exhibited varying degrees of data gaps or incomplete coverage of the study area.
Although the 2021 data also had missing months, they were still the best available data
compared to other years. Therefore, this study utilized three high-resolution satellite
images covering the area in 2021, including images from Gaofen-1 (GF-1), Ziyuan-1 02D
(ZY1-02D), and Ziyuan-3 (ZY-3). A total of 42 scenes were obtained in 2021. Among them,
six scenes were obtained during the maize sowing and seedling stage from mid-April to
early June, three were obtained scenes during the tasseling stage from mid-July to early
August, and two scenes were obtained during the grain filling and maturity stage from
mid-August to early September. No images were acquired for the jointing and harvesting
stages, mainly due to heavy cloud cover during these periods, which prevented effective
acquisition. Data acquisition for other time periods is as follows: 10 scenes in January, 6 in
February, 8 in March, 2 in November, and 5 in December. All data were downloaded from
the China Resource Satellite Data and Application Center (http://www.cresda.com.cn
(accessed on 9 October 2023)). However, the high-resolution data provided by this platform
are not open to international researchers. If international researchers need to access remote
sensing data, they can browse through the Natural Resources Satellite Remote Sensing
Cloud Service Platform (https://www.sasclouds.com/ (accessed on 21 September 2023))
and obtain data from the SPACE WILL platform (http://en.spacewillinfo.com/ (accessed
on 13 January 2025)). Other relevant information is provided in Table 1, and the acquisition
times of the different images are shown in Figure 2.

Table 1. Summary of data information.

Data Type Resolution Time Range Data Source Data Characteristics

Remote Sensing Data
(GF-1)

Panchromatic: 2 m
2021

http://www.cresda.com.cn
(accessed on 9 October 2023)

High-resolution optical remote sensing data, useful
for land feature identification and monitoringMultispectral: 8 m

Remote Sensing Data
(ZY1-02D)

Panchromatic: 2.5 m
2021

http://www.cresda.com.cn
(accessed on 9 October 2023)

Used for obtaining surface information, supporting
resource survey applicationsMultispectral: 10 m

Remote Sensing Data
(ZY-3)

Nadir panchromatic: 2.1 m
2021

http://www.cresda.com.cn
(accessed on 9 October 2023)

Features multiple imaging modes suitable for
surveying and mappingNadir multispectral: 5.8 m

Google Earth
High-resolution

Images
- 2020 https://earth.google.com/

(accessed on 25 October 2023)

Google Earth allows free browsing of
high-resolution satellite imagery from around

the world
Digital Elevation

Model (DEM) 30 m - http://www.gscloud.cn
(accessed on 31 October 2024)

Represents terrain elevation data and supports
terrain analysis

Evapotranspiration 1 km 2019–2023 https://data.tpdc.ac.cn
(accessed on 15 December 2024)

Reflects surface water evaporation and plant
transpiration conditions

Rainfall 1 km 2019–2023 https://data.tpdc.ac.cn
(accessed on 15 December 2024)

Reflects precipitation data, important for agriculture
and other sectors

Temperature - 2019–2023 https://www.ncei.noaa.gov
(accessed on 15 December 2024)

Reflects atmospheric temperature conditions,
fundamental for climate analysis

Land Use Data 30 m 2023 https://zenodo.org
(accessed on 15 December 2024) Represents land use types and their distribution

GF-1 Data [18,19]: The Gaofen-1 (GF-1) satellite was successfully launched on 26 April
2013. The satellite is equipped with two high-resolution cameras, which provide 2 m
panchromatic and 8 m multispectral imaging, as well as four wide-swath multispectral
cameras with 16 m resolution. The acquired data include panchromatic images with a
spatial resolution of 2 m and multispectral images with a spatial resolution of 8 m, the latter
featuring four bands: blue, green, red, and near-infrared.

ZY1-02D Data [20]: The Ziyuan-1 02D (ZY1-02D) satellite was launched on 12 Septem-
ber 2019. It is equipped with both a visible-near infrared camera and a hyperspectral
camera. The acquired data include panchromatic images with a 2.5 m spatial resolution
and multispectral images with a 10 m spatial resolution.

http://www.cresda.com.cn
https://www.sasclouds.com/
http://en.spacewillinfo.com/
http://www.cresda.com.cn
http://www.cresda.com.cn
http://www.cresda.com.cn
https://earth.google.com/
http://www.gscloud.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
https://www.ncei.noaa.gov
https://zenodo.org
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ZY-3 Data [21]: The ZY-3 satellite was successfully launched on 9 January 2012. It is
equipped with four optical cameras, including a 2.1 m resolution nadir-viewing panchro-
matic Time Delayed and Integration–Charge Coupled Devices (TDI-CCD) camera, two
3.6 m resolution forward and backward-viewing panchromatic TDI-CCD cameras, and a
5.8 m resolution nadir-viewing multispectral camera. The acquired data include panchro-
matic images with a 2.1 m spatial resolution and multispectral images with a 5.8 m spatial
resolution, the latter featuring four bands: blue, green, red, and near-infrared.

