Next Issue
Volume 11, March
Previous Issue
Volume 10, September
 
 

Antibodies, Volume 10, Issue 4 (December 2021) – 15 articles

Cover Story (view full-size image): Monoclonal antibodies are widely used as therapeutic agents in medicine. However, clinical-grade proteins require sophisticated technologies and are extremely expensive to produce, resulting in long lead times and high costs. The use of gene transfer methods for in vivo secretion of therapeutic antibodies could circumvent problems related to large-scale production and purification and offer additional benefits by achieving sustained concentrations of therapeutic antibodies, which is particularly relevant to short-lived antibody fragments and next-generation, Fc-free, multispecific antibodies. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
5 pages, 651 KiB  
Commentary
Disease Prevalence Matters: Challenge for SARS-CoV-2 Testing
by Chin-Shern Lau and Tar-Choon Aw
Antibodies 2021, 10(4), 50; https://doi.org/10.3390/antib10040050 - 17 Dec 2021
Cited by 4 | Viewed by 3949
Abstract
While sensitivity and specificity are important characteristics for any diagnostic test, the influence of prevalence is equally, if not more, important when such tests are used in community screening. We review the concepts of positive/negative predictive values (PPV/NPV) and how disease prevalence affects [...] Read more.
While sensitivity and specificity are important characteristics for any diagnostic test, the influence of prevalence is equally, if not more, important when such tests are used in community screening. We review the concepts of positive/negative predictive values (PPV/NPV) and how disease prevalence affects false positive/negative rates. In low-prevalence situations, the PPV decreases drastically. We demonstrate how using two tests in an orthogonal fashion can be especially beneficial in low-prevalence settings and greatly improve the PPV of the diagnostic test results. Full article
(This article belongs to the Special Issue Reviews on Antibodies and Antigens)
Show Figures

Figure 1

7 pages, 764 KiB  
Article
Allergen-Specific IgE and IgG4 as Biomarkers for Immunologic Changes during Subcutaneous Allergen Immunotherapy
by Georgi Nikolov, Yana Todordova, Radoslava Emilova, Diana Hristova, Maria Nikolova and Bogdan Petrunov
Antibodies 2021, 10(4), 49; https://doi.org/10.3390/antib10040049 - 7 Dec 2021
Cited by 15 | Viewed by 4414
Abstract
(1) Background: Biomarkers of efficacy for subcutaneous immunotherapy (SCIT) on allergic rhinitis have not been evaluated in details. The present study aims to assess the relevance of measuring of sIgE, sIgG4 and IgE/IgG4 ratio during SCIT in patients with allergic rhinitis; (2) Methods: [...] Read more.
(1) Background: Biomarkers of efficacy for subcutaneous immunotherapy (SCIT) on allergic rhinitis have not been evaluated in details. The present study aims to assess the relevance of measuring of sIgE, sIgG4 and IgE/IgG4 ratio during SCIT in patients with allergic rhinitis; (2) Methods: 20 patients, 13 men and 7 women aged 19 to 58 years, with clinically manifested seasonal and perennial allergic rhinitis were studied. At the initiation and in the end of the three-year course of SCIT serum allergen-specific IgE and IgG4 were measured with ImmunoCAP system. The sIgE/sIgG4 ratio was calculated as a biomarker for immunologic effectiveness; (3) Results: There was a significant increase of sIgG4 antibodies (p < 0.05), while at the end of SCIT for the sIgE levels no significant changes were seen (p > 0.05). Moreover, 90% of patients showed a decrease of the IgE/IgG4 ratio; (4) Conclusions: In most of treated patients with AR, SCIT with Bulgarian allergen products leads to clear immunological changes. After a 3-year of SCIT there is a significant increase in allergen specific IgG4 levels and both decrease of sIgE and IgE/IgG4 ratio. sIgE, sIgG4 and IgE/IgG4 ratio can be used as a substantial biomarker for predicting immunological effectiveness of SCIT. Full article
(This article belongs to the Special Issue Reviews on Antibodies and Antigens)
Show Figures

