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Abstract: The Loess Plateau is one of the most severely affected regions by soil erosion in
the world, with a fragile ecological environment. Vegetation plays a key role in the region’s
ecological restoration and protection. This study employs the Geographical Detector
(Geodetector) model to quantitatively assess the impact of natural and human factors, such
as temperature, precipitation, soil type, and land use, on vegetation growth. It aims to
reveal the characteristics and driving mechanisms of vegetation cover changes on the Loess
Plateau over the past 26 years. The results indicate that from 1995 to 2020, the vegetation
coverage on the Loess Plateau shows an increasing trend, with a fitted slope of 0.01021 and
an R2 of 0.96466. The Geodetector indicates that the factors with the greatest impact on
vegetation cover in the Loess Plateau are temperature, precipitation, soil type, and land
use. The highest average vegetation coverage is achieved when the temperature is between
−4.8 and 2 ◦C or 12 and 16 ◦C, precipitation is between 630.64 and 935.51 mm, the soil type
is leaching soil, and the land use type is forest. And the interaction between all factors has
a greater effect on the vegetation cover than any single factor alone. This study reveals
the factors influencing vegetation growth on the Loess Plateau, as well as their types and
ranges, providing a scientific basis and guidance for improving vegetation coverage in
this region.

Keywords: Loess Plateau; NDVI; vegetation cover; land use; geographical detector model

1. Introduction
Vegetation is a vital element of the Earth’s ecosystem [1] and plays a crucial role in

influencing soil erosion on the Loess Plateau [2]. In semi-arid environments, the distribu-
tion pattern of vegetation is a major driving force and a preventive measure against soil
erosion [3]. Fractional vegetation cover (FVC) represents the proportion of the ground area
covered by the vertical projection of vegetation, including leaves, stems, and branches,
relative to the total area of a given region. It is a widely used parameter for evaluating
the relationship between vegetation and soil erosion [4], often used to reflect ecological
and environmental issues and, to some extent, assess changes in the region’s ecological
environment [5–9]. The Normalized Difference Vegetation Index (NDVI), due to its spectral
sensitivity to green plants, is often used in studies of vegetation conditions [10–12]. Studies
have proven that the NDVI can accurately estimate vegetation cover [4,13]. Many re-
searchers now use pixel binary models with NDVI to estimate the vegetation cover [14–16],
while others use pixel ternary models for estimation [17,18].
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The Loess Plateau is located in the middle reaches of the Yellow River and serves
as a critical ecological barrier for the Yellow River Basin. However, the region has long
suffered from severe soil erosion [19]. Vegetation restoration and ecological rehabilitation
can significantly enhance regional climate regulation, reduce the frequency of sandstorms,
improve ecosystem stability, and support the sustainable economic and social development
of the Yellow River Basin. To address the increasingly severe soil erosion on the Loess
Plateau, China has implemented various projects since the late 1990s, such as the “Grain-for-
Green” program, to mitigate soil erosion and improve land quality [20–22]. Vegetation plays
a crucial role in controlling soil erosion on the Loess Plateau, and changes in vegetation
coverage to some extent reflect the status of soil and water loss in the region. Therefore,
studying vegetation cover changes on the Loess Plateau provides valuable guidance for
ecological restoration efforts.

The factors influencing changes in vegetation cover include natural and human factors.
Among natural factors, climate has a particularly significant impact on vegetation cover
changes. Studies have shown a strong correlation between vegetation cover changes and
temperature and precipitation [23,24]. Different soil types exhibit notable differences in
supporting vegetation growth, and existing research indicates that soil variables affect
vegetation structure and species diversity [25]. Other natural factors, such as topographical
features, also influence vegetation formation and coverage, with the slope gradient and
aspect affecting regional vegetation moisture, solar radiation, and temperature [26,27].
Human factors, likewise, play a crucial role in vegetation cover changes. For instance,
land use changes are considered the most direct and comprehensive indicator of human
activities and are the primary drivers of long-term vegetation changes in China [28,29].
Additionally, some scholars have analyzed the effects of human activities such as population
growth [30], urbanization, economic development levels, over-cultivation, overgrazing,
and ecological protection policies on vegetation cover changes [31]. Considering these
factors comprehensively, this study selects temperature, precipitation, soil type, elevation,
slope gradient, and slope aspect as natural factors, while the land use type, population
density, and GDP are chosen as human factors.

Earlier studies mostly employed linear, trend, and correlation analysis methods to
qualitatively analyze the spatiotemporal changes in vegetation cover [32,33], but were
unable to quantitatively evaluate the influencing factors. With the advent of the Geo-
graphical Detector model [34,35], an increasing number of researchers have adopted it to
quantitatively assess the factors influencing vegetation cover [36–38]. The Geographical
Detector is a spatial analysis model designed to detect spatial heterogeneity and reveal the
driving forces behind it. This statistical method overcomes the limitations of traditional
mathematical statistical models, such as large parameter requirements, numerous assump-
tions, and isolated factor analysis [39], while exploring the interaction between explanatory
factors and the analyzed variables. Vegetation cover changes on the Loess Plateau are
influenced by multiple factors. The Geographical Detector enables an integrated analysis
of these factors, revealing their impact on vegetation cover through different detectors that
assess the response of vegetation cover to single and multiple factors [40].