Due to the fragmented terrain of the study area, the resolution of remote sensing
data is crucial for the accuracy of crop classification. Therefore, this study compares three
Chinese remote sensing satellites with the widely used Landsat 8 and Sentinel-2 satellites,
as shown in Table 2, further highlighting the advantages of Chinese high-resolution satellite
data for crop classification in mountainous and fragmented terrains.

Table 2. Comparison of parameters for GF-1, ZY1-02D, ZY-3, Landsat 8, and Sentinel-2 satellites.

Satellite GF-1 ZY1-02D ZY-3 Landsat 8 Sentinel-2

Sensor PMS VNIC - OLI MSI
Number of bands 5 9 5 9 13

Spatial resolution (m) Panchromatic: 2
Multispectral: 8

Panchromatic: 2.5
Multispectral: 10

Nadir panchromatic: 2.1
Nadir multispectral: 5.8

Panchromatic: 15
Multispectral: 30 10, 20, 60

Revisit period (days) 41 55 59 16 5

Swath width (km) 60 115 Nadir panchromatic: 50
Nadir multispectral: 52 185 290

Application

Provide high-quality,
high-resolution data for

land-use planning,
environmental

monitoring, resource
management, disaster

response, and other
applications.

Applied to land resource
surveys, urban and rural
construction, statistical
surveys, environmental
monitoring, precision
agriculture, disaster

monitoring, and other
areas.

Applied to land resource
surveying and

monitoring, disaster
prevention and

mitigation, agriculture,
forestry, water

conservancy, ecological
environment, urban

planning and
construction,

transportation, major
national projects, and

other areas.

Applied to watershed
and regional ecological

environment monitoring,
land use type extraction,
biomass estimation, crop

growth monitoring in
reclamation areas,

vegetation coverage
inversion, crop planting

area estimation, and
other areas.

Mainly used for global
high-resolution and

high-revisit land
observation, biophysical

change mapping,
monitoring of coastal

and inland water areas,
as well as disaster

mapping, and other
applications.

2.2.2. Preprocessing

For the selected remote sensing images, preprocessing was conducted using ENVI 5.3
software to ensure data accuracy and lay a solid foundation for subsequent analysis [22–24].
First, radiometric calibration, atmospheric correction, and orthorectification were applied
to the multispectral data for each acquisition phase, while radiometric calibration and or-
thorectification were also performed on the corresponding panchromatic data. Radiometric
calibration converts the digital values of the image into physical quantities such as radiance,
reflectance, or surface temperature, providing a reliable data foundation for subsequent
analysis. This step was completed using the Radiometric Calibration tool. After radiometric
calibration, atmospheric correction was performed to eliminate the effects of atmospheric
transmission on the image, making it more realistic and reliable. Atmospheric correction
was performed using the FLAASH Atmospheric Correction tool, with parameters including
sensor altitude, ground elevation, atmospheric model, aerosol model, aerosol retrieval,
initial visibility, and spectral files, with adjustments made based on the characteristics
of the image data. Orthorectification was used to eliminate geometric distortions from
the image and precisely align it with the geographic coordinate system, ensuring spatial
accuracy. This process was implemented using the RPC Orthorectification Workflow tool,
with bilinear resampling chosen and appropriate output pixel size set according to the
resolution of the image data. Finally, the NNDiffuse Pan Sharpening tool was used to
perform image fusion between the multispectral and panchromatic data.

After preprocessing, the resolution of the GF-1 images was 2 m, the ZY1-02D images
had a resolution of 2.5 m, and the ZY-3 images had a resolution of 2.1 m. To facilitate
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subsequent data operations and change analysis, the resolutions of the ZY1-02D and ZY-3
image data were resampled to a uniform 2 m. By mosaicking and cropping, a dataset
of remote sensing images for Shangzhou District covering seven months was created,
followed by geometric correction to eliminate or correct any geometric errors in the images.

The study area is extensive and encompasses various land-use types. Each high-
resolution remote sensing image contains rich geographic information, but its large data
volume can make processing cumbersome. After mosaicking and cropping the multi-source
remote sensing images to create the NDVI time series, the data volume increased further,
complicating rapid processing in a single batch. Due to the limited hardware resources of
the computer, such as the CPU and memory, directly processing large-scale datasets may
lead to excessive CPU load, high memory usage, and even system crashes, resulting in
slower processing speeds. To improve data processing efficiency, a chunking method was
employed [25,26]. In ENVI 5.3 software, the Simple Frame Subset tool was used to divide
the entire study area image into smaller blocks, with both the row and column numbers set
to 6. Edge blank blocks were removed, resulting in 28 smaller, more manageable sub-blocks.
The specific chunking criteria were based on the image size and the computer’s memory
capacity, ensuring that the size of each sub-block was suitable for memory processing
and preventing memory overflow due to excessive data loading. The entire process was
carried out on a computer with 16 GB of RAM and a 6-core, 12-thread processor, and the
chunking operation took approximately 7 min. This approach effectively reduces memory
requirements and enhances data processing efficiency, facilitating the successful handling
and classification of large-scale remote sensing images.

