Forest Cover Change, Key Drivers and Community Perception in Wujig Mahgo Waren Forest of Northern Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Acquisition of Satellite Images and Ground Truth Data
2.2.2. Household Survey and Focus Group Discussion
2.3. Data Analysis
2.3.1. Satellite Image Analysis and Accuracy Assessment
2.3.2. Household Survey and Focus Group Discussion
3. Results and Discussion
3.1. Accuracy Classification
3.2. Land Cover (LC) Changes
3.3. Socioeconomic Characteristics of Respondents
3.4. Perception of Farmers towards Forest Cover Change
3.5. Ranked Drivers of Forest Cover Change
3.6. Perception of Farmers on Impact of Deforestation
3.7. Existing Remedies and Potential Solutions
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Appendix A1. Questionnaire on Drivers of Forest Cover Change and Perception of the Community
Drivers | Rank |
Cultivated land expansion | |
Fuelwood | |
Charcoal production | |
Grazing land | |
Housing | |
Drought | |
Cutting trees to get rid of wild animals | |
Wildfire | |
Income generation | |
Population growth | |
Settlement | |
Road access | |
Civil war and conflict | |
Market access | |
Land tenure | |
Rainfall variability |
Description | Before 1985 | Between 1985 to 2000 | From 2000 to Present |
1. Forest trees | |||
2. Crop residue | |||
3. Cow Dung | |||
4. Charcoal | |||
5. Kerosene |
References
- FAO. The state of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy; London, UK, 2011. [Google Scholar]
- FAO. Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? Food and Agriculture Organization of the United Nation: Rome, Italy, 2015. [Google Scholar]
- Chakravarty, S.; Ghosh, S.; Suresh, C.; Dey, A.; Shukla, G. Deforestation: Causes, effects and control strategies. In Global Perspectives on Sustainable Forest Management; InTech: London, UK, 2012. [Google Scholar]
- Moges, Y.; Eshetu, Z.; Nune, S. Ethiopian Forest Resources: Current Status and Future Management Options in View of Access to Carbon Finances; Ethiopian Climate and Research and Networking and the United Nations Development Programme: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Teketay, D. Seed Ecology and Regeneration in Dry Afromontane Forests of Ethiopia; Swedish University of Agricultural Sciences: Umeå, Sweden, 1996. [Google Scholar]
- Asfaw, A.; Lemenih, M.; Kassa, H.; Ewnetu, Z. Importance, determinants and gender dimensions of forest income in eastern highlands of Ethiopia: The case of communities around Jelo Afromontane forest. For. Policy Econ. 2013, 28, 1–7. [Google Scholar] [CrossRef]
- Solomon, N.; Birhane, E.; Tadesse, T.; Treydte, A.C.; Meles, K. Carbon stocks and sequestration potential of dry forests under community management in Tigray, Ethiopia. Ecol. Process. 2017, 6, 20. [Google Scholar] [CrossRef]
- Price, M.; Gratzer, G.; Alemayehu Duguma, L.; Kohler, T.; Maselli, D. Mountain Forests in a Changing World: Realizing Values, Adressing Challenges; Food and Agriculture Organization of the United Nations (FAO) and Swiss Agency for Development and Cooperation (SDC): Rome, Italy, 2011. [Google Scholar]
- Bedru, B. Economic valuation and management of common-pool resources: The case of exclosures in the highlands of Tigray, Northern Ethiopia. Ph.D. Dissertation, Katholieke Universiteit, Leuven, Belgium, 18 October 2007. [Google Scholar]
- FAO. Global Forest Resources Assessments; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- FAO. Global forest Resources Assessment 2010: Terms and Definitions; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Rahman, M.M.; Sumantyo, J.T.S. Mapping tropical forest cover and deforestation using synthetic aperture radar (SAR) images. Appl. Geomat. 2010, 2, 113–121. [Google Scholar] [CrossRef]
