Changes in Livestock Grazing Efficiency Incorporating Grassland Productivity: The Case of Hulun Buir, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Experimental Design
2.2.1. Data Source
2.2.2. Indicator System
2.3. Data Analysis
2.3.1. Stochastic Frontier Analysis
2.3.2. Tobit Regression Model
3. Results
3.1. Changes of NPP in Hulun Buir
3.2. Evaluation of Technical Efficiency of Grass-Based Livestock Husbandry
3.3. Analysis of the Key Influencing Factors of Technical Efficiency
3.3.1. Data Validation
3.3.2. Analysis of the Key Influencing Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Y.; Daqing Longfeng District Environmental Monitoring Center. Research on Ecological Protection and Construction of Lake and Grassland in Daqing. Environ. Sci. Manag. 2017, 36. [Google Scholar] [CrossRef]
- Guo, X.; Chang, Q.; Liu, X.; Bao, H.; Zhang, Y.; Tu, X.; Zhu, C.; Lv, C.; Zhang, Y. Multi-dimensional eco-land classification and management for implementing the ecological redline policy in China. Land Use Policy 2018, 74, 15–31. [Google Scholar] [CrossRef]
- Mathews, F. Ecological civilization: A premise, a promise and perhaps a prospect. Ecol. Citiz. 2020, 3 (Suppl. C), 47–54. [Google Scholar]
- Fang, J.; Yang, Y.; Ma, W.; Mohammat, A.; Shen, H. Ecosystem carbon stocks and their changes in China’s grasslands. Sci. China Life Sci. 2010, 53, 757–765. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Z.; Zhang, Y. Does’Forage-Livestock Balance’policy impact ecological efficiency of grasslands in China? J. Clean. Prod. 2019, 207, 343–349. [Google Scholar] [CrossRef]
- Chen, H.; Shao, L.; Zhao, M.; Zhang, X.; Zhang, D. Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [Google Scholar] [CrossRef]
- Bhardwaj, D.R.; Navale, M.R.; Sharma, S. Agroforestry practices in temperate regions of the world. In Agroforestry; Springer: Singapore, 2017; pp. 163–187. [Google Scholar]
- Zhao, Z.; Wang, G.; Chen, J.; Wang, J.; Zhang, Y. Assessment of climate change adaptation measures on the income of herders in a pastoral region. J. Clean. Prod. 2019, 208, 728–735. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassl. Sci. 2007, 53, 1–17. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; Deng, X. Identifying drivers of land use change in China: A spatial multinomial logit model analysis. Land Econ. 2017, 89, 632–654. [Google Scholar] [CrossRef]
- Castellani, V.; Sala, S.; Benini, L. Hotspots analysis and critical interpretation of food life cycle assessment studies for selecting eco-innovation options and for policy support. J. Clean. Prod. 2017, 140, 556–568. [Google Scholar] [CrossRef]
- Dong, W.L.; Wang, X.B.; Jun, Y. Future perspective of China’s feed demand and supply during its fast transition period of food consumption. J. Integr. Agric. 2015, 14, 1092–1100. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J.; Wang, P. Quantitative measurements of the interaction between net primary productivity and livestock production in Qinghai Province based on data fusion technique. J. Clean. Prod. 2017, 142, 758–766. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlík, P. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Xin, X.; John, R.; Groisman, P.; Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 2017, 6, 22. [Google Scholar] [CrossRef]
- Zhong, J.; Ni, K.; Yang, J.; Yu, Z.; Tao, Y. The present situation and prospect of the processing technology of forage grass in China. Chin. Sci. Bull. 2018, 63, 1677–1685. [Google Scholar] [CrossRef] [Green Version]
- Van Zanten, H.H.; Herrero, M.; Van Hal, O.; Röös, E.; Muller, A.; Garnett, T.; De Boer, I.J. Defining a land boundary for sustainable livestock consumption. Glob. Chang. Biol. 2018, 24, 4185–4194. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Jing, H.; Zhang, W.; Gao, S.; Duan, Z.; Wang, H. The concept of“Grass-based Livestock Husbandry”and its practice in Hulun Buir, Inner Mongolia. Chin. Sci. Bull. 2018, 63, 1619–1631. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Chen, Y. Food consumption of outgoing rural migrant workers in urban area of China. China Agric. Econ. Rev. 2016, 8, 230–249. [Google Scholar] [CrossRef]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Bateki, C.A.; Cadisch, G.; Dickhoefer, U. Modelling sustainable intensification of grassland-based ruminant production systems: A review. Glob. Food Secur. 2019, 23, 85–92. [Google Scholar] [CrossRef]