2.2.3. Sample Data

Field surveys were conducted in Shangzhou District, Shangluo City, from 13 June to
15 June 2023 and from 30 June to 1 July 2024. During these surveys, handheld GPS (Garmin
eTrex309X, Manufacturer: Garmin Ltd., Olathe, KS, USA) devices were used to collect
location information for maize planting areas within the study region. A total of 74 maize
planting points were recorded.

In addition, based on the NDVI time series curves of different land cover types,
detailed observations and analysis were conducted using high-resolution images from
Google Earth (May 2020) and the images acquired during the maize tasseling period in
August 2021. This approach was used to identify and distinguish various land cover
types within the study area. Through visual interpretation, random and evenly distributed
training samples were selected, resulting in distribution data for seven land cover types,
totaling 11,223 samples. This included 166 river samples, 757 road samples, 641 building
samples, 2545 forest type 1 (shady slopes) samples, 2504 forest type 2 (sunny slopes)
samples, 2178 maize samples, and 2432 (planted protective forests, as well as various plants
in residential areas and parks) greening samples. These samples provide critical data for
distinguishing different land cover types and establish a solid foundation for subsequent
classification model training and validation.

2.2.4. Other Data

To ensure the reliability and representativeness of the research results, this study
selected 2021 as the primary year for analysis. Meanwhile, temperature, precipitation, and
evapotranspiration data from 2019 to 2023 for the study area were collected, with detailed
information provided in Table 1. The annual variation trends of the three types of data are
shown in Figure 4.
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As shown in Figure 4, the precipitation in 2021 (938.57 mm) was relatively high,
while both the temperature (13.57 ◦C) and evapotranspiration (1047.35 mm) were close
to the multi-year average, indicating that the climate conditions in 2021 were generally
representative. Furthermore, considering that maize cultivation in the study area exhibits
good adaptability to changes in temperature and precipitation, the 2021 data can objectively
reflect the spatial distribution characteristics of maize cultivation in the region.

2.3. NDVI Timeseries Construction
2.3.1. NDVI Calculation

NDVI (normalized difference vegetation index) is a widely used remote sensing metric
for assessing and monitoring plant health, vegetation cover, and biomass. The calculation
formula is as follows:

NDVI = (NIR − Red)/(NIR + Red) (1)

where NIR (near infrared) refers to the reflectance value in the near-infrared band; Red
refers to the reflectance value in the red band.

NDVI changes over time, reflecting the growth stages of crops [27,28]. The differences
in NDVI time series curves are also quite pronounced among different land cover types
or crop species [29]. Therefore, ENVI 5.3 software was used to calculate the NDVI for
images from each month and to synthesize these into a 2021 NDVI time series dataset,
yielding NDVI time series curves for typical land cover types such as maize, forest, road,
building, and river. The maize time series curve clearly shows the entire growth process
from seedling stage to ear and grain formation stages.

2.3.2. NDVI Time Series Curve and Spectral Feature Analysis of Maize

Different crops exhibit significant variations in their growth cycles, which are reflected
in the morphology of their NDVI time series curves. The peak values and the timing of
these peaks are distinctive for each crop and follow certain patterns. Within the same
area, despite being influenced by factors such as climate, soil, and management practices,
the growth processes of the same crop tend to follow relatively consistent trends. This
regularity provides a theoretical basis for land cover identification based on time series
remote sensing data. By analyzing these time series, it becomes possible to effectively
identify crop types and monitor their growth conditions, offering valuable insights for
precision agriculture and resource management.

By combining sample data obtained from field surveys and visual interpretation,
the average NDVI values corresponding to maize sample points in the NDVI images for
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each month were calculated, resulting in the NDVI time series curve for maize over seven
months. Using the same approach, NDVI time series curves for other typical land cover
types can also be derived. Additionally, the arithmetic mean spectral reflectance of the red
band (B3) and the near-infrared band (B4) for typical land cover types was compared with
the NDVI curve, as shown in Figure 3. It is worth noting that the NDVI values of rivers
in Figure 3a are negative, which is a normal phenomenon. This is because the spectral
reflectance characteristics of water bodies typically result in a higher reflectance in the red
band than in the near-infrared band, leading to a negative NDVI value. This phenomenon
is expected and reflects the unique spectral reflectance behavior of water bodies.