This study aims to quantitatively assess the impact of various factors on vegetation
cover changes in the region, identify the types or ranges of factors conducive to vegeta-
tion growth, and provide scientific guidance for improving vegetation coverage on the
Loess Plateau.
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2. Materials and Methods
2.1. Study Area

The Loess Plateau is located in the central–northern part of China (100–114◦ E,
33–41◦ N), primarily encompassing parts of seven provinces: Shaanxi, Gansu, Ningxia,
Qinghai, Shanxi, Inner Mongolia, and Henan (Figure 1). The total area of the loess region
on the Loess Plateau is 635,000 km2, making it one of the most severely affected regions by
soil erosion in the world. The topography of the Loess Plateau descends from the higher
northwest to the lower southeast, with mountains, hills, and plateaus being the primary
landform type. The Loess Plateau experiences a typical temperate continental monsoon
climate, marked by cold, dry winters and hot, rainy summers, along with considerable
temperature fluctuations between day and night. The multi-year average temperature on
the Loess Plateau ranges from −13 ◦C to 16 ◦C, showing a three-tiered distribution with
a strong spatial pattern. As shown in Figure 2a, the southern and eastern regions of the
Loess Plateau have the highest average temperatures, followed by the central and northern
regions, while the western region has the lowest average temperatures. Influenced by
monsoon circulation, the multi-year average precipitation on the Loess Plateau decreases
progressively from approximately 700 mm in the southeast to around 100 mm in the north-
west (Figure 2b). The main land use types on the Loess Plateau include forest, grassland,
and cropland, with grassland being the most extensive. The primary soil types are incipient
soil, semi-lateritic soil, caliche soil, and arid soil, with incipient soil covering the largest
area, accounting for nearly half of the Loess Plateau.
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2.2. Data Sources

NDVI data were derived from the GIMMS NDVI dataset (1995–2015) and the MODIS
NDVI dataset (2001–2020). The GIMMS NDVI13g dataset, developed by NASA, has a
spatial resolution of 8 km and a temporal resolution of 15 days. The MOD13A1 dataset
features a spatial resolution of 500 m and a temporal resolution of 16 days. To construct a
long-term dataset suitable for this study, two NDVI datasets were resampled to achieve a
unified spatial resolution, followed by maximum value compositing to generate monthly
NDVI datasets. The resampling method used was Bicubic Interpolation. Considering that
the Geographical Detector requires all data to have consistent spatial resolution, the NDVI
data were resampled to a 1 km resolution. For the overlapping period from 2001 to 2015,
the average NDVI for each of the 12 months was calculated separately for both datasets,
as shown in Figure 3. During this 15-year period, the annual average NDVI difference
between the two datasets was only 0.008, indicating that the GIMMS NDVI data from 1995
to 2000 can serve as a complementary dataset to MODIS NDVI on an interannual scale.
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The elevation data were derived from ASTER GDEM, obtained from the Geospatial
Data Cloud platform of the Computer Network Information Center, Chinese Academy
of Sciences (http://www.gscloud.cn/, accessed on 20 December 2024), with a spatial
resolution of 30 m. After mosaicking and clipping, the digital elevation data for the Loess
Plateau was generated. Slope and aspect data (Figure 4a,b) were calculated from the
elevation data of the Loess Plateau using ArcGISdesktop 10.8, with a spatial resolution of
30 m.

Meteorological data were supplied by the National Tibetan Plateau/Third Pole Envi-
ronment Data Center (http://data.tpdc.ac.cn/, accessed on 20 December 2024), featuring a
spatial resolution of 1 km and covering the period from January 1995 to December 2020.
The dataset was generated for China using data from CRU and WorldClim, following
the Delta spatial downscaling scheme. Temperature and precipitation data were spatially
interpolated using the Thin Plate Spline (TPS) and Kriging interpolation methods. Projec-
tion coordinate transformations were applied to the results to obtain monthly and annual
meteorological raster data corresponding to the NDVI data [41,42]. Figure 4c,d show the
temperature and precipitation data for the Loess Plateau in 2020, respectively.

The soil type data were obtained from the Scientific Data Registration and Publishing
System of the Geographic Remote Sensing Ecological Network (www.gisrs.cn/, accessed
on 20 December 2024), with a spatial resolution of 30 m, as shown in Figure 4e. This dataset
was digitized based on the Soil Map of the People’s Republic of China, compiled and
published by the National Soil Survey Office. The original data are reliable and verified
through extensive field surveys and ground sampling.

Land use data were sourced from the National Glacier, Frozen Soil, and Desert Scien-
tific Data Center (http://www.ncdc.ac.cn/, accessed on 20 December 2024), with a spatial
resolution of 30 m. The land use data are part of China’s first annual Landsat-derived
land cover product (CLCD) from 1995 to 2020, developed by Yang Jie and Huang Xin from
Wuhan University [43]. This product was constructed using 335,709 Landsat images from
the Google Earth Engine platform. Training samples were collected by combining stable
samples extracted from the Chinese Land Use/Cover Dataset (CLUD) with visually inter-
preted samples from satellite time series data, Google Earth, and Google Maps. Multiple
temporal indicators were created using all available Landsat data and fed into a Random
Forest classifier to generate classification results. For this study, the land use data were
categorized into six land use types based on the land use classification standards: cultivated
land, forest, grassland, water bodies, construction land, and unused land [44]. The land
use for the Loess Plateau in 2020 is shown in Figure 4f.

