Immune-Mediated Necrotizing Myopathy (IMNM): A Story of Antibodies
Abstract
:1. Introduction
2. Anti-SRP and Anti-HMGCR Autoantibody as a Hallmark of Disease
3. Autoantibody Assays at the Heart of Diagnosis
4. Pathogenic Autoantibodies as Key Players in Mechanisms of Disease
5. B Cell and IgG Targeted Therapies as Therapeutic Perspectives
5.1. Treatments Targeting aAbs
5.2. Treatments Targeting Immune Cells
5.3. Treatments Targeting Inflammatory Cytokines
5.4. Other Treatments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohan, A.; Peter, J.B. Polymyositis and Dermatomyositis (First of Two Parts). N. Engl. J. Med. 1975, 292, 344–347. [Google Scholar] [CrossRef]
- Bohan, A.; Peter, J.B. Polymyositis and Dermatomyositis (Second of Two Parts). N. Engl. J. Med. 1975, 292, 403–407. [Google Scholar] [CrossRef]
- Hoogendijk, J.E.; Amato, A.A.; Lecky, B.R.; Choy, E.H.; Lundberg, I.E.; Rose, M.R.; Vencovsky, J.; de Visser, M.; Hughes, R.A. 119th ENMC International Workshop: Trial Design in Adult Idiopathic Inflammatory Myopathies, with the Exception of Inclusion Body Myositis, 10–12 October 2003, Naarden, The Netherlands. Neuromuscul. Disord. 2004, 14, 337–345. [Google Scholar] [CrossRef]
- McHugh, N.J.; Tansley, S.L. Autoantibodies in Myositis. Nat. Rev. Rheumatol. 2018, 14, 290–302. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Tjärnlund, A.; Bottai, M.; Werth, V.P.; Pilkington, C.; de Visser, M.; Alfredsson, L.; Amato, A.A.; Barohn, R.J.; Liang, M.H.; et al. 2017 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Adult and Juvenile Idiopathic Inflammatory Myopathies and Their Major Subgroups. Ann. Rheum. Dis. 2017, 76, 1955–1964. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, A.; Chinoy, H. Recent Developments in Classification Criteria and Diagnosis Guidelines for Idiopathic Inflammatory Myopathies. Curr. Opin. Rheumatol. 2018, 30, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Mariampillai, K.; Granger, B.; Amelin, D.; Guiguet, M.; Hachulla, E.; Maurier, F.; Meyer, A.; Tohmé, A.; Charuel, J.-L.; Musset, L.; et al. Development of a New Classification System for Idiopathic Inflammatory Myopathies Based on Clinical Manifestations and Myositis-Specific Autoantibodies. JAMA Neurol. 2018, 75, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.; Salameh, J.S.; Smith, T.; Souayah, N. Necrotizing Myopathies: An Update. J. Clin. Neuromuscul. Dis. 2015, 16, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Pinal-Fernandez, I.; Casal-Dominguez, M.; Carrino, J.A.; Lahouti, A.H.; Basharat, P.; Albayda, J.; Paik, J.J.; Ahlawat, S.; Danoff, S.K.; Lloyd, T.E.; et al. Thigh Muscle MRI in Immune-Mediated Necrotising Myopathy: Extensive Oedema, Early Muscle Damage and Role of Anti-SRP Autoantibodies as a Marker of Severity. Ann. Rheum. Dis. 2017, 76, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Allenbach, Y.; Benveniste, O.; Stenzel, W.; Boyer, O. Immune-Mediated Necrotizing Myopathy: Clinical Features and Pathogenesis. Nat. Rev. Rheumatol. 2020, 16, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Allenbach, Y.; Keraen, J.; Bouvier, A.-M.; Jooste, V.; Champtiaux, N.; Hervier, B.; Schoindre, Y.; Rigolet, A.; Gilardin, L.; Musset, L.; et al. High Risk of Cancer in Autoimmune Necrotizing Myopathies: Usefulness of Myositis Specific Antibody. Brain 2016, 139, 2131–2135. [Google Scholar] [CrossRef]
- Reeves, W.H.; Nigam, S.K.; Blobel, G. Human Autoantibodies Reactive with the Signal-Recognition Particle. Proc. Natl. Acad. Sci. USA 1986, 83, 9507–9511. [Google Scholar] [CrossRef]
- Keenan, R.J.; Freymann, D.M.; Stroud, R.M.; Walter, P. The Signal Recognition Particle. Annu. Rev. Biochem. 2001, 70, 755–775. [Google Scholar] [CrossRef]