Due to the missing data for some months, this study does not constitute a complete
time series dataset. Therefore, based on previous research findings [1,14,30–32] and field
survey data, the following conclusions can be drawn. In Shangzhou District, the period
from mid-April to early June is typically the sowing and seedling stage for maize. During
this early stage, the surface is mainly bare soil with low vegetation cover and weak absorp-
tion capacity. Compared to other land covers, the red band reflectance of maize during the
sowing period is relatively high, while the near-infrared band reflectance is slightly lower.
As maize begins to emerge and grow, the NDVI value rises from low levels.

From mid-June to early July, maize enters the jointing stage, during which rapid
growth leads to a significant increase in NDVI values. From mid-July to early August,
maize reaches the tasseling phase, where vegetation cover is high, and NDVI values
continue to rise, reaching a peak. During this phase, near-infrared band reflectance also
reaches its highest value, significantly exceeding that of other land cover types, while the
red band reflectance remains low.

As maize progresses into the grain-filling and maturity stage, both NDVI values and
near-infrared band reflectance begin to decrease, while red band reflectance gradually
increases. By mid-September to early October, the harvest period for maize, vegetation
cover significantly decreases, returning to levels similar to those observed at sowing. By
analyzing the changes in these three reflectance curves (red, near-infrared, and NDVI),
maize can be effectively distinguished from other land cover types, providing a solid
foundation for subsequent classification and identification.

2.4. Classification Methods

This study uses the Python programming language, with Python 3.9 and PyCharm
2024 as the development environment to build classification models. All data are divided
into training, validation, and test sets in a ratio of 8:1:1 and standardized to improve
the model’s training performance. Subsequently, four classification models—Gaussian
Naive Bayes, Artificial Neural Network, Support Vector Machine, and Random Forest—are
constructed. Hyperparameter tuning is performed using a combination of grid search and
cross-validation to select the optimal model parameters. Finally, the optimized model is
validated using the test set to evaluate its accuracy.

2.4.1. Gaussian Naive Bayes

Gaussian Naive Bayes (GNB) is a machine learning classification algorithm based on
probabilistic models and Gaussian distributions. It assumes that the conditional probability
of each feature follows a Gaussian distribution and applies Bayes’ theorem to calculate
the posterior probabilities of a sample belonging to each class based on the given fea-
ture distribution. The class of the sample is determined by maximizing the posterior
probability [33,34].

GNB is especially effective in handling continuous features and typically provides
good classification performance, especially when the features exhibit a Gaussian distribu-
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tion. Additionally, GNB has a relatively low computational complexity, making it suitable
for large-scale datasets. It can quickly train and classify with a large sample size, and the
training time is relatively short. The var_smoothing parameter for the GNB is set to 0.001.
This parameter is used to smooth the variance and prevent the occurrence of zero variance
in the training data for certain classes.

2.4.2. Support Vector Machine

Support Vector Machine (SVM) is a general linear classifier introduced by Vapnik
et al. in 1995, which performs binary classification based on supervised learning. The
fundamental idea of SVM is to map data points in a high-dimensional space to a lower-
dimensional space and find an optimal hyperplane that separates the data points into
two classes [35,36]. Common kernels include linear, polynomial, and radial basis function
kernels [37]. Choosing the appropriate kernel function is crucial for SVM performance. By
using kernel functions, SVM can handle both linearly separable and complex non-linear
classification problems. SVM is widely favored in practical applications for its strong
classification performance and robustness. The SVM utilizes a radial basis function (RBF)
kernel, with the penalty parameter C set to 100.

2.4.3. Random Forest Classification Algorithm

Random Forest (RF) is a powerful ensemble learning method that constructs multiple
decision trees and combines their results through voting or averaging to obtain the final
prediction [38–40]. It can effectively handle high-dimensional data and large-scale samples.
During training, RF builds each decision tree by randomly sampling subsets from the
original dataset and selecting a subset of features at each node split. RF excels in prediction
and classification performance compared to single decision trees. By integrating multiple
models, it effectively handles overfitting, improves generalization [41], and is robust to
missing values and imbalanced data. The RF model consists of 300 trees. For each tree,
the maximum number of features is set to the square root of the total number of input
features. A minimum of two samples is required to split a node, and each tree’s leaf node
must contain at least one sample.

2.4.4. Artificial Neural Network

Artificial Neural Network (ANN) are computational models inspired by biological
neural systems designed to simulate and process complex information tasks. The core
concept of ANN is to mimic the connections between neurons in the human brain, enabling
input-to-output mapping through layers of processing. In this study, Multilayer Perceptron
(MLP) is used as the implementation of ANN. MLP is a feedforward neural network with
an input layer, multiple hidden layers, and an output layer [42]. Each layer comprises
multiple neurons (or nodes), where the output of one layer becomes the input for the next
layer [43,44]. The strength of MLP lies in its use of multiple nonlinear processing layers to
extract and transform feature information from the input data. This hierarchical structure
allows the MLP to learn and approximate complex nonlinear functions, exhibiting strong
generalization ability, especially when handling large-scale and high-dimensional datasets.
The ANN consists of two hidden layers, with 128 and 64 neurons in the first and second
layers, respectively.