- Engida, T.G.; Teshoma, A.J. The Socio Economic Effects of Community Forest Management: Evidence from Dendi District, Ethiopia. Int. Aff. Glob. Strategy 2012, 4, 15–22. [Google Scholar]
- Ayana, A.N.; Arts, B.; Wiersum, K.F. Historical development of forest policy in Ethiopia: Trends of institutionalization and deinstitutionalization. Land Use Policy 2013, 32, 186–196. [Google Scholar] [CrossRef]
- Dessie, G.; Christiansson, C. Forest Decline and Its Causes in the South-Central Rift Valley of Ethiopia: Human Impact over a One Hundred Year Perspective. AMBIO A J. Human Environ. 2008, 37, 263–271. [Google Scholar] [CrossRef]
- Lemenih, M.; Woldemariam, T. Review of forest, woodland and bushland resources in Ethiopia up to 2008. Ethiopian Environ. Rev. 2010, 1, 131–173. [Google Scholar]
- Gessesse, B. Forest Cover Change and Susceptibility to Forest Degradation Using Remote Sensing and GIS Techniques: A Case of Dendi District, West Central Ethiopia. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Bewket, W. Land Cover Dynamics Since the 1950s in Chemoga Watershed, Blue Nile Basin, Ethiopia. Mt. Res. Dev. 2002, 22, 263–269. [Google Scholar] [CrossRef]
- Reusing, M. Change detection of natural high forests in Ethiopia using remote sensing and GIS techniques. Int. Arch. Photogramm. Remote Sens. 2000, 33, 1253–1258. [Google Scholar]
- Dessie, G.; Kleman, J. Pattern and Magnitude of Deforestation in the South Central Rift Valley Region of Ethiopia. Mt. Res. Dev. 2007, 27, 162–168. [Google Scholar] [CrossRef]
- Gebrehiwot, S.G.; Bewket, W.; Gärdenäs, A.I.; Bishop, K. Forest cover change over four decades in the Blue Nile Basin, Ethiopia: Comparison of three watersheds. Reg. Environ. Chang. 2013, 14, 253–266. [Google Scholar] [CrossRef]
- Alemu, M.; Suryabhagavan, K.; Balakrishnan, M. Assessment of cover change in the Harenna habitats in Bale Mountains, Ethiopia, using GIS and remote sensing. Int. J. Ecol. Environ. Sci. 2012, 38, 39–45. [Google Scholar]
- Amanuel, Z.; Girmay, G.; Atkilt, G. Characterisation of Agricultural Soils in Cascape Intervention Woredas in Southern Tigray, Ethiopia; Mekelle University: Mekelle, Ethiopia, 2015. [Google Scholar]
- CSA. Population projection of Ethiopia for all regions at wereda level from 2014–2017; Central Statistical Agency: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- Bakker, W.H.; Feringa, W.; Gieske, A.S.M.; Gorte, B.G.H.; Grabmaier, K.A.; Hecker, C.A.; Horn, J.A.; Huurneman, G.C.; Janssen, L.L.F.; Kerle, N.; et al. Principles Remote Sens; The International Institute for Geo-Information Science and Earth Observation (ITC): Enschede, The Netherlands, 2009. [Google Scholar]
- Hailemariam, S.; Soromessa, T.; Teketay, D. Land Use and Land Cover Change in the Bale Mountain Eco-Region of Ethiopia during 1985 to 2015. Land 2016, 5, 41. [Google Scholar] [CrossRef]
- MacLean, M.G.; Congalton, R.G. Map accuracy assessment issues when using an object-oriented approach. In Proceedings of the Annual Conference of American Society for Photogrammetry and Remote Sensing, Sacramento, CA, USA, 19–23 March 2012; pp. 1–5. [Google Scholar]
- MoA. Agro ecological Zones of Ethiopia; Natural Resource Management and Regulatory Department: Addis Ababa, Ethiopia, 2000.
- Demissie, F.; Yeshitila, K.; Kindu, M.; Schneider, T. Land use/Land cover changes and their causes in Libokemkem District of South Gonder, Ethiopia. Remote Sens. Appl. Soc. Environ. 2017, 8, 224–230. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Land Use/Land Cover Change Analysis Using Object-Based Classification Approach in Munessa-Shashemene Landscape of the Ethiopian Highlands. Remote Sens. 2013, 5, 2411–2435. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; U.S. Government Printing Office: Washington, DC, USA, 1976.