The GDP and population density data were obtained from the Resource and Environ-
ment Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/,
accessed on 20 December 2024), with a spatial resolution of 1 km, and covering the pe-
riod from 1995 to December 2020 (Figure 4g,h). The GDP spatial distribution dataset was
generated based on county-level GDP statistics. It incorporates spatial interaction pat-
terns between GDP and factors closely related to human activities, such as land use types,
nighttime light intensity, and residential density, through spatial interpolation to produce a
gridded dataset. The multi-year average GDP of the study area is 5.11 × 106 CNY/km2.
The population density dataset was derived from county-level population statistics. It
integrates multiple factors closely associated with population distribution, such as land use
types, nighttime light intensity, and residential density. Using a multi-factor weight alloca-
tion method, the population data, initially based on administrative units, was distributed
onto a spatial grid to achieve spatial representation of population density. The multi-year
average population density of the study area is 152.672 persons/km2.

http://www.gscloud.cn/
http://data.tpdc.ac.cn/
www.gisrs.cn/
http://www.ncdc.ac.cn/
https://www.resdc.cn/


Land 2025, 14, 303 6 of 22Land 2025, 14, x FOR PEER REVIEW 6 of 23 
 

 

Figure 4. Spatial distributions of natural and human factors in 2020: (a) slope; (b) aspect; (c) temper-
ature; (d) precipitation; (e) soil type; (f) land use type; (g) population density; and (h) GDP. 

2.3. Method 

Figure 4. Spatial distributions of natural and human factors in 2020: (a) slope; (b) aspect;
(c) temperature; (d) precipitation; (e) soil type; (f) land use type; (g) population density; and (h) GDP.



Land 2025, 14, 303 7 of 22

2.3. Method
2.3.1. Pixel Binary Mode

In remote sensing estimation methods for vegetation cover, the pixel dichotomy model
is one of the more commonly used approaches. This model assumes that the surface
of a pixel consists of both vegetated and non-vegetated areas, and the proportion of
the vegetated area within the pixel represents the fractional vegetation cover (FVC) for
that pixel. By establishing a conversion relationship between the Normalized Difference
Vegetation Index (NDVI) and FVC, the vegetation cover information within the pixel can
be extracted. Finally, the FVC for each pixel is calculated to determine the vegetation cover
across the entire study area. The formula for calculating FVC is as follows:

FVC = (NDVI − NDVIsoil)/
(
NDVIveg − NDVIsoil

)
(1)

where FVC represents the fractional vegetation cover, NDVIsoil refers to the NDVI value of
pixels in non-vegetated or bare soil areas, and NDVIveg denotes the NDVI value of pixels
fully covered by vegetation. To eliminate the influence of outliers in NDVI values, this
study selects the 5% to 95% range of cumulative pixel percentages as the confidence interval.
That is, NDVIsoil corresponds to the NDVI value at the 5th percentile of the cumulative
pixel percentage, while NDVIveg corresponds to the NDVI value at the 95th percentile of
the cumulative pixel percentage.

2.3.2. Theil–Sen Median

The Theil–Sen Median method, also referred to as Sen’s slope estimator, is a robust
non-parametric statistical technique for calculating trends. It is computationally efficient,
resistant to measurement errors and outliers, and well suited for analyzing trends in
long-term time series data [45]. The calculation formula is as follows:

ρ = Median
(Xj − Xi

j − i

)
1 < i < j < n (2)

In the formula, n represents the number of study years, Xi and Xj are the FVC values
for the ith and jth years, respectively, and ρ represents the trend. When ρ < 0, it indicates
that the FVC is showing a downward trend over time; when ρ > 0, it indicates that the FVC
is showing an upward trend over time.

2.3.3. Mann–Kendall

The Mann–Kendall test is a non-parametric technique used to evaluate trends in time
series data. It does not require the data to adhere to a normal distribution and remains
unaffected by missing values and outliers, making it ideal for testing significant trends in
lengthy time series datasets. The Mann–Kendall test can only identify monotonic trends
and cannot detect volatility or complex non-monotonic changes in the data. If the trend
exhibits cyclical variations, the MK test may not accurately reflect it. In this study, although
the interannual mean of the FVC on the Loess Plateau exhibits some volatility, the overall
trend is monotonic upward, so the MK test can be applied. In this study, the MK values for
the vegetation cover time series on the Loess Plateau from 1995 to 2020 were calculated on
a pixel-by-pixel basis and visualized.

The calculation formula for the test is as follows:

Z =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(3)
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where
S = ∑n−1

i=1 ∑n
j=i+1 sgn

(
xj − xi

)
(4)

sgn
(
xj − xi

)
=


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(5)

Var(S) =
n(n − 1)(2n + 5)

12
(6)

In the formula, S and Z are statistical test statistics, and x = x1, x2, . . ., xn represents
the sequence, where n is the number of data points in the sequence, and the rejection
region is

{
|Z| > Z1− a

2

}
. This means that when the value of |Z| exceeds 1.65, 1.96, and

2.58, it demonstrates that the vegetation trend has successfully passed significance tests at
confidence levels of 90%, 95%, and 99%, respectively.

The combination of Theil–Sen Median trend analysis and Mann–Kendall significance
testing demonstrates a good effect in assessing trend changes in long time series data,
and it is widely used in vegetation analysis [46]. Table 1 describes the types of trends
corresponding to different experimental results.

Table 1. Mann–Kendall test trend categories.