Figure 1

13 pages, 12124 KiB  
Review
Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies
by Takuhiro Uto, Tomoe Ohta, Shunsuke Fujii and Yukihiro Shoyama
Antibodies 2021, 10(4), 48; https://doi.org/10.3390/antib10040048 - 6 Dec 2021
Cited by 2 | Viewed by 3171
Abstract
In this study, we present a review on a useful approach, namely, immunoaffinity column coupled with monoclonal antibodies (MAbs), to separate natural compounds and its application for cell-based studies. The immunoaffinity column aids in separating the specific target compound from the crude extract. [...] Read more.
In this study, we present a review on a useful approach, namely, immunoaffinity column coupled with monoclonal antibodies (MAbs), to separate natural compounds and its application for cell-based studies. The immunoaffinity column aids in separating the specific target compound from the crude extract. The column capacity was stable even after more than 10 purification cycles of use under the same conditions. After applying the crude extract to the column, the column was washed with washing buffer and eluted with elution buffer. The elution fraction contained the target compound bound to MAb, whereas the washing fraction was the crude extract, which contained all compounds except a group of target compounds; therefore, the washing fraction was referred to as a knockout (KO) crude extract. Cell-based studies using the KO extract revealed the actual effects of the natural compounds in the crude extract. One-step separation of natural compounds using the immunoaffinity column coupled with MAbs may help in determining the potential functions of natural compounds in crude extracts. Full article
Show Figures

Figure 1

20 pages, 1753 KiB  
Review
Central Nervous System Delivery of Antibodies and Their Single-Domain Antibodies and Variable Fragment Derivatives with Focus on Intranasal Nose to Brain Administration
by Arghavan Soleimanizadeh, Heiko Dinter and Katharina Schindowski
Antibodies 2021, 10(4), 47; https://doi.org/10.3390/antib10040047 - 30 Nov 2021
Cited by 12 | Viewed by 5196
Abstract
IgG antibodies are some of the most important biopharmaceutical molecules with a high market volume. In spite of the fact that clinical therapies with antibodies are broadly utilized in oncology, immunology and hematology, their delivery strategies and biodistribution need improvement, their limitations being [...] Read more.
IgG antibodies are some of the most important biopharmaceutical molecules with a high market volume. In spite of the fact that clinical therapies with antibodies are broadly utilized in oncology, immunology and hematology, their delivery strategies and biodistribution need improvement, their limitations being due to their size and poor ability to penetrate into tissues. In view of their small size, there is a rising interest in derivatives, such as single-domain antibodies and single-chain variable fragments, for clinical diagnostic but also therapeutic applications. Smaller antibody formats combine several benefits for clinical applications and can be manufactured at reduced production costs compared with full-length IgGs. Moreover, such formats have a relevant potential for targeted drug delivery that directs drug cargo to a specific tissue or across the blood–brain barrier. In this review, we give an overview of the challenges for antibody drug delivery in general and focus on intranasal delivery to the central nervous system with antibody formats of different sizes. Full article
Show Figures