- Singh, J.; Dhillon, S.S. Agricultural Geography; Tata McGraw-Hill: New Delhi, India, 2004. [Google Scholar]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Cultivated land conversion and potential agricultural productivity in China. Land Use Policy 2006, 23, 372–384. [Google Scholar] [CrossRef]
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Kashaigili, J.J.; Majaliwa, A.M. Integrated assessment of land use and cover changes in the Malagarasi river catchment in Tanzania. Phys. Chem. Earth Parts A/B/C 2010, 35, 730–741. [Google Scholar] [CrossRef]
- Musa, L.; Peters, K.; Ahmed, M. On farm characterization of Butana and Kenana cattle breed production systems in Sudan. Livest. Res. Rural Dev. 2006, 18, 2006. [Google Scholar]
- Turan, S.Ö.; Günlü, A. Spatial and temporal dynamics of land use pattern response to urbanization in Kastamonu. Afr. J. Biotechnol. 2010, 9, 640–647. [Google Scholar]
- Fetene, A.; Hilker, T.; Yeshitela, K.; Prasse, R.; Cohen, W.; Yang, Z. Detecting Trends in Landuse and Landcover Change of Nech Sar National Park, Ethiopia. Environ. Manag. 2016, 57, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Mekuria, W.; Veldkamp, E.; Corre, M.D.; Haile, M. Carbon Changes Following the Establishment of Exclosure on Communal Grazing Lands in the Semi-Arid Lowlands of Tigray, Ethiopia. In Experiences of Climate Change Adaptation in Africa; Leal Filho, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 111–131. [Google Scholar] [CrossRef]
- Birhane, E.; Teketay, D.; Barklund, P. Actual and potential contribution of exclosures to enhance biodiversity of woody species in the drylands of Eastern Tigray. J. Drylands 2006, 1, 134–147. [Google Scholar]
- Mengistu, T.; Teketay, D.; Hulten, H.; Yemshaw, Y. The role of enclosures in the recovery of woody vegetation in degraded dryland hillsides of central and northern Ethiopia. J. Arid Environ. 2005, 60, 259–281. [Google Scholar] [CrossRef]
- Teketay, D.; Lemenih, M.; Bekele, T.; Yemshaw, Y.; Feleke, S.; Tadesse, W.; Moges, Y.; Hunde, T.; Nigussie, D. Forest Resources and Challenges of Sustainable Forest Management and Conservation in Ethiopia; Earthscan Publications: London, UK; New York, NY, USA, 2010; pp. 19–63. [Google Scholar]
- Ango, T.G.; Bewket, W. Challenges and prospects for sustainable forest management in Wondo Genet area, Southern Ethiopia. Ethiop. J. Dev. Res. 2007, 29, 27–64. [Google Scholar] [CrossRef]
- Hailemariam, S.N.; Soromessa, T.; Teketay, D. Institutional arrangements and management of environmental resources in Ethiopia. Environ. Nat. Resour. Res. 2016, 6, 67. [Google Scholar] [CrossRef]
- Jarno, H. Study of Causes of Deforestation and Forest Degradation in Ethiopia and the Identification and Prioritization of Strategic Options to Address Those; The Federal Democratic Republic of Ethiopia, REDD+ Secretariat, Ministry of Environment and Forest: Addis Ababa, Ethiopia, 2015.
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Coulter, L.L.; Stow, D.A.; Tsai, Y.-H.; Ibanez, N.; Shih, H.-C.; Kerr, A.; Benza, M.; Weeks, J.R.; Mensah, F. Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery. Remote Sens. Environ. 2016, 184, 396–409. [Google Scholar] [CrossRef]
- Tesfaye, S.; Guyassa, E.; Joseph Raj, A.; Birhane, E.; Wondim, G.T. Land Use and Land Cover Change, and Woody Vegetation Diversity in Human Driven Landscape of Gilgel Tekeze Catchment, Northern Ethiopia. Int. J. For. Res. 2014, 2014, 614249. [Google Scholar] [CrossRef]
- Alemu, B.; Garedew, E.; Eshetu, Z.; Kassa, H. Land use and land cover changes and associated driving forces in north western lowlands of Ethiopia. Int. Res. J. Agric. Sci. Soil Sci. 2015, 5, 28–44. [Google Scholar]
- Gebresamuel, G.; Singh, B.R.; Dick, Ø. Land-use changes and their impacts on soil degradation and surface runoff of two catchments of Northern Ethiopia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 211–226. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia. Environ. Monit. Assess. 2015, 187, 452. [Google Scholar] [CrossRef] [PubMed]