ρ Z Trend Features

ρ > 0

{ 2.58 < Z Extremely significant upward trend
1.65 < Z < 2.58 Significant upward trend

1.65 > Z No significant trend
ρ = 0 Z No significant trend

ρ < 0

{ 2.58 < Z No significant trend
1.65 < Z < 2.58 Significant downward trend

1.65 > Z Extremely significant downward trend

2.3.4. Geographical Detector Model

This study utilizes the Geographical Detector model to investigate the driving mecha-
nisms behind vegetation cover changes on the Loess Plateau. The principle of geographical
detector is shown in Figure 5. This model consists of four components: factor detection,
interaction detection, risk detection, and ecological detection. In line with the objectives of
this study, the factor detector, risk detector, and interaction detector were selected for use.
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(1) Factor detector: Factor detection is employed to assess the degree to which each
factor accounts for the spatial differentiation of vegetation cover changes on the Loess
Plateau. The calculation formula is as follows:

q = 1 − ∑L
h=1 Nhσh

2

Nσ2 (7)
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In the formula, the value of q ranges from (0, 1). The magnitude of the q value indicates
the explanatory power of the factor regarding spatial changes in vegetation cover; a higher
value signifies a stronger influence of that factor on the spatial variation of vegetation cover.
h = 1, . . ., L represents the stratification of various natural and anthropogenic factors X, as
shown in Table 2. σ2 is the overall variance of vegetation cover, while σh

2 represents the
variance of vegetation cover corresponding to the stratification h. For convenience, in the
study, all factors were resampled to a spatial resolution of 1 km.

Table 2. Classification of natural and human factors.

Natural Factors Human Factors

Elevation (x1) Land use (x7)
Slope (x2) Population density (x8)

Aspect (x3) GDP (x9)
Temperature (x4)
Precipitation (x5)

Soil types (x6)

(2) Risk detection: Risk detection involves calculating the average vegetation cover for
a particular influencing factor across different sub-regions, followed by statistical analysis
and significance testing of the results. Based on the average values and their significance,
the suitable growth range for vegetation is determined. Regions with higher FVC mean
values are considered suitable for vegetation growth.

(3) Interaction Detection: Interaction detection is used to identify whether the com-
bined effects of two different factors enhance or weaken their influence on the spatial
differentiation of the dependent variable. q(x1) and q(x2) represent the q values of the two
different factors affecting vegetation cover. By comparing the interaction effect with the
sum of q(x1), q(x2), and q(x1 ∩ x2), we can determine whether the interaction of factors x1

and x2 promotes or suppresses vegetation cover. The specific comparison method is shown
in Table 3.

Table 3. Types of two-factor interactions.

Discriminant Criteria Types of Interactions

q(x1 ∩ x2) < Min(q(x1), q(x2)) weaken, nonlinear
Min(q(x1), q(x2)) < q(x1 ∩ x2) < Max(q(x1), q(x2)) single factor weaken, nonlinear

q(x1 ∩ x2) > Max(q(x1), q(x2)) dual-factor enhancement
q(x1 ∩ x2) = q(x1) + q(x2) dual-factor independent
q(x1 ∩ x2) > q(x1) + q(x2) enhance, nonlinear

3. Results
3.1. Temporal and Spatial Changes in Vegetation Coverage
3.1.1. Temporal Changes

Figure 6 shows the interannual average vegetation coverage on the Loess Plateau from
1995 to 2020. As illustrated, the interannual average vegetation coverage increased from
0.36 to 0.6 over the 26 years. Although there were minor fluctuations, the overall trend was
a monotonic increase, with a fitted slope of 0.1021.
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3.1.2. Spatial Differentiation

Figure 7 shows the distribution of vegetation coverage change trends on the Loess
Plateau from 1995 to 2020, with 1995 as the baseline year. As shown, over the past 26 years,
the vegetation cover in most areas of the Loess Plateau has demonstrated a highly significant
upward trend, while a small number of areas show a significant upward trend. Some
regions exhibit no obvious trend, primarily consisting of established forested land. A very
small portion of the area has shown a significant or highly significant downward trend due
to the increase in construction land.
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3.2. Analysis of the Driving Factors of Vegetation Cover Changes
3.2.1. Factor Detection

The factor detector calculates the q values to investigate the extent to which each factor
influences vegetation cover. Among the various factors, the p values serve as significance
tests for the q values, all of which are less than 0.05, indicating that the q values of both
natural and anthropogenic factors have statistical significance. Table 4 presents the q values
of each factor for the years 1995, 2000, 2010, and 2020. Notably, the q values for temperature,
precipitation, soil type, and land use are all greater than 0.2, indicating that these factors
are the primary driving elements with the most significant impact on the spatial changes in
vegetation cover on the Loess Plateau.

Table 4. The explanatory power of various factors on FVC in 1995, 2000, 2010, and 2020.

Factors
q Values

1995 2000 2010 2020

Elevation 0.114 0.113 0.11 0.095
Slope 0.133 0.135 0.152 0.201

Aspect 0.001 0.001 0.001 0.001
Temperature 0.251 0.241 0.245 0.231
Precipitation 0.394 0.641 0.657 0.682

Soil types 0.354 0.352 0.35 0.336
Land use 0.459 0.465 0.468 0.418

Population density 0.014 0.014 0.009 0.006
GDP 0.1 0.079 0.019 0.013

From the analysis of the explanatory power of multiple factors on vegetation cover
changes during different research periods (Table 4), it can be observed that in 1995, land
use type had the greatest impact on vegetation cover. During this period, policies such as
returning farmland to forest and afforestation were implemented, resulting in significant
changes in land use on the Loess Plateau, with some farmland and grassland being con-
verted into forest land. Temperature and precipitation were the most significant natural
factors affecting vegetation cover in 2000, 2010, and 2020. Interestingly, in 1995, in addition
to land use type, temperature and precipitation emerged as the key influential factors,
highlighting their critical role in vegetation growth. The soil type maintained a stable and
relatively high level of influence on vegetation cover across all four time periods, under-
scoring its significant impact on vegetation cover. In contrast, factors such as elevation,
slope, aspect, GDP, and population density had relatively minor influences on vegetation
cover and thus are not considered important influencing factors.