Graphical abstract

17 pages, 2986 KiB  
Article
Characterization of Anti-Ana o 3 Monoclonal Antibodies and Their Application in Comparing Brazilian Cashew Cultivars
by Christopher P. Mattison, Barry Vant-Hull, Ana Cecilia Ribeiro de Castro, Heidi J. Chial, Yvette Bren-Mattison, Peter J. Bechtel and Edy Sousa de Brito
Antibodies 2021, 10(4), 46; https://doi.org/10.3390/antib10040046 - 28 Nov 2021
Cited by 1 | Viewed by 3489
Abstract
Ana o 3 is an immuno-dominant cashew nut allergen. Four monoclonal antibodies to Ana o 3 (2H5, 6B9C1, 19C9A2, and 5B7F8) were characterized by ELISA and in silico modeling. The 2H5 antibody was the only antibody specific for cashew nut extract. In addition [...] Read more.
Ana o 3 is an immuno-dominant cashew nut allergen. Four monoclonal antibodies to Ana o 3 (2H5, 6B9C1, 19C9A2, and 5B7F8) were characterized by ELISA and in silico modeling. The 2H5 antibody was the only antibody specific for cashew nut extract. In addition to cashew nut extract, the 6B9C1 and 19C9A2 antibodies recognized pistachio extract, and the 5B7F8 recognized pecan extract. All four antibodies recognized both recombinant Ana o 3.0101 and native Ana o 3. ELISA assays following treatment of purified Ana o 3 with a reducing agent indicated that the 6B9C1 and 19C9A2 antibodies likely recognize conformational epitopes, while the 2H5 and 5B7F8 antibodies likely recognize linear epitopes. In silico modeling predicted distinct epitopes for each of the anti-Ana o 3 antibodies. Screening extracts from 11 Brazilian cashew nut cultivars using all four antibodies showed slight differences in Ana o 3 bindings, demonstrating that these antibodies could identify cultivars with varying allergen content. Full article
Show Figures

Figure 1

18 pages, 2816 KiB  
Article
Fc-Independent Protection from SARS-CoV-2 Infection by Recombinant Human Monoclonal Antibodies
by Tal Noy-Porat, Avishay Edri, Ron Alcalay, Efi Makdasi, David Gur, Moshe Aftalion, Yentl Evgy, Adi Beth-Din, Yinon Levy, Eyal Epstein, Olga Radinsky, Ayelet Zauberman, Shirley Lazar, Shmuel Yitzhaki, Hadar Marcus, Angel Porgador, Ronit Rosenfeld and Ohad Mazor
Antibodies 2021, 10(4), 45; https://doi.org/10.3390/antib10040045 - 8 Nov 2021
Cited by 8 | Viewed by 4845
Abstract
The use of passively-administered neutralizing antibodies is a promising approach for the prevention and treatment of SARS-CoV-2 infection. Antibody-mediated protection may involve immune system recruitment through Fc-dependent activation of effector cells and the complement system. However, the role of Fc-mediated functions in the [...] Read more.
The use of passively-administered neutralizing antibodies is a promising approach for the prevention and treatment of SARS-CoV-2 infection. Antibody-mediated protection may involve immune system recruitment through Fc-dependent activation of effector cells and the complement system. However, the role of Fc-mediated functions in the efficacious in-vivo neutralization of SARS-CoV-2 is not yet clear, and it is of high importance to delineate the role this process plays in antibody-mediated protection. Toward this aim, we have chosen two highly potent SARS-CoV-2 neutralizing human monoclonal antibodies, MD65 and BLN1 that target distinct domains of the spike (RBD and NTD, respectively). The Fc of these antibodies was engineered to include the triple mutation N297G/S298G/T299A that eliminates glycosylation and the binding to FcγR and to the complement system activator C1q. As expected, the virus neutralization activity (in-vitro) of the engineered antibodies was retained. To study the role of Fc-mediated functions, the protective activity of these antibodies was tested against lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice, when treatment was initiated either before or two days post-exposure. Antibody treatment with both Fc-variants similarly rescued the mice from death reduced viral load and prevented signs of morbidity. Taken together, this work provides important insight regarding the contribution of Fc-effector functions in MD65 and BLN1 antibody-mediated protection, which should aid in the future design of effective antibody-based therapies. Full article
Show Figures