- Benveniste, O.; Drouot, L.; Jouen, F.; Charuel, J.-L.; Bloch-Queyrat, C.; Behin, A.; Amoura, Z.; Marie, I.; Guiguet, M.; Eymard, B.; et al. Correlation of Anti-Signal Recognition Particle Autoantibody Levels with Creatine Kinase Activity in Patients with Necrotizing Myopathy. Arthritis Rheum. 2011, 63, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Duan, F.; Liu, P.; Wang, P.F.; Wang, M.X. Expression of Anti-SRP19 Antibody in Muscle Tissues from Patients with Autoimmune Necrotizing Myopathy. Genet. Mol. Res. 2016, 15, gmr.15038307. [Google Scholar] [CrossRef]
- Römisch, K.; Miller, F.W.; Dobberstein, B.; High, S. Human Autoantibodies against the 54 kDa Protein of the Signal Recognition Particle Block Function at Multiple Stages. Arthritis Res. Ther. 2006, 8, R39. [Google Scholar] [CrossRef] [PubMed]
- Apiwattanakul, M.; Milone, M.; Pittock, S.J.; Kryzer, T.J.; Fryer, J.P.; O’toole, O.; Mckeon, A.; Lennon, V.A. Signal Recognition Particle Immunoglobulin g Detected Incidentally Associates with Autoimmune Myopathy. Muscle Nerve 2016, 53, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Okano, T.; Matsui, T.; Watabe, H.; Ogasawara, T.; Kubo, K.; Kuwana, M.; Fertig, N.; Oddis, C.V.; Kondo, H.; et al. Novel Autoantibodies against 7SL RNA in Patients with Polymyositis/Dermatomyositis. J. Rheumatol. 2005, 32, 1727–1733. [Google Scholar] [PubMed]
- Christopher-Stine, L.; Casciola-Rosen, L.A.; Hong, G.; Chung, T.; Corse, A.M.; Mammen, A.L. A Novel Autoantibody Recognizing 200-Kd and 100-Kd Proteins Is Associated with an Immune-Mediated Necrotizing Myopathy. Arthritis Rheum. 2010, 62, 2757–2766. [Google Scholar] [CrossRef]
- Needham, M.; Fabian, V.; Knezevic, W.; Panegyres, P.; Zilko, P.; Mastaglia, F.L. Progressive Myopathy with Up-Regulation of MHC-I Associated with Statin Therapy. Neuromuscul. Disord. 2007, 17, 194–200. [Google Scholar] [CrossRef]
- Grable-Esposito, P.; Katzberg, H.D.; Greenberg, S.A.; Srinivasan, J.; Katz, J.; Amato, A.A. Immune-Mediated Necrotizing Myopathy Associated with Statins. Muscle Nerve 2010, 41, 185–190. [Google Scholar] [CrossRef]
- Liscum, L.; Finer-Moore, J.; Stroud, R.M.; Luskey, K.L.; Brown, M.S.; Goldstein, J.L. Domain Structure of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase, a Glycoprotein of the Endoplasmic Reticulum. J. Biol. Chem. 1985, 260, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Mammen, A.L.; Chung, T.; Christopher-Stine, L.; Rosen, P.; Rosen, A.; Doering, K.R.; Casciola-Rosen, L.A. Autoantibodies against 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase in Patients with Statin-Associated Autoimmune Myopathy. Arthritis Rheum. 2011, 63, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Cavazzana, I.; Fredi, M.; Ceribelli, A.; Mordenti, C.; Ferrari, F.; Carabellese, N.; Tincani, A.; Satoh, M.; Franceschini, F. Testing for Myositis Specific Autoantibodies: Comparison between Line Blot and Immunoprecipitation Assays in 57 Myositis Sera. J. Immunol. Methods 2016, 433, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Damoiseaux, J.; Vulsteke, J.-B.; Tseng, C.-W.; Platteel, A.C.M.; Piette, Y.; Shovman, O.; Bonroy, C.; Hamann, D.; De Langhe, E.; Musset, L.; et al. Autoantibodies in Idiopathic Inflammatory Myopathies: Clinical Associations and Laboratory Evaluation by Mono- and Multispecific Immunoassays. Autoimmun. Rev. 2019, 18, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, X.; Fieuws, S. Detection of Antinuclear Antibodies: Added Value of Solid Phase Assay? Ann. Rheum. Dis. 2014, 73, e10. [Google Scholar] [CrossRef] [PubMed]
- Infantino, M.; Tampoia, M.; Fabris, M.; Alessio, M.G.; Previtali, G.; Pesce, G.; Deleonardi, G.; Porcelli, B.; Musso, M.; Grossi, V.; et al. Combining Immunofluorescence with Immunoblot Assay Improves the Specificity of Autoantibody Testing for Myositis. Rheumatology 2019, 58, 1239–1244. [Google Scholar] [CrossRef]