3.2.2. Risk Detection

Precipitation is a key factor affecting vegetation growth. With the continuous increase
in precipitation, vegetation cover also shows an increasing trend. Using the natural breaks
method in ArcGIS, precipitation was divided into 10 intervals, represented by numbers 1
to 10. The percentage of area occupied by each interval was then calculated, as shown in
Table 5. Figure 8 presents the average FVC for different precipitation intervals. It can be seen
from the figure that within the precipitation range of 300–900 mm, the average FVC values
at the four time points show a monotonic increasing trend. Moreover, in most precipitation
intervals, the average FVC values increase year by year over time. The results indicate that
from the second interval onward, there is a positive correlation between precipitation and
the average FVC. Within the valid data range, higher precipitation corresponds to better
vegetation growth conditions.
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Table 5. Percentage of area occupied by each precipitation zone.

Zone
Code

1995 2000 2010 2020

Zone Percentage Zone Percentage Zone Percentage Zone Percentage

1 90.66–209.38 6.48% 106.52–196.60 6.29% 107.81–226.01 8.42% 114.57–236.91 4.43%
2 209.38–285.23 7.63% 196.60–259.39 8.08% 226.01–298.75 8.95% 236.91–314.17 7.25%
3 285.23–351.18 10.60% 259.39–322.18 10.92% 298.75–359.37 10.95% 314.17–381.78 9.92%
4 351.18–413.84 22.48% 322.18–379.50 13.34% 359.37–416.96 14.12% 381.78–446.17 12.10%
5 413.84–476.49 17.79% 379.50–428.64 17.30% 416.96–471.51 12.55% 446.17–507.33 13.46%
6 476.49–535.85 14.66% 428.64–475.04 13.37% 471.51–523.04 13.86% 507.33–565.28 12.66%
7 535.85–591.92 11.21% 475.04–524.18 11.78% 523.04–571.53 12.22% 565.28–620.01 15.50%
8 591.92–651.27 5.96% 524.18–570.58 10.39% 571.53–623.05 10.96% 620.01–674.74 13.42%
9 651.27–733.72 3.00% 570.58–630.64 6.63% 623.05–698.83 6.86% 674.74–752.01 9.56%

10 733.72–931.58 0.18% 630.64–802.62 1.90% 698.83–880.68 1.10% 752.01–935.51 1.71%
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Temperature has a direct impact on the photosynthesis, respiration, and transpiration
of vegetation. Extreme temperatures, whether too low or too high, affect the growth and
developmental physiological processes of plants. Using the natural breaks method, temper-
ature was divided into 10 intervals, represented by numbers 1 to 10, and the percentage of
area occupied by each interval was calculated (Table 6). Figure 9 shows the average FVC
for different temperature intervals. As shown in the figure, the line graphs at the four time
points all exhibit an N-shaped pattern, indicating that within the temperature range of this
study, FVC first increases, then decreases, and finally increases again with temperature.
In most intervals, the average FVC corresponding to the same temperature increases over
time. It is worth noting that the FVC averages for each year exhibit two peaks in the 2nd
and 3rd intervals and the 9th and 10th intervals. In this study, the maximum average FVC
value occurs at the first peak. However, at the second peak, the average FVC still shows a
positive correlation with temperature. Given that the average temperature on the Loess
Plateau is rising year by year, it is possible that, in the foreseeable future, as the temperature
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on the plateau increases further, the maximum average FVC value may shift to a position
to the right of the second peak.

Table 6. Percentage of area occupied by each temperature zone.

Zone
Code

1995 2000 2010 2020

Zone Percentage Zone Percentage Zone Percentage Zone Percentage

1 −13.20–−5.19 0.49% −13.11–−4.91 0.49% −12.67–−4.55 0.49% −12.56–−4.38 0.49%
2 −5.19–−1.75 1.06% −4.91–−1.42 1.06% −4.55–−1.05 1.05% −4.38–−0.91 1.05%
3 −1.75–1.02 1.66% −1.42–1.49 1.65% −1.05–1.87 1.64% −4.38–2.00 1.64%
4 1.02–3.36 2.30% 1.49–3.96 2.34% 1.87–4.35 2.32% 2.00–4.46 2.31%
5 3.36–5.18 6.05% 3.96–5.65 6.90% 4.35–6.15 6.74% 4.46–6.25 6.78%
6 5.18–6.58 12.52% 5.65–6.99 13.45% 6.15–7.62 14.69% 6.25–7.71 14.49%
7 6.58–7.80 22.96% 6.99–8.34 24.84% 7.62–8.86 23.92% 7.71–8.94 24.40%
8 7.80–9.25 28.74% 8.34–9.80 27.40% 8.86–10.32 27.44% 8.94–10.40 27.66%
9 9.25–11.47 14.56% 9.80–12.05 12.77% 10.32–12.58 12.62% 10.40–12.53 11.99%