2.5. Evaluation Methods

The accuracy of the classification results is assessed using a confusion matrix, which is
generated by comparing the location and classification of each reference pixel with those in
the classified image. Key evaluation metrics include the Kappa coefficient, Overall Accuracy
(OA), User’s Accuracy (UA), and Producer’s Accuracy (PA) [45,46]. These metrics provide
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a comprehensive evaluation of image classification accuracy from various perspectives.
The accuracy standard deviation is further calculated based on the following formula for
standard deviation:

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (2)

where σ represents the standard deviation; xi represents the i-th data point; µ represents
the mean of the data; N represents the total number of data points.

3. Results
3.1. Classification Results Analysis

Based on Google Earth images, field survey data, and NDVI time series curves for
different land cover types, visual interpretation was conducted in the study area to select
sample points for various land cover types, resulting in data for seven categories. The
study area was classified using four classification algorithms: Gaussian Naive Bayes,
Artificial Neural Network, Support Vector Machine, and Random Forest. This successfully
extracted spatial distribution information for typical land cover types in Shangzhou District,
including maize, road, building, and river.

To enhance the reliability of the decision-making process, bootstrap simulation was
used to assess the predictive confidence of the remote sensing classification model. By
performing resampling with a replacement on the original dataset, multiple simulated
datasets were generated, allowing the evaluation of the model’s performance across dif-
ferent datasets and providing reliable confidence intervals and error estimates for the
classification model. The confusion matrix for the classification results was calculated, and
four metrics were used to evaluate the classification accuracy of each machine learning
method: user’s accuracy, overall accuracy, producer’s accuracy, and the Kappa coefficient.
The user’s accuracy represents the proportion of samples that truly belong to a specific
category and are correctly classified as such. The producer’s accuracy indicates the proba-
bility that the classification results at a given location on the map match the corresponding
sample in the validation data. The overall accuracy refers to the proportion of correctly
classified pixels in the classification results relative to the total number of pixels. While the
user’s accuracy and producer’s accuracy provide insights into the performance of individ-
ual categories, overall accuracy and the Kappa coefficient assess the overall classification
performance. The classification accuracies for each method are summarized in Table 3.

Table 3. Classification accuracy of various machine learning methods.

Method
User’s

Accuracy (%)
Producer’s

Accuracy (%) OA (%) Kappa Mean
Accuracy (%)

Standard Deviation
of Accuracy

Maize Maize

GNB 90.51% 78.71% 78.74% 0.74 78.56% 0.0027
ANN 91.67% 94.47% 91.49% 0.90 91.14% 0.0028
SVM 90.80% 93.68% 90.41% 0.88 90.29% 0.0021
RF 97.05% 92.80% 94.88% 0.94 94.01% 0.0017

All methods except for Gaussian Naive Bayes achieved high accuracy in identifying
maize planting areas, with overall and average accuracies above 90% and Kappa coefficients
greater than 0.85. The Random Forest algorithm performed the best, achieving an overall
accuracy of 94.88% and a Kappa coefficient of 0.94, significantly outperforming the other
algorithms. Additionally, Random Forest’s average accuracy was 94.01%, with a very
low standard deviation of 0.0017, indicating high stability and consistency. Compared to
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Gaussian Naive Bayes, Artificial Neural Network, and Support Vector Machine, Random
Forest’s overall accuracy was higher by 16.14%, 3.39%, and 4.47%, respectively, with Kappa
coefficients exceeding these by 0.2, 0.04, and 0.06, respectively. In user and producer
accuracy, Random Forest achieved the highest user accuracy (97.05%), while Artificial
Neural Network achieved the highest producer accuracy (94.47%).

In conclusion, random forest demonstrated the best performance in terms of accuracy,
stability, and consistency, followed by Artificial Neural Network and Support Vector Ma-
chine, with Gaussian Naive Bayes showing the lowest accuracy. This indicates that Random
Forest is particularly effective for accurately identifying maize locations in Shangzhou
District’s complex terrain.

Figure 5 illustrates the distribution of classification accuracy across 100 iterations
for the four algorithms. Both Random Forest and Support Vector Machine exhibit high
stability, with minimal fluctuations across iterations, though Random Forest shows smaller
fluctuations than Support Vector Machine, indicating a more robust model and lower error.
In contrast, Artificial Neural Network and Gaussian Naive Bayes displayed larger fluctua-
tions across iterations, indicating lower stability. Overall, the Random Forest classification
algorithm demonstrates the highest reliability for classification tasks.
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Figure 5. Distribution of accuracy for each machine learning method.