- Matthews, E.; Payne, R.; Rohweder, M.; Murray, S. Pilot Analysis of Global Ecosystems: Forest Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607, 1250–1263. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wu, J.; Zhang, X.; Xue, J.; Liu, Z.; Han, X.; Huang, J. China’s new rural “separating three property rights” land reform results in grassland degradation: Evidence from Inner Mongolia. Land Use Policy 2018, 71, 170–182. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Cao, W.; Zhong, H.; Harris, W.; Gong, G.; Zhang, Y. Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecol. Eng. 2018, 116, 67–79. [Google Scholar] [CrossRef]
- Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The impact of ecological construction programs on grassland conservation in Inner Mongolia, China. Land Degrad. Dev. 2018, 29, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Bruemmer, B.; Huntsinger, L. Technical efficiency and the impact of grassland use right leasing on livestock grazing on the Qinghai-Tibetan Plateau. Land Use Policy 2017, 64, 342–352. [Google Scholar] [CrossRef]
- Bozoglu, M.; Ceyhan, V. Measuring the technical efficiency and exploring the ineffiency determinants of vegetable farms in Samsun province, Turkey. Agric. Syst. 2007, 94, 649–656. [Google Scholar] [CrossRef]
- Latruffe, L.; Desjeux, Y. Common Agricultural Policy support, technical efficiency and productivity change in French agriculture. Rev. Agric. Food Environ. Stud. 2016, 97, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Huy, H.T.; Nguyen, T.T. Cropland rental market and farm technical efficiency in rural Vietnam. Land Use Policy 2019, 81, 408–423. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A (Gen.) 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Khai, H.V.; Yabe, M. Technical efficiency analysis of rice production in Vietnam. J. ISSAAS 2011, 17, 135–146. [Google Scholar]
- Laha, A.; Kuri, P.K. Measurement of allocative efficiency in agriculture and its determinants: Evidence from rural West Bengal, India. Int. J. Agric. Res. 2011, 6, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Bai, Y.; Wang, G.; Chen, J.; Yu, J.; Liu, W. Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region. Technol. Forecast. Soc. Cheng 2018, 137, 19–26. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China. Technol. Forecast. Soc. Cheng 2019, 144, 394–400. [Google Scholar] [CrossRef]
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 126, 373–381. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Li, Z.; Jia, S.; Zhang, F.; Li, Y. Eco-efficiency evaluation of regional circular economy: A case study in Zengcheng, Guangzhou. Sustainability 2018, 10, 453. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhang, X. Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: A bootstrapping approach in global data envelopment analysis. J. Clean. Prod. 2018, 173, 100–111. [Google Scholar] [CrossRef]
- Huang, W.; Bruemmer, B.; Huntsinger, L. Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China. Ecol. Econ. 2016, 122, 1–11. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Glauben, T.; Brümmer, B. The impact of land reallocation on technical efficiency: Evidence from China. Agric. Econ. 2011, 42, 495–507. [Google Scholar] [CrossRef]
- Otieno, D.J.; Hyubbard, L.; Ruto, E. Assessment of technical efficiency and its determinants in beef cattle production in Kenya. J. Dev. Agric. Econ. 2014, 6, 267–278. [Google Scholar]
- Marchand, S. The relationship between technical efficiency in agriculture and deforestation in the Brazilian Amazon. Ecol. Econ. 2012, 77, 166–175. [Google Scholar] [CrossRef]
- Machmud, A.; Nandiyanto, A.B.D.; Dirgantari, P.D. Technical Efficiency Chemical Industry in Indonesia: Stochastic Frontier Analysis (SFA) Approach. Pertanika J. Sci. Technol. 2018, 26, 1453–1464. [Google Scholar]
- Zhao, Z.; Chen, J.; Bai, Y.; Wang, P. Assessing the sustainability of grass-based livestock husbandry in hulun buir, china. Phys. Chem. Earth Parts A/B/C 2020, 102907. [Google Scholar] [CrossRef]
- China Meteorological Data. Available online: http://data.cma.cn/ (accessed on 23 July 2019).