10 11.47–15.14 9.66% 12.05–15.53 9.09% 12.58–16.07 9.08% 12.53–16.00 9.18%
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Under different soil types, significant differences in the average vegetation cover are
observed due to variations in the soil moisture content and organic matter content. The
soils in the study area were divided into 15 categories, each represented by a corresponding
number, and the percentage of area occupied by each soil type was calculated (Table 7).
Figure 10 shows the average FVC for different soil types in 1995, 2000, 2010, and 2020. It
can be observed that for most soil types, the average FVC value increases over time, with a
significant rise in 2020 compared to the other years. The results indicate that leached soil,
semi-leached soil, and alpine soil have a favorable promoting effect on vegetation growth.

Land use was classified into six categories, represented by numbers 1 to 6, and the
percentage of area occupied by each category was calculated (Table 8). Figure 11 shows
the average FVC for different land use types across different years; it can be seen from
the figure that the average FVC in 2020 is significantly higher than in other years. This is
because, during the study period, the average FVC of the Loess Plateau reached its peak
in 2020. It can be noted that the average vegetation cover for unused land is the lowest,
remaining below 0.2. In contrast, forest land corresponds to the largest vegetation cover
area, with an average above 0.9 during the study period. It is worth noting that the average
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FVC value of construction land in the study area is higher than that of grassland, which is
an uncommon phenomenon. However, considering that most of the grassland in the study
area is located in the arid northwest with relatively low precipitation, vegetation growth is
relatively poor, and vegetation cover is present only for a limited period within a year. As a
result, the annual average FVC is lower than that of construction land.

Table 7. Percentage of area occupied by each soil type.

Zone Code Soil Type Percentage

1 leached soil 2.17%
2 semi-lateritic soil 15.41%
3 caliche soil 13.25%
4 arid soil 8.58%
5 desert soil 0.39%
6 incipient soil 48.86%
7 semi-hydromorphic soil 5.15%
8 hydromorphic soil 0.11%
9 saline–alkali soil 1.36%
10 anthropogenic soil 1.68%
11 mountain soil 2.54%
12 ferro-aluminum soil 0.03%
13 rock 0.15%
14 water body 0.31%
15 other 0.01%
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Table 8. Percentage of area occupied by each land use type.

Zone Code Land Use Type
FVC

1995 2000 2010 2020

1 cultivated land 0.533 0.543 0.564 0.663
2 forest land 0.933 0.929 0.935 0.963
3 grassland 0.366 0.371 0.382 0.486
4 water body 0.224 0.211 0.231 0.271
5 construction land 0.487 0.474 0.476 0.535
6 unused land 0.126 0.116 0.109 0.122
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3.2.3. Interaction Detection

To examine the changes in vegetation cover influenced by the interaction between
natural and human factors, an interaction detector was employed to analyze the interactions
of nine factors in 1995, 2000, 2010, and 2020. The explanatory power of the interaction
among various driving factors is shown in Figure 12; the q-value matrix in the figure is
symmetric about the diagonal, which represents the explanatory power of each factor on
the vegetation cover change. The results indicate that in 1995, the q value of the interaction
between land use and temperature and precipitation was the highest, at 0.65, making it the
most prominent influence among the three factors during that study period. In 2000, 2010,
and 2020, the two factors with the highest influence on vegetation cover under interaction
were land use and precipitation, with q values of 0.79, 0.80, and 0.80, respectively. At all
four time points, the interaction between precipitation and land use type has the greatest
impact, indicating that precipitation and land use type are the most influential natural and
human factors, respectively, affecting vegetation cover changes in the study area. Observing
Figure 12a–d, it can be seen that the interaction impact of any factor with other factors is
greater than the impact of the factor alone, demonstrating that the interactions among the
nine selected factors in this study all exhibit mutual enhancement. Moreover, for any given
factor, the greater the influence of the interacting factor, the stronger the interaction impact.
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(a) 1995; (b) 2000; (c) 2010; (d) 2020.

The analysis of the interaction between various factors affecting the spatial differentia-
tion of vegetation cover (Table 9) reveals that, over the study period, the interactions among
factors fell into two categories: nonlinear enhancement and dual-factor enhancement. Most
of the factor interactions exhibit a two-factor enhancement, while a small portion show
nonlinear enhancement, with the slope aspect factor interacting nonlinearly with other
factors. Compared to 1995, 2000, and 2010, the factor interactions in 2020 show a notable
increase in nonlinear enhancement.
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Table 9. Interaction results of various factors in 1995, 2000, 2010, and 2020.