Figure 1

20 pages, 1971 KiB  
Review
Glycoengineering of Therapeutic Antibodies with Small Molecule Inhibitors
by Shasha Li, Alex J. McCraw, Richard A. Gardner, Daniel I.R. Spencer, Sophia N. Karagiannis and Gerd K. Wagner
Antibodies 2021, 10(4), 44; https://doi.org/10.3390/antib10040044 - 4 Nov 2021
Cited by 14 | Viewed by 8581
Abstract
Monoclonal antibodies (mAbs) are one of the cornerstones of modern medicine, across an increasing range of therapeutic areas. All therapeutic mAbs are glycoproteins, i.e., their polypeptide chain is decorated with glycans, oligosaccharides of extraordinary structural diversity. The presence, absence, and composition of these [...] Read more.
Monoclonal antibodies (mAbs) are one of the cornerstones of modern medicine, across an increasing range of therapeutic areas. All therapeutic mAbs are glycoproteins, i.e., their polypeptide chain is decorated with glycans, oligosaccharides of extraordinary structural diversity. The presence, absence, and composition of these glycans can have a profound effect on the pharmacodynamic and pharmacokinetic profile of individual mAbs. Approaches for the glycoengineering of therapeutic mAbs—the manipulation and optimisation of mAb glycan structures—are therefore of great interest from a technological, therapeutic, and regulatory perspective. In this review, we provide a brief introduction to the effects of glycosylation on the biological and pharmacological functions of the five classes of immunoglobulins (IgG, IgE, IgA, IgM and IgD) that form the backbone of all current clinical and experimental mAbs, including an overview of common mAb expression systems. We review selected examples for the use of small molecule inhibitors of glycan biosynthesis for mAb glycoengineering, we discuss the potential advantages and challenges of this approach, and we outline potential future applications. The main aim of the review is to showcase the expanding chemical toolbox that is becoming available for mAb glycoengineering to the biology and biotechnology community. Full article
(This article belongs to the Special Issue Antibody Engineering for Cancer Immunotherapy)
Show Figures

Figure 1

10 pages, 2728 KiB  
Review
Studies on Natural Products Using Monoclonal Antibodies: A Review
by Yukihiro Shoyama
Antibodies 2021, 10(4), 43; https://doi.org/10.3390/antib10040043 - 1 Nov 2021
Cited by 1 | Viewed by 3596
Abstract
An immunoblotting system (“eastern blotting”) was developed for small-molecule herbal medicines like glycosides, with no conjugation function to the membrane. Briefly, the crude extracts of herb medicines were developed by thin-layer chromatography (TLC). The small-molecule herbal medicines on TLC plates were transferred to [...] Read more.
An immunoblotting system (“eastern blotting”) was developed for small-molecule herbal medicines like glycosides, with no conjugation function to the membrane. Briefly, the crude extracts of herb medicines were developed by thin-layer chromatography (TLC). The small-molecule herbal medicines on TLC plates were transferred to polyvinylidene fluoride (PVDF) or polyethersulfone (PES) membranes by heating. Antigen components were divided into two categories based on their function, i.e., their membrane recognizing (aglycone part) and fixing (sugar moiety) abilities. This procedure allows for the staining of only target glycosides. Double eastern blotting was developed as a further staining system for two herb medicines using a set of MAbs and substrates. Full article
Show Figures