- The Numerical Terradynamic Simulation Group Data. Available online: http://www.ntsg.umt.edu/ (accessed on 17 May 2019).
- Asante, B.O.; Wiredu, A.N.; Martey, E.; Sarpong, D.B.; Mensah-Bonsu, A. NERICA adoption and impacts on technical efficiency of rice producing households in Ghana: Implications for research and development. Am. J. Exp. Agric. 2014, 4, 244. [Google Scholar] [CrossRef]
- Zhang, G.; Kang, Y.; Han, G.; Sakurai, K. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob. Chang. Biol. 2011, 17, 377–389. [Google Scholar] [CrossRef]
- Du, F.; Liu, Z.; Oniki, S. Factors Affecting Herdsmen’s Grassland Transfer in Inner Mongolia, China. Jpn. Agric. Res. Q. 2017, 51, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhao, Y.; Li, F.Y. Optimal herdsmen household management modes in a typical steppe region of Inner Mongolia, China. J. Clean. Prod. 2019, 231, 1–9. [Google Scholar] [CrossRef]
- Han, Z.; Han, C.; Yang, C. Spatial econometric analysis of environmental total factor productivity of animal husbandry and its influencing factors in China during 2001–2017. Sci. Total Environ. 2020, 723, 137726. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Zhang, Y.; Wang, C.; Liu, Y. Does climate adaptation of vulnerable households to extreme events benefit livestock production? J. Clean. Prod. 2019, 210, 358–365. [Google Scholar] [CrossRef]
- Fahmy-Abdullah, M.; Sieng, L.W.; Isa, H.M. Technical Efficiency in Malaysian Textile Manufacturing Industry: A Stochastic Frontier Analysis (SFA) Approach. Int. J. Econ. Manag. 2018, 12, 407–419. [Google Scholar]
- Shen, X.; Lin, B. Total Factor Energy Efficiency of China’s Industrial Sector: A Stochastic Frontier Analysis. Sustainability 2017, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency: A case study of hebei, China. Ann. Oper. Res. 2018. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S. Exploring the relationship between urbanization and urban eco-efficiency: Evidence from prefecture-level cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Boubacar, O.; Zhou, H.-Q.; Rana, M.A.; Ghazanfar, S. Analysis on technical efficiency of rice farms and its influencing factors in South-western of Niger. J. Northeast Agric. Univ. (Engl. Ed.) 2016, 23, 67–77. [Google Scholar] [CrossRef]
- Mwalupaso, G.E.; Wang, S.; Rahman, S.; Alavo, E.J.P.; Tian, X. Agricultural informatization and technical efficiency in maize production in Zambia. Sustainability 2019, 11, 2451. [Google Scholar] [CrossRef] [Green Version]
Type | Lable | Variable | Unit | Observations | Mean | Standard Deviation |
---|---|---|---|---|---|---|
Input | x1 | grassland area | hectare | 126 | 201.40 | 202.49 |
x2 | labor | herd | 126 | 3.03 | 1.58 | |
x3 | capital | Yuan | 126 | 80,641.43 | 123,313.90 | |
x4 | NPP | gC | 126 | 198.65 | 32.02 | |
Output | Y | output of total meat | kg | 126 | 18,529.52 | 16,821.17 |
Influencing factors | z1 | household size | herd | 126 | 3.32 | 0.99 |
z2 | livestock density | sheep unit/hectare | 126 | 6.75 | 11.1 | |
z3 | education level | - | 126 | 0.15 0.74 | 0.35 | |
z4 | precipitation | mm | - | 286.5 | 79.9 | |
z5 | temperature | °C | - | 6.38 | 7.51 | |