In Shangzhou District, the substantial terrain variations lead to different levels of solar
radiation across surface positions, creating shaded and sunlit slopes in the images, which in
turn affects the spectral reflectance of surface vegetation. Forest 1 and Forest 2 correspond
to the shaded and sunlit slopes of the forest, respectively. For clarity, these are combined in
the resulting map, as shown in Figures 6 and 7.

Field survey results reveal that the study area is characterized by interwoven mountain
ranges and extensive forest coverage. The dense vegetation and complex terrain limit the
expansion of arable land, resulting in the significant fragmentation of farmland. Although
maize is the primary crop, its distribution is scattered, with few large, contiguous planting
areas.
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typical regions of the study area; (a) Gaussian Naive Bayes classification results; (b) Artificial Neural
Network classification results; (c) Support Vector Machine classification results; (d) Random Forest
classification results.

When comparing the four classification results to remote sensing images, most land
cover types were accurately identified, yielding generally satisfactory classification out-
comes. As shown in Figure 6, forests cover approximately 86.65% of the total area, with
clear delineation of their location and boundaries. Developed areas are concentrated in the
southeastern valley, making up 2.02% of the total area. Despite their smaller size, linear
features like rivers and roads are distinctly visible in the classification results. Maize fields
are mostly located in valleys and along roads where the terrain is relatively flat, supporting
cultivation and the transport of agricultural products.

The four classification algorithms performed well for identifying linear features and
larger land areas. However, for maize, which is grown in smaller, fragmented plots, the
results showed varying degrees of misclassification and omissions. Of the methods used,
the Random Forest algorithm demonstrated better performance in maintaining the integrity
of crop plot boundaries and reducing the misclassification of small patches.
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Figure 7. Typical area classification results of various machine learning methods: (a–d) represent
the classification results using Gaussian Naive Bayes for four typical regions of the study area;
(a1,b1,c1,d1) represent the classification results using Artificial Neural Network; (a2,b2,c2,d2) repre-
sent the classification results using Support Vector Machine; (a3,b3,c3,d3) represent the classification
results using Random Forest.
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3.2. Extraction of Maize Planting Areas

Using the Random Forest classification algorithm, the spatial distribution of maize
planting areas in Shangzhou District was extracted, revealing a relatively uniform overall
distribution. However, due to variations in topography, external environmental conditions,
the application of agricultural practices, and local policy differences, the area and distribu-
tion of maize cultivation significantly differ among townships. Overall, the southern areas
have a slightly higher distribution than the northern ones, particularly in the southeastern
towns of Shahezi and Yecun, as well as in the southwestern regions of Yanchihe Township,
Heishan Town, and Yangyuhe Town, as shown in Table 4.

Table 4. Maize cultivation area in each township.

Town Name Planting Area (km2) Town Name Planting Area (km2)

Yangyuhe Town 6.73 Banqiao Town 5.61
Sanshilipu Township 3.61 Heilongkou Town 5.31
Beikuanping Town 3.75 Yangxie Town 6.17
Muhuguan Town 3.24 Heishan Town 7.77

Dajing Town 2.98 Yancun Township 3.26
Urban areas 1.81 Sanchahe Township 1.72

Jinlingsi Town 1.17 Shangguanfang Township 2.29
Chenyuan Street Office 1.00 Xijing Township 1.73

Yecun Town 15.76 Yaoshi Town 6.01
Yanchihe Township 9.17 Shahezi Town 11.20
Machihe Township 3.87 Majie Town 1.36

Four typical areas were selected for result presentation and analysis based on different
elevation levels. Area a is located in the mid-elevation region, areas b and c are in the low-
elevation region, and area d is situated in the high-elevation region. As shown in Figure 8,
cultivated land in areas a, b, and d is mainly situated near residential areas on mid-slopes
and distributed along roads, with relatively small maize plots surrounded by extensive
forested regions. In contrast, area c is located in a flatter region near an industrial building,
where farmland is more concentrated, though fragmentation is still present. Overall, the
maize planting area in region c is larger than in regions a, b, and d.

The NDVI curve variations for maize across the four areas are generally consistent
and align with typical maize growth patterns, showing peak NDVI values of 0.79, 0.71, 0.69,
and 0.82, though with some numerical differences. These variations may be influenced
by factors like elevation and soil fertility specific to each area. Climatic elements, includ-
ing temperature, precipitation, and sunlight, significantly affect crop growth and health;
drought or excessive rainfall, for instance, can inhibit growth and reduce NDVI values.
Soil type also plays a role, as more fertile soils better support healthy crop development.
Furthermore, agricultural management practices, such as fertilization, irrigation, and pest
control, impact crop conditions, leading to NDVI differences for the same crop across
regions or over different years. The severe fragmentation of farmland in this mountainous
study area aligns with observations from field surveys.
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4. Discussion
This study utilizes high-resolution satellite images from GF-1, ZY1-02D, and ZY-3

satellites, combined with NDVI time series from multiple months, to identify and extract
maize—the primary crop in Shangzhou District, Shaanxi Province—and distinguish other
land cover types, such as forested and green areas within the study area.