Figure 1

11 pages, 262 KiB  
Review
Introduction to Antibody-Drug Conjugates
by Mark C. Pettinato
Antibodies 2021, 10(4), 42; https://doi.org/10.3390/antib10040042 - 27 Oct 2021
Cited by 57 | Viewed by 9591
Abstract
Antibody-drug conjugates (ADCs) are innovative biopharmaceutical products in which a monoclonal antibody is linked to a small molecule drug with a stable linker. Most of the ADCs developed so far are for treating cancer, but there is enormous potential for using ADCs to [...] Read more.
Antibody-drug conjugates (ADCs) are innovative biopharmaceutical products in which a monoclonal antibody is linked to a small molecule drug with a stable linker. Most of the ADCs developed so far are for treating cancer, but there is enormous potential for using ADCs to treat other diseases. Currently, ten ADCs have been approved by the United States Food and Drug Administration (FDA), and more than 90 ADCs are under worldwide clinical development. Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Tremendous strides have been made in antibody discovery, protein bioengineering, formulation, and delivery devices. This manuscript provides an overview of the biology, chemistry, and biophysical properties of each component of ADC design. This review summarizes the advances and challenges in the field to date, with an emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, drug-antibody ratio (DAR), and product development. The review emphasizes the lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications. The review discusses resistance mechanisms to ADCs, and give an opinion on future perspectives. Full article
(This article belongs to the Special Issue Advances in Antibody–Drug Conjugates (ADCs))
19 pages, 5900 KiB  
Article
IL-33, IL-37, and Vitamin D Interaction Mediate Immunomodulation of Inflammation in Degenerating Cartilage
by Vikrant Rai, Mohamed M. Radwan and Devendra K. Agrawal
Antibodies 2021, 10(4), 41; https://doi.org/10.3390/antib10040041 - 26 Oct 2021
Cited by 11 | Viewed by 4535
Abstract
Chronic joint inflammation due to increased secretion of pro-inflammatory cytokines, the accumulation of inflammatory immune cells (mainly macrophages), and vitamin D deficiency leads to cartilage degeneration and the development of osteoarthritis (OA). This study investigated the effect of vitamin D status on the [...] Read more.
Chronic joint inflammation due to increased secretion of pro-inflammatory cytokines, the accumulation of inflammatory immune cells (mainly macrophages), and vitamin D deficiency leads to cartilage degeneration and the development of osteoarthritis (OA). This study investigated the effect of vitamin D status on the expression of mediators of inflammation including interleukin (IL)-33, IL-37, IL-6, tumor necrosis factor (TNF)-α, toll-like receptors (TLRs), damage-associated molecular patterns (DAMPs), and matrix metalloproteinases (MMPs) in degenerating the cartilage of hyperlipidemic microswine. Additionally, in vitro studies with normal human chondrocytes were conducted to investigate the effect of calcitriol on the expression of IL-33, IL-37, IL-6, TNF-α, TLRs, DAMPs, and MMPs. We also studied the effects of calcitriol on macrophage polarization using THP-1 cells. The results of this study revealed that vitamin D deficiency is associated with an increased expression of IL-33, IL-37, IL-6, TNF-α, TLRs, DAMPs, and MMPs, while vitamin D supplementation is associated with a decreased expression of the former. Additionally, vitamin D deficiency is associated with increased M1, while vitamin D-supplemented microswine cartilage showed increased M2 macrophages. It was also revealed that calcitriol favors M2 macrophage polarization. Taken together, the results of this study suggest that modulating expression of IL-33, IL-6, TNF-α, TLRs, DAMPs, and MMPs with vitamin D supplementation may serve as a novel therapeutic to attenuate inflammation and cartilage degeneration in osteoarthritis. Full article
Show Figures