- Noriko, H.; Martin, H.; Veronique De, S.; Ruth, S.D.F.; Maria, B.; Louis, V.; Arild, A.; Erika, R. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Fisher, B. African exception to drivers of deforestation. Nat. Geosci. 2010, 3, 375–376. [Google Scholar] [CrossRef]
- Hurni, H.; Tato, K.; Zeleke, G. The Implications of Changes in Population, Land Use, and Land Management for Surface Runoff in the Upper Nile Basin Area of Ethiopia. Mt. Res. Dev. 2005, 25, 147–154. [Google Scholar] [CrossRef]
- Kidane, Y.; Stahlmann, R.; Beierkuhnlein, C. Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia. Environ. Monit. Assess. 2012, 184, 7473–7489. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.J. Strategies for coping with severe food deficits in rural Africa: A review of the literature. Food Foodways 1990, 4, 143–162. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Harris, J.A. Restoration Ecology: Repairing the Earth’s Ecosystems in the New Millennium. Restor. Ecol. 2001, 9, 239–246. [Google Scholar] [CrossRef]
- Gore, A. An Inconvenient Truth: The Planetary Emergency of Global Warming and What We Can Do about It; Rodale: Emmaus, PA, USA, 2006. [Google Scholar]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Bensel, T. Fuelwood, deforestation, and land degradation: 10 Years of evidence from Cebu province, the Philippines. Land Degrad. Dev. 2008, 19, 587–605. [Google Scholar] [CrossRef]
- Ejigu, K.; Gebey, T.; Preston, T. Constraints and prospects for apiculture research and development in Amhara region, Ethiopia. Livest. Res. Rural Dev. 2009, 21, 172. [Google Scholar]
- Aerts, R.; Nyssen, J.; Haile, M. On the difference between “exclosures” and “enclosures” in ecology and the environment. J. Arid Environ. 2009, 73, 762–763. [Google Scholar] [CrossRef]
No. | Satellite | Sensor | Date of Acquisition | Pixel Resolution (m) | No of Bands Used |
---|---|---|---|---|---|
1 | Landsat | TM | 1985 | 30 | 6 |
2 | Landsat | ETM+ | 2000 | 30 | 6 |
3 | Landsat | OLI/TRIS | 2016 | 30 | 6 |
Land Cover Type | Description |
---|---|
Dense forest | All lands with tree cover of canopy density over 40% [34]. |
Open forest | All lands with tree cover (including mangrove cover) of canopy density between 10% and 40% [34]. |
Cultivated land | Areas of land prepared for growing agricultural crops. This category includes areas currently under crop and land under preparation. |
Bare land | Areas with little or no “green” vegetation present due to erosion, overgrazing and crop cultivation. |
Grassland | Lands covered by herbaceous plants with coverage greater than 5% and land mixed rangeland with the coverage of shrub canopies less than 10% [35]. Among the herbaceous species, Cynodon dactylon and Pennisetum petiolar had greater frequencies in the study area. |
LC Types | Accuracy (%) | |||||
---|---|---|---|---|---|---|
1985 | 2000 | 2016 | ||||
Producer’s | User’s | Producer’s | User’s | Producer’s | User’s | |
Open forest | 77 | 95 | 85 | 90 | 81 | 91 |
Dense forest | 97 | 91 | 98 | 89 | 94 | 93 |
Cultivated land | 95 | 90 | 95 | 91 | 97 | 84 |
Bare land | 85 | 100 | 79 | 95 | 69 | 90 |
Grassland | 89 | 93 | 82 | 90 | 96 | 93 |
Overall Accuracy | 93 | 90 | 90 | |||
Kappa Coefficient | 0.89 | 0.87 | 0.87 |
LC Distribution | LC Changes (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1985 | 2000 | 2016 | 1985–2000 | 2000–2016 | 1985–2016 | ||||
LC Types | Area (ha) | % | Area (ha) | % | Area (ha) | % | |||
Dense forest | 4469 | 26 | 4836 | 28 | 4335 | 25 | 8 | −10 | −3 |
Open forest | 3629 | 21 | 4802 | 28 | 4337 | 25 | 32 | −10 | 16 |
Grassland | 1713 | 10 | 1074 | 6 | 2035 | 12 | −37 | 90 | 16 |
Cultivated land | 3211 | 19 | 3035 | 18 | 3902 | 23 | −6 | 29 | 18 |
Bare land | 3999 | 24 | 3272 | 19 | 2417 | 14 | −18 | −26 | −65 |
Initial Area (1985) | LC Type | Final State (2016) | |||||