4.1. The Impact of Topographical Characteristics and Temporal Differences in Image Data Selection
on Classification Results

The terrain in the southern Shaanxi hilly region is complex, with the distribution
of mountains and hills leading to significant spatial heterogeneity in agricultural land.
In the hilly areas, maize is typically concentrated in valleys and flat slopes, whereas its
distribution is limited by the terrain in steep and high-altitude areas. Most studies have
focused on plains or areas with large plots, often relying on medium- to low-resolution
remote sensing data. Compared to plain areas, land use in hilly regions is more fragmented,
with maize cultivation areas being more dispersed and individual cultivation plots being
smaller. When using medium- to low-resolution remote sensing data for research, it is
often difficult to accurately capture the subtle terrain variations of mountains and the
complex boundaries of small plots, which can result in mixed vegetation types within
a single pixel, affecting the accuracy of classification. Therefore, conducting research in
areas with complex terrain requires higher spatial resolution of remote sensing data. To
address this challenge, this study selected three high-resolution remote sensing data from
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GF-1, ZY1-02D, and ZY-3 in 2021 for crop classification, fully utilizing the advantages of
high-resolution remote sensing data. In the process of visual interpretation, the detailed
surface features and textures were successfully captured, allowing for clear identification
and differentiation of the boundaries of different plots.

Due to the temporal difference between the 2021 remote sensing data and the field
survey data, land use changes (such as the conversion of cultivated land to built-up land
or other land types) in the study area may have some impact on the accuracy of the
analysis and the validity of the results. However, according to the actual field survey
results, the main crops in the study area are maize and wheat. The maize planting patterns
and plot distributions have remained relatively stable over the past few years, and the
planting locations and areas have not undergone significant changes due to the temporal
discrepancy. Additionally, most of the selected sample points are located in stable farming
areas in valleys or along roads, where cultivation has a long history and land use changes
occur gradually. These areas are highly representative and consistent. Therefore, the 2021
remote sensing data can accurately reflect the current maize planting areas, and the impact
of the temporal difference on the results is limited. However, for future large-scale areas
with more frequent land use changes, the temporal difference may have a greater impact on
the analysis results. In such cases, it is necessary to strengthen monitoring and analysis of
land use changes to ensure temporal consistency between field surveys and the data used.

4.2. Maize Growth Dynamics Analysis and Comparison of Remote Sensing Classification
Algorithm Accuracy

The dynamic changes in maize throughout its growth cycle were analyzed using the
NDVI time series curve, which clearly reveals the different characteristics of each key
growth stage, including sowing, seedling emergence, jointing, tasseling, and harvesting.
The NDVI values exhibit a clear pattern of variation at different growth stages: during
the sowing and early seedling stages, the NDVI values are relatively low, indicating that
the crop is still in the early growth phase with low vegetation cover. As the growth
progresses, the plants become increasingly vigorous, and the NDVI values begin to rise,
reaching their peak during the tasseling stage, marking the peak of maize growth. After
entering the maturation and harvesting stages, the NDVI values significantly decline as
the plants deteriorate and water content decreases. This dynamic change not only helps
distinguish the growth characteristics of maize from other crops but also provides a reliable
basis for crop recognition using remote sensing data. In agricultural monitoring and crop
classification, the NDVI change characteristics exhibit significant differences between crops,
effectively differentiating crop types and improving the accuracy of crop recognition. This
provides high-quality training samples for subsequent classification models, helping to
reduce misclassification and omission errors, thereby enhancing classification accuracy,
especially in complex terrains or regions with alternating crop distributions. Moreover,
these analysis results offer strong support for crop growth monitoring and precision
agriculture management, enabling the accurate capture of crop growth dynamics during
different growth stages. This facilitates precise agricultural decision-making and real-time
scheduling, providing data support for formulating scientific agricultural policies and
optimizing planting management.

In remote sensing image classification, the choice of classification classifier plays a
crucial role in determining both classification accuracy and efficiency. Zhang Peng et al. [47]
conducted a study on crop classification at the plot scale in complex planting areas using
WorldView-2 images. The results showed that the RF algorithm achieved an overall
accuracy of 79.07%, outperforming ANN and K-Nearest Neighbors (KNNs). Similarly,
Zheng et al. [48] found that in the fusion of visible light and multispectral data acquired by
drones for crop classification, the RF algorithm achieved the highest overall accuracy of
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97.77%, significantly surpassing other machine learning models such as SVM, ANN, KNN,
and Classification and Regression Trees (CARTs). These findings are consistent with the
results of this study, where the RF algorithm effectively distinguishes maize from other
land cover types, achieving an overall accuracy of 94.88%, which is higher than that of
GNB, ANN, and SVM. Analysis of the classification results from the four methods reveals
the presence of significant “salt-and-pepper” noise. This phenomenon may be attributed
to the inherent complexity of the land cover types, leading to the occurrence of “same
object different spectra” and “different objects same spectra” within the image, as well as
mixed pixels at the boundaries of land cover types containing multiple categories. These
mixed radiometric values can cause misclassification. As a result, there is some degree of
mixed classification between maize and other vegetation types, which makes the boundary
between crop planting areas and other vegetation types less distinct. Compared to the other
three classification algorithms, the “salt-and-pepper” noise in the RF classification results
was generally reduced. This can be attributed to its robustness in handling data noise and
outliers. Even in cases with incomplete or anomalous data, the RF algorithm can provide
reliable classification results and effectively address the complex nonlinear relationships
within the feature space. It demonstrates superior performance in crop classification tasks
involving high-dimensional feature spaces and is well-suited for large-scale datasets.