Figure 1

17 pages, 241 KiB  
Review
Effect of Intrinsic and Extrinsic Factors on the Pharmacokinetics of Antibody–Drug Conjugates (ADCs)
by Iftekhar Mahmood
Antibodies 2021, 10(4), 40; https://doi.org/10.3390/antib10040040 - 15 Oct 2021
Cited by 7 | Viewed by 5139
Abstract
Antibody–drug conjugates (ADCs) are complex molecules wherein a monoclonal antibody is linked to a biologically active drug (a small molecule), forming a conjugate. Initially, most of the ADCs were developed and are being developed for the treatment of cancer; however, with time, it [...] Read more.
Antibody–drug conjugates (ADCs) are complex molecules wherein a monoclonal antibody is linked to a biologically active drug (a small molecule), forming a conjugate. Initially, most of the ADCs were developed and are being developed for the treatment of cancer; however, with time, it has been realized that ADCs can also be developed to manage or cure other diseases. Pharmacokinetics (PK) plays an important role in modern-day drug development and the knowledge of PK is crucial in designing a safe and efficacious dose to treat a wide variety of diseases. There are several factors that can alter the PK of a drug; as a result, one has to adjust the dose in a patient population. These factors can be termed ‘intrinsic’ or ‘extrinsic’. For small molecules, the impact of both intrinsic and extrinsic factors is well established. The impact of age, gender, disease states such as renal and hepatic impairment, drug–drug interaction, food, and in many cases alcohol on the PK of small molecules are well known. On the other hand, for macromolecules, the impact of these factors is not well established. Since the ADCs are a combination product of a monoclonal antibody linked to a small molecule, both the small molecule and the monoclonal antibody of the ADCs may be subjected to many intrinsic and extrinsic factors. This review summarizes the impact of intrinsic and extrinsic factors on the PK of ADCs and the payloads. Full article
(This article belongs to the Special Issue Advances in Antibody–Drug Conjugates (ADCs))
18 pages, 4066 KiB  
Article
Novel Selection Approaches to Identify Antibodies Targeting Neoepitopes on the C5b6 Intermediate Complex to Inhibit Membrane Attack Complex Formation
by Lasse Stach, Emily K. H. Dinley, Nadia Tournier, Ryan P. Bingham, Darren A. Gormley, Jo L. Bramhall, Adam Taylor, Jane E. Clarkson, Katherine A. Welbeck, Claire L. Harris, Maria Feeney, Jane P. Hughes, Armin Sepp, Thil D. Batuwangala, Semra J. Kitchen and Eva-Maria Nichols
Antibodies 2021, 10(4), 39; https://doi.org/10.3390/antib10040039 - 12 Oct 2021
Viewed by 3882
Abstract
The terminal pathway of complement is implicated in the pathology of multiple diseases and its inhibition is, therefore, an attractive therapeutic proposition. The practicalities of inhibiting this pathway, however, are challenging, as highlighted by the very few molecules in the clinic. The proteins [...] Read more.
The terminal pathway of complement is implicated in the pathology of multiple diseases and its inhibition is, therefore, an attractive therapeutic proposition. The practicalities of inhibiting this pathway, however, are challenging, as highlighted by the very few molecules in the clinic. The proteins are highly abundant, and assembly is mediated by high-affinity protein–protein interactions. One strategy is to target neoepitopes that are present transiently and only exist on active or intermediate complexes but not on the abundant native proteins. Here, we describe an antibody discovery campaign that generated neoepitope-specific mAbs against the C5b6 complex, a stable intermediate complex in terminal complement complex assembly. We used a highly diverse yeast-based antibody library of fully human IgGs to screen against soluble C5b6 antigen and successfully identified C5b6 neoepitope-specific antibodies. These antibodies were diverse, showed good binding to C5b6, and inhibited membrane attack complex (MAC) formation in a solution-based assay. However, when tested in a more physiologically relevant membrane-based assay these antibodies failed to inhibit MAC formation. Our data highlight the feasibility of identifying neoepitope binding mAbs, but also the technical challenges associated with the identification of functionally relevant, neoepitope-specific inhibitors of the terminal pathway. Full article
Show Figures

Figure 1

15 pages, 3565 KiB  
Article
Expression and Display of Glycoengineered Antibodies and Antibody Fragments with an Engineered Yeast Strain
by Anjali Shenoy, Srisaimaneesh Yalamanchili, Alexander R. Davis and Adam W. Barb
Antibodies 2021, 10(4), 38; https://doi.org/10.3390/antib10040038 - 29 Sep 2021
Cited by 6 | Viewed by 5910
Abstract
Interactions with cell surface receptors enhance the therapeutic properties of many important antibodies, including the low-affinity Fc γ Receptors (FcγRs). These interactions require proper processing of the immunoglobulin G Fc N-glycan, and eliminating the N-glycan abolishes binding, restricting antibody production to [...] Read more.
Interactions with cell surface receptors enhance the therapeutic properties of many important antibodies, including the low-affinity Fc γ Receptors (FcγRs). These interactions require proper processing of the immunoglobulin G Fc N-glycan, and eliminating the N-glycan abolishes binding, restricting antibody production to mammalian expression platforms. Yeasts, for example, generate extensively mannosylated N-glycans that are unsuitable for therapeutics. However, Fc with a specifically truncated N-glycan still engages receptors with considerable affinity. Here we describe the creation and applications of a novel Saccharomyces cerevisiae strain that specifically modifies the IgG1 Fc domain with an N-glycan consisting of a single N-acetylglucosamine residue. This strain displayed glycoengineered Fc on its surface for screening yeast surface display libraries and also served as an alternative platform to produce glycoengineered Rituximab. An IgG-specific endoglycosidase (EndoS2) truncates the IgG1 Fc N-glycan. EndoS2 was targeted to the yeast ER using the signal peptide from the yeast protein disulfide isomerase (PDI) and a yeast ER retention signal (HDEL). Furthermore, >99% of the yeast expressed Rituximab displayed the truncated glycoform as determined by SDS-PAGE and ESI-MS analyses. Lastly, the yeast expressed Rituximab engaged the FcγRIIIa with the expected affinity (KD = 2.0 ± 0.5 μM) and bound CD20 on Raji B cells. Full article
Show Figures