- Damoiseaux, J.; Mammen, A.L.; Piette, Y.; Benveniste, O.; Allenbach, Y.; on behalf of the ENMC 256th Workshop Study Group. 256th ENMC International Workshop: Myositis Specific and Associated Autoantibodies (MSA-ab): Amsterdam, The Netherlands, 8–10 October 2021. Neuromuscul. Disord. 2022, 32, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Tiniakou, E.; Pinal-Fernandez, I.; Lloyd, T.E.; Albayda, J.; Paik, J.; Werner, J.L.; Parks, C.A.; Casciola-Rosen, L.; Christopher-Stine, L.; Mammen, A.L. More Severe Disease and Slower Recovery in Younger Patients with Anti-3-Hydroxy-3-methylglutaryl-coenzyme A Reductase-Associated Autoimmune Myopathy. Rheumatology 2017, 56, 787–794. [Google Scholar] [CrossRef]
- Kadoya, M.; Hida, A.; Hashimoto Maeda, M.; Taira, K.; Ikenaga, C.; Uchio, N.; Kubota, A.; Kaida, K.; Miwa, Y.; Kurasawa, K.; et al. Cancer Association as a Risk Factor for Anti-HMGCR Antibody-Positive Myopathy. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e290. [Google Scholar] [CrossRef]
- Isenberg, D.A.; Dudeney, C.; Williams, W.; Todd-Pokropek, A.; Stollar, B.D. Disease Activity in Systemic Lupus Erythematosus Related to a Range of Antibodies Binding DNA and Synthetic Polynucleotides. Ann. Rheum. Dis. 1988, 47, 717–724. [Google Scholar] [CrossRef]
- Allenbach, Y.; Drouot, L.; Rigolet, A.; Charuel, J.L.; Jouen, F.; Romero, N.B.; Maisonobe, T.; Dubourg, O.; Behin, A.; Laforet, P.; et al. Anti-HMGCR Autoantibodies in European Patients with Autoimmune Necrotizing Myopathies: Inconstant Exposure to Statin. Medicine 2014, 93, 150–157. [Google Scholar] [CrossRef]
- Werner, J.L.; Christopher-Stine, L.; Ghazarian, S.R.; Pak, K.S.; Kus, J.E.; Daya, N.R.; Lloyd, T.E.; Mammen, A.L. Antibody Levels Correlate with Creatine Kinase Levels and Strength in Anti-3-Hydroxy-3-methylglutaryl-coenzyme A Reductase-Associated Autoimmune Myopathy. Arthritis Rheum. 2012, 64, 4087–4093. [Google Scholar] [CrossRef]
- Arlet, J.-B.; Dimitri, D.; Pagnoux, C.; Boyer, O.; Maisonobe, T.; Authier, F.-J.; Bloch-Queyrat, C.; Goulvestre, C.; Heshmati, F.; Atassi, M.; et al. Marked Efficacy of a Therapeutic Strategy Associating Prednisone and Plasma Exchange Followed by Rituximab in Two Patients with Refractory Myopathy Associated with Antibodies to the Signal Recognition Particle (SRP). Neuromuscul. Disord. 2006, 16, 334–336. [Google Scholar] [CrossRef]
- Rojana-udomsart, A.; Mitrpant, C.; Bundell, C.; Price, L.; Luo, Y.-B.; Fabian, V.; Wilton, S.D.; Hollingsworth, P.; Mastaglia, F.L. Complement-Mediated Muscle Cell Lysis: A Possible Mechanism of Myonecrosis in Anti-SRP Associated Necrotizing Myopathy (ASANM). J. Neuroimmunol. 2013, 264, 65–70. [Google Scholar] [CrossRef]
- Arouche-Delaperche, L.; Allenbach, Y.; Amelin, D.; Preusse, C.; Mouly, V.; Mauhin, W.; Tchoupou, G.D.; Drouot, L.; Boyer, O.; Stenzel, W.; et al. Pathogenic Role of Anti-Signal Recognition Protein and Anti-3-Hydroxy-3-methylglutaryl-CoA Reductase Antibodies in Necrotizing Myopathies: Myofiber Atrophy and Impairment of Muscle Regeneration in Necrotizing Autoimmune Myopathies. Ann. Neurol. 2017, 81, 538–548. [Google Scholar] [CrossRef]
- Ohashi, K.; Osuga, J.; Tozawa, R.; Kitamine, T.; Yagyu, H.; Sekiya, M.; Tomita, S.; Okazaki, H.; Tamura, Y.; Yahagi, N.; et al. Early Embryonic Lethality Caused by Targeted Disruption of the 3-Hydroxy-3-methylglutaryl-CoA Reductase Gene. J. Biol. Chem. 2003, 278, 42936–42941. [Google Scholar] [CrossRef]
- Osaki, Y.; Nakagawa, Y.; Miyahara, S.; Iwasaki, H.; Ishii, A.; Matsuzaka, T.; Kobayashi, K.; Yatoh, S.; Takahashi, A.; Yahagi, N.; et al. Skeletal Muscle-Specific HMG-CoA Reductase Knockout Mice Exhibit Rhabdomyolysis: A Model for Statin-Induced Myopathy. Biochem. Biophys. Res. Commun. 2015, 466, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Bergua, C.; Chiavelli, H.; Allenbach, Y.; Arouche-Delaperche, L.; Arnoult, C.; Bourdenet, G.; Jean, L.; Zoubairi, R.; Guerout, N.; Mahler, M.; et al. In Vivo Pathogenicity of IgG from Patients with Anti-SRP or Anti-HMGCR Autoantibodies in Immune-Mediated Necrotising Myopathy. Ann. Rheum. Dis. 2019, 78, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Allenbach, Y.; Arouche-Delaperche, L.; Preusse, C.; Radbruch, H.; Butler-Browne