4.3. Limitations of the Study and Future Directions

Although this study achieved high-precision extraction of maize in hilly areas with
significant topographic variations and small-scale plots, there are still some limitations.
First, due to the long revisit period of high-resolution satellite images and the variable
climatic conditions of hilly areas, especially the frequent rainfall and humid weather
during summer and autumn, cloud cover often obstructs satellite passes, which affects
the continuity of the data. At the same time, the complex terrain of mountainous areas
often interferes with the satellite’s view, causing certain regions to be obscured by the
terrain, which prevents effective observation of the target areas. Therefore, the remote
sensing images obtained in this study do not represent complete data for all 12 months
but rather a time series constructed from data of only 7 months. This limitation prevents a
comprehensive coverage of the entire crop growth cycle and leads to some degree of “same
spectrum, different objects “ phenomena. Additionally, the sample data used in this study
were acquired through manual visual interpretation based on prior experience, which may
introduce some errors and pose challenges for extracting other crops planted in the study
area. For crop classification in larger study areas, the strategy for selecting training samples
should be adjusted. During the selection process, overly dense training samples should
be avoided, ensuring the representativeness of the samples, reducing “same spectrum,
different objects” phenomena, and improving classification accuracy.

Future research should consider integrating other types of image data, such as Sentinel-
2 images. The revisit period of Sentinel-2 is 5 days (near the equator), allowing for rapid
acquisition of new images even in the presence of cloud cover, providing finer temporal
resolution. Combining it with existing high-resolution images can help fill the current
data gaps, and in terms of both temporal and spatial resolution, it will contribute to
constructing a more complete NDVI time series. With the continuous development of
remote sensing technology and the successive launches of various ground monitoring
satellites, China’s remote sensing image data will become increasingly abundant, offering
a more diversified and enriched data source for the remote sensing extraction of crop
planting areas. Furthermore, while multi-source high-resolution image fusion provides rich
spatial and spectral detail for precise crop classification, it presents challenges such as high
data dimensionality, redundancy, inter-data correlation, and heavy processing demands.
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Traditional machine learning methods often lack the feature-learning capabilities required
to address these issues effectively. As deep learning continues to advance in land cover
classification, future research should explore suitable deep learning models to streamline
multi-source image fusion processing, reduce classification errors, and enhance accuracy.
Such advancements are essential for detailed crop recognition in mountainous regions and
hold significant promise for large-scale crop classification.

5. Conclusions
This study focuses on Shangzhou District and examines the capability to identify

and extract maize planting areas using multi-source remote sensing images combined
with NDVI time series and various machine learning methods. First, the acquired remote
sensing images are preprocessed, and NDVI calculations are performed over seven months
to construct a time series. Visual interpretation of the study area is conducted using sample
data and high-resolution Google Earth images, resulting in the classification of seven
land cover types. Four classification algorithms—Gaussian Naive Bayes, Artificial Neural
Network, Support Vector Machine, and Random Forest—are applied to identify maize
planting areas and assess classification accuracy. Comparative analysis highlights the
strengths and potential improvements of machine learning methods for maize extraction.
Key findings include the following:

(1) Utilizing multi-source high-resolution remote sensing images and NDVI time se-
ries effectively distinguishes various land features, accurately capturing the growth
patterns of major crops in Shangzhou. Calculating average NDVI values for maize
samples over the months enhances understanding of growth patterns, improving
sample selection and reducing classification errors.

(2) All classification algorithms, except Gaussian Naive Bayes, achieved good accuracy,
with overall accuracies exceeding 90% and Kappa coefficients above 0.85. Among
them, the random forest algorithm performed best in identifying maize planting areas,
with an overall accuracy of 94.88% and a Kappa coefficient of 0.94, indicating its
suitability for classifying hilly and mountainous regions in southern Shaanxi.

(3) The combination of multi-source remote sensing images, NDVI time series, and
machine learning methods show significant potential for crop identification in hilly
and mountainous areas. This approach provides valuable insights for local farmers,
helping them understand maize growth, optimize planting strategies, and support
rational land planning and utilization.
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