Open Forest | Dense Forest | Cultivated Land | Bare Land | Grassland | Total | ||
Open forest | 1320 | 834 | 620 | 476 | 379 | 3629 | |
Dense forest | 1263 | 2435 | 253 | 213 | 304 | 4469 | |
Cultivated land | 572 | 251 | 1627 | 492 | 269 | 3211 | |
Bare land | 928 | 705 | 1122 | 766 | 477 | 3998 | |
Grassland | 248 | 110 | 279 | 470 | 606 | 1713 | |
Total | 4332 | 4334 | 3902 | 2417 | 2035 | 17,019 |
Household Attributes | Value |
---|---|
Gender (male, %) | 75 |
Average household age (years) | 47 |
Education (literate, %) | 29 |
Household occupation (farming, %) | 97 |
Mean household size (Number) | 6 |
Mean land holding size (ha) | 0.5 |
Mean household income (Birr a/year) | 7377 |
Forest Cover | X2 | ||
---|---|---|---|
Increased | Declined | No Change | |
36 | 110 | 4 | *** |
Forest Cover Change | Response by Kebele | ||||||||||||
Hiziba T/himanot (N = 36) | Tsgea (N = 30) | Ebo (N = 46) | Ayiba (N = 38) | X2 | |||||||||
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | ||
% of respondents | 11 | 89 | 0 | 50 | 40 | 10 | 11 | 87 | 2 | 32 | 68 | 0 | *** |
S/n | Drivers | Rank | Weight | Percentage (%) | Rank | ||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
1 | Cultivated land expansion | 70 | 3 | 8 | 2 | 11 | 401 | 26.1 | 2 |
2 | Fuel wood collection | 35 | 66 | 4 | 1 | 0 | 453 | 29.5 | 1 |
3 | Free grazing | 0 | 18 | 32 | 2 | 0 | 172 | 11.2 | 4 |
4 | Housing | 4 | 12 | 46 | 14 | 1 | 235 | 15.3 | 3 |
5 | Drought | 4 | 8 | 5 | 1 | 0 | 69 | 4.5 | 7 |
6 | Income generation | 0 | 0 | 9 | 32 | 10 | 101 | 6.5 | 6 |
7 | Population growth | 1 | 1 | 0 | 38 | 17 | 102 | 6.6 | 5 |
Forest Cover Change Drivers | Response by Kebele | ||||||||
---|---|---|---|---|---|---|---|---|---|
Hiziba T/Himanot (N = 32) | Tsgea (N = 12) | Ebo (N = 40) | Ayiba (N = 26) | X2 | |||||
yes | no | yes | no | yes | no | yes | no | ||
Cultivated land expansion | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | |
Fuel wood collection | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | |
Free grazing | 100.00 | 0 | 92 | 8 | 100 | 0 | 56 | 44 | *** |
Housing | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | |
Drought | 94 | 6 | 100 | 0 | 95 | 5 | 94 | 4 | |
Income generating | 97 | 3 | 83 | 17 | 98 | 2 | 100 | 0 | *** |
Population growth | 97 | 3 | 100 | 0 | 98 | 2 | 100 | 0 | |
Wildfire | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | |
Civil war and conflict | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | |
Land tenure | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 |
S/n | Possible Solutions | Number of Respondents | Percentage (%) |
---|---|---|---|
1 | Strengthening of forest protection | 78 | 52 |
2 | Improving soil & water conservation activities | 58 | 38.6 |
3 | Awareness creation | 55 | 36.6 |
5 | Enrichment planting | 53 | 35.3 |
6 | Compensation | 46 | 30.6 |
7 | Zero grazing | 22 | 14.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solomon, N.; Hishe, H.; Annang, T.; Pabi, O.; Asante, I.K.; Birhane, E. Forest Cover Change, Key Drivers and Community Perception in Wujig Mahgo Waren Forest of Northern Ethiopia. Land 2018, 7, 32. https://doi.org/10.3390/land7010032
Solomon N, Hishe H, Annang T, Pabi O, Asante IK, Birhane E. Forest Cover Change, Key Drivers and Community Perception in Wujig Mahgo Waren Forest of Northern Ethiopia. Land. 2018; 7(1):32. https://doi.org/10.3390/land7010032
Chicago/Turabian StyleSolomon, Negasi, Hadgu Hishe, Ted Annang, Opoku Pabi, Isaac K Asante, and Emiru Birhane. 2018. "Forest Cover Change, Key Drivers and Community Perception in Wujig Mahgo Waren Forest of Northern Ethiopia" Land 7, no. 1: 32. https://doi.org/10.3390/land7010032
APA StyleSolomon, N., Hishe, H., Annang, T., Pabi, O., Asante, I. K., & Birhane, E. (2018). Forest Cover Change, Key Drivers and Community Perception in Wujig Mahgo Waren Forest of Northern Ethiopia. Land, 7(1), 32. https://doi.org/10.3390/land7010032