Interaction Factors
Interaction Results

1995 2000 2010 2020

Elevation ∩ Slope ↑↑ ↑↑ ↑↑ ↑↑
Elevation ∩ Aspect ↑↑ ↑↑ ↑↑ ↑↑

Elevation ∩ Temperature ↑ ↑ ↑ ↑
Elevation ∩ Precipitation ↑ ↑ ↑ ↑

Elevation ∩ Soil types ↑ ↑ ↑ ↑
Elevation ∩ Land use ↑ ↑ ↑ ↑↑

Elevation ∩ Population density ↑ ↑ ↑ ↑↑
Elevation ∩ GDP ↑ ↑ ↑ ↑
Slope ∩ Aspect ↑↑ ↑↑ ↑↑ ↑↑

Slope ∩ Temperature ↑ ↑ ↑ ↑↑
Slope ∩ Precipitation ↑ ↑ ↑ ↑

Slope ∩ Soil types ↑ ↑ ↑ ↑
Slope ∩ Land use ↑ ↑ ↑ ↑

Slope ∩ Population density ↑↑ ↑↑ ↑↑ ↑↑
Slope ∩ GDP ↑↑ ↑↑ ↑↑ ↑↑

Aspect ∩ Temperature ↑↑ ↑↑ ↑↑ ↑↑
Aspect ∩ Precipitation ↑↑ ↑↑ ↑↑ ↑↑

Aspect ∩ Soil types ↑↑ ↑↑ ↑↑ ↑↑
Aspect ∩ Land use ↑↑ ↑↑ ↑↑ ↑↑

Aspect ∩ Population density ↑↑ ↑↑ ↑↑ ↑↑
Aspect ∩ GDP ↑↑ ↑↑ ↑↑ ↑↑

Temperature ∩ Precipitation ↑ ↑ ↑ ↑
Temperature ∩ Soil types ↑ ↑ ↑ ↑
Temperature ∩ Land use ↑ ↑ ↑ ↑

Temperature ∩ Population density ↑ ↑ ↑ ↑↑
Temperature ∩ GDP ↑ ↑ ↑ ↑↑

Precipitation ∩ Soil types ↑ ↑ ↑ ↑
Precipitation ∩ Land use ↑ ↑ ↑ ↑

Precipitation ∩ Population density ↑ ↑ ↑ ↑↑
Precipitation ∩ GDP ↑ ↑ ↑↑ ↑↑

Soil types ∩ Land use ↑ ↑ ↑ ↑
Soil types ∩ Population density ↑ ↑ ↑ ↑↑

Soil types ∩ GDP ↑ ↑ ↑ ↑
Land use ∩ Population density ↑ ↑ ↑ ↑

Land use ∩ GDP ↑ ↑ ↑ ↑↑
Population density ∩ GDP ↑ ↑ ↑ ↑

Note: “↑” represents dual-factor enhancement, “↑↑” represents nonlinear enhancement.

Taking temperature, precipitation, soil type, and land use—four factors that signifi-
cantly influence vegetation coverage—as examples, the average vegetation coverage under
different driving factor ranges is analyzed and discussed. The suitable ranges for each
driving factor are shown in Table 10. In 1995, 2000, 2010, and 2020, the suitable ranges for
land use and soil type remained consistent, with the highest average FVC values found
in areas where the land use type was forest land and the soil type was leaching soil. Due
to the significant differences in the precipitation and temperature data across different
years, the suitable ranges for precipitation and temperature are related to their respective
annual data partitions. The results show that on the Loess Plateau, the highest average
FVC values occur when precipitation ranges from 630.64 to 935.51 mm and temperatures
range from −4.38 to 2 ◦C. However, considering that temperatures on the Loess Plateau are
gradually rising and the FVC showed an upward trend during the second peak in 2020, the
optimal temperature for vegetation on the Loess Plateau in the future may exceed 16 ◦C.
When vegetation is within the optimal growth range for each factor, the average vegetation
coverage will significantly increase. However, existing studies have shown that there is an
upper limit to vegetation coverage, with the vegetation coverage threshold being 65% [47].
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Table 10. The suitable range and types of vegetation coverage in 1995, 2000, 2010, and 2020.

Factors
Suitable Types or Ranges

1995 2000 2010 2020

Temperature −1.75–1.02 −1.42–1.49 −1.05–1.87 −4.38–2.00
Precipitation 733.72–931.58 630.64–802.62 698.83–880.68 752.01–935.51

Soil types Leached soil Leached soil Leached soil Leached soil
Land use Forest land Forest land Forest land Forest land

4. Discussion
4.1. Factor Interaction Effects

The changes in the vegetation coverage on the Loess Plateau are influenced by multiple
factors. This study examines the influence of various natural and human-induced factors
on vegetation coverage. The population density reflects the number of people in the area;
generally, population growth tends to encroach on ecological land, leading to a decrease
in the vegetation coverage. Related studies have shown that a reduction in the vegetation
coverage is closely related to a high population growth rate [48]. Some scholars have
pointed out that the widely held belief of an inverse relationship between population
growth and vegetation coverage may not hold true [49]. Their research suggests that in
regions where human activities are frequent and climate change has minimal influence on
vegetation coverage, a long-term inverted N-shaped relationship exists between population
growth and vegetation coverage. Initially, population growth negatively affects vegetation
coverage, but over time, it begins to have a positive impact.

The GDP represents the area’s level of economic development. Some scholars be-
lieve that excessively rapid economic development can adversely affect the local natural
environment [50]. However, other scholars argue that effective policies can achieve both
rapid economic growth and increased vegetation coverage [51]. Since the conclusion of the
last century, various measures, including returning farmland to forest and afforestation,
have been carried out in the Loess Plateau region to mitigate soil loss and enhance the
ecological environment.

Some researchers believe that vegetation conditions largely depend on the current
land use status. Different land use types can be categorized into specific vegetation units,
and changes in land use result in alterations to vegetation characteristics, establishing it
as one of the key drivers of vegetation change [52]. This study also demonstrates that
land use type is among the most influential factors impacting vegetation coverage, and the
maximum interactive impact occurs when precipitation interacts with the land use type in
different time periods.