Graphical abstract

7 pages, 260 KiB  
Review
Engineered mRNA and the Rise of Next-Generation Antibodies
by Laura Sanz and Luis Álvarez-Vallina
Antibodies 2021, 10(4), 37; https://doi.org/10.3390/antib10040037 - 26 Sep 2021
Cited by 10 | Viewed by 5468
Abstract
Monoclonal antibodies are widely used as therapeutic agents in medicine. However, clinical-grade proteins require sophisticated technologies and are extremely expensive to produce, resulting in long lead times and high costs. The use of gene transfer methods for in vivo secretion of therapeutic antibodies [...] Read more.
Monoclonal antibodies are widely used as therapeutic agents in medicine. However, clinical-grade proteins require sophisticated technologies and are extremely expensive to produce, resulting in long lead times and high costs. The use of gene transfer methods for in vivo secretion of therapeutic antibodies could circumvent problems related to large-scale production and purification and offer additional benefits by achieving sustained concentrations of therapeutic antibodies, which is particularly relevant to short-lived antibody fragments and next-generation, Fc-free, multispecific antibodies. In recent years, the use of engineered mRNA-based gene delivery has significantly increased in different therapeutic areas because of the advantages it possesses over traditional gene delivery platforms. The application of synthetic mRNA will allow for the avoidance of manufacturing problems associated with recombinant proteins and could be instrumental in consolidating regulatory approvals for next-generation therapeutic antibodies. Full article
13 pages, 295 KiB  
Article
From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry
by Darja Kanduc
Antibodies 2021, 10(4), 36; https://doi.org/10.3390/antib10040036 - 24 Sep 2021
Cited by 14 | Viewed by 5999
Abstract
The aim of this study was to investigate the role of molecular mimicry in the cytokine storms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human proteins endowed with anti-inflammatory activity were assembled and analyzed for peptide sharing with the SARS-CoV-2 spike [...] Read more.
The aim of this study was to investigate the role of molecular mimicry in the cytokine storms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human proteins endowed with anti-inflammatory activity were assembled and analyzed for peptide sharing with the SARS-CoV-2 spike glycoprotein (gp) using public databases. It was found that the SARS-CoV-2 spike gp shares numerous pentapeptides with anti-inflammatory proteins that, when altered, can lead to cytokine storms characterized by diverse disorders such as systemic multiorgan hyperinflammation, macrophage activation syndrome, ferritinemia, endothelial dysfunction, and acute respiratory syndrome. Immunologically, many shared peptides are part of experimentally validated epitopes and are also present in pathogens to which individuals may have been exposed following infections or vaccinal routes and of which the immune system has stored memory. Such an immunologic imprint might trigger powerful anamnestic secondary cross-reactive responses, thus explaining the raging of the cytokine storm that can occur following exposure to SARS-CoV-2. In conclusion, the results support molecular mimicry and the consequent cross-reactivity as a potential mechanism in SARS-CoV-2-induced cytokine storms, and highlight the role of immunological imprinting in determining high-affinity, high-avidity, autoimmune cross-reactions as a pathogenic sequela associated with anti-SARS-CoV-2 vaccines. Full article
Previous Issue
Next Issue
Back to TopTop