z6 | whether purchased forage | - | 126 | 0.43 | 0.46 | |
z7 | whether sold livestock | - | 126 | 0.37 | 0.48 |
lnY1 | Coefficient | Standard Error | Z Value | P > |z| | 95% |
---|---|---|---|---|---|
lnx1 | 0.266 *** | 0.012 | 22.400 | 0.000 | [0.242, 0.289] |
lnx2 | 0.489 *** | 0.063 | 7.760 | 0.000 | [0.366, 0.623] |
lnx3 | 0.165 *** | 0.027 | 6.210 | 0.000 | [0.113, 0.217] |
lnx4 | 1.169 *** | 0.180 | 6.480 | 0.000 | [0.815, 1.522] |
lnx1 × 2 | 0.155 ** | 0.078 | 1.980 | 0.047 | [0.002, 0.309] |
lnx1x3 | −0.220 *** | 0.196 | −11.220 | 0.000 | [−0.259, −0.182] |
lnx1x4 | 1.397 *** | 0.133 | 10.490 | 0.000 | [1.135, 1.658] |
lnx2x3 | 0.043 | 0.046 | 0.940 | 0.349 | [−0.047, 0.133] |
lnx2x4 | 2.003 *** | 0.206 | 9.730 | 0.000 | [1.599, 2.406] |
lnx3x4 | −0.775 *** | 0.150 | −5.140 | 0.000 | [−1.071, −0.479] |
lnx12 | 0.316 *** | 0.324 | 9.750 | 0.000 | [0.253, 0.380] |
lnx22 | 0.517 ** | 0.215 | 2.410 | 0.016 | [0.096, 0.937] |
lnx32 | −0.033 | 0.025 | −1.320 | 0.187 | [−0.082, 0.015] |
lnx42 | 8.185 ** | 3.156 | 2.590 | 0.011 | [1.998, 13.37] |
cons | 0.526 *** | 0.025 | 21.420 | 0.000 | [0.477, 0.573] |
Prob > chi2 | 0 | ||||
Number of obs = 126 Log likelihood = 37.66 |
Variables | VIF | 1/VIF |
---|---|---|
household size | 1.17 | 0.85 |
livestock density | 1.26 | 0.79 |
education level | 1.37 | 0.72 |
precipitation | 3.94 | 0.25 |
temperature | 4.06 | 0.24 |
whether purchased forage | 2.07 | 0.48 |
whether sold livestock | 2.35 | 0.42 |
R2 | Adjoint Probability | F Value |
---|---|---|
79.614 | 0.323 | 3.647 |
Factors | Coefficient | Standard Error | Z-Value | P > |z| |
---|---|---|---|---|
household size | 0.063 | 0.070 | 0.91 | [−0.074, 0.200] |
livestock density | 0.223 *** | 0.062 | 3.59 | [0.100, 0.347] |
education level | 0.001 | 0.013 | 0.01 | [−0.026, 0.026] |
precipitation | 0.329 ** | 0.120 | 2.73 | [0.090, 0.567] |
temperature | −0.093 *** | 0.027 | −3.40 | [−0.147, 0.039] |
whether purchased forage | 0.146 ** | 0.058 | 2.53 | [0.032, 0.260] |
whether sold livestock | 0.255 *** | 0.063 | 4.05 | [0.130, 0.379] |
constant | 0.592 *** | 0.153 | 3.87 | [0.289, 0.896] |
LRchi2(7) | 88.96 | |||
Prob > chi2 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Bai, Y.; Deng, X.; Chen, J.; Hou, J.; Li, Z. Changes in Livestock Grazing Efficiency Incorporating Grassland Productivity: The Case of Hulun Buir, China. Land 2020, 9, 447. https://doi.org/10.3390/land9110447
Zhao Z, Bai Y, Deng X, Chen J, Hou J, Li Z. Changes in Livestock Grazing Efficiency Incorporating Grassland Productivity: The Case of Hulun Buir, China. Land. 2020; 9(11):447. https://doi.org/10.3390/land9110447
Chicago/Turabian StyleZhao, Zhe, Yuping Bai, Xiangzheng Deng, Jiancheng Chen, Jian Hou, and Zhihui Li. 2020. "Changes in Livestock Grazing Efficiency Incorporating Grassland Productivity: The Case of Hulun Buir, China" Land 9, no. 11: 447. https://doi.org/10.3390/land9110447
APA StyleZhao, Z., Bai, Y., Deng, X., Chen, J., Hou, J., & Li, Z. (2020). Changes in Livestock Grazing Efficiency Incorporating Grassland Productivity: The Case of Hulun Buir, China. Land, 9(11), 447. https://doi.org/10.3390/land9110447