Precipitation, as an essential factor in the vegetation growth process, is the most sig-
nificant factor influencing the vegetation coverage in the findings of this study. Research
indicates a significant positive correlation between vegetation and precipitation in semi-arid
to semi-humid regions [53], with plant growth being especially responsive to precipitation
anomalies. Some scholars have also found correlations between precipitation and vegeta-
tion coverage in arid and semi-arid regions [54]. The average annual precipitation in the
Loess Plateau ranges from 100 mm to 700 mm, with most areas being arid, semi-arid, or
semi-humid. According to the research findings, there is a significant correlation between
vegetation coverage and precipitation in the Loess Plateau region. Scholars have noted that
vegetation coverage on the Chinese mainland is strongly correlated with both precipitation
and temperature, with a more pronounced correlation with temperature [55]. Research
has indicated that at an interannual scale, precipitation is the primary driver of vegetation
coverage in the entire region, and at an inter-monthly scale, changes in the vegetation
coverage align with changes in precipitation and temperature [56]. This suggests that
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the responsiveness of vegetation growth to the combined influences of water and heat
throughout the year exceeds that of any single climatic factor. In this study, it is shown
that the interactive effects of precipitation and temperature are greater than those of each
factor independently.

The soil types in this study were categorized into 15 classes, and the results indi-
cated that leaching soil is the most conducive for vegetation growth. Related research has
demonstrated that in areas with low precipitation, soil moisture is positively correlated
with vegetation, and this correlation decreases as one moves from arid to semi-arid or
semi-humid regions [57]. Different soil types possess distinct physical and chemical charac-
teristics, leading to differences in the soil moisture content and thus affecting vegetation
growth differently. Although the slope orientation has a relatively small direct effect on
vegetation, its interactions with other natural and anthropogenic factors can produce signif-
icant impacts. Relevant studies indicate that soil moisture effectiveness is associated with
topography, which subsequently impacts vegetation growth [58]. For example, north-facing
slopes receive less solar radiation and experience lower evaporation rates compared to
south-facing slopes, leading to a relatively higher soil moisture that is more conducive to
vegetation growth. Within a specific range, the steeper the slope, the greater the difference
in the soil moisture between north and south slopes, and the slope also influences land
use types to some extent, affecting vegetation. In the same area, a certain elevation differ-
ence can lead to varying temperatures and precipitation levels; therefore, elevation affects
vegetation coverage by influencing climatic factors.

4.2. Study Limitations and Uncertainties

This study has certain limitations and uncertainties. For instance, this study did not
use 30 m resolution Landsat data but instead employed the coarser-resolution MODIS data.
The reason for this is that higher-spatial-resolution data have a larger data volume, which
would require an excessively large workload for long-term trend studies. However, this
means that the obtained vegetation coverage represents an average value over a larger
area. This may introduce uncertainties in the quantitative analysis of the spatiotemporal
changes in vegetation coverage. In future studies, higher-resolution Landsat data could
be considered for calculating the FVC, along with other higher-resolution factor data.
This would enhance the accuracy of the results. Additionally, the Geodetector model
requires data discretization, such as land use classification and precipitation grading.
Different classification or grading standards may yield varying results. Therefore, multiple
experiments are needed to comprehensively compare different classification or grading
methods and ultimately determine the optimal standard.

5. Conclusions
This study uses the NDVI dataset as a data source to assess and calculate vegetation

coverage, investigating the spatiotemporal changes in vegetation coverage on the Loess
Plateau from 1995 to 2020. By integrating data on land use types, temperature, precipitation,
slope, and other factors, the geographical detector model was employed to evaluate the
impact of these factors on vegetation coverage changes on the Loess Plateau and to analyze
the driving mechanisms behind these changes in vegetation coverage. The following
conclusions were drawn:

(1) From a temporal perspective, the average annual vegetation coverage on the Loess
Plateau increased from 0.36 in 1995 to 0.6 in 2020, with minor fluctuations but an
overall monotonic upward trend at a growth rate of 0.01021 per year. Spatially, most
areas of the Loess Plateau exhibited a significantly increasing trend in vegetation
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coverage, a small portion showed no significant changes, and a very small portion
experienced a significantly decreasing trend.

(2) Among natural factors, the influence of the altitude, slope, and aspect is relatively
minor, while the temperature, precipitation, and soil type have a greater impact, with
precipitation being the most significant factor affecting changes in vegetation cover.
Among human factors, land use has the greatest influence on vegetation growth,
while the population density and GDP have a relatively smaller impact on the spatial
variation in vegetation cover. Furthermore, the interactive effects of various factors
on vegetation cover change exceed their individual effects, exhibiting characteristics
of mutual enhancement and nonlinear amplification.

(3) According to the results from the geographical detector model, the highest average
vegetation coverage is achieved when the temperature is between −4.8 and 2 ◦C or 12
and 16 ◦C, precipitation is between 630.64 and 935.51 mm, the soil type is leaching
soil, and the land use type is forest. Under these conditions, the vegetation growth
status is at its best.

The changes in vegetation cover on the Loess Plateau are influenced by multiple
factors. Some of the factors selected in this study have relatively minor impacts. In future
research on vegetation cover changes in other regions, less influential factors should be
excluded, and unconsidered factors should be included. This approach aims to scientifically
analyze and reveal the effects of different driving factors on vegetation cover changes
as comprehensively as possible, thereby effectively guiding vegetation restoration and
conservation in the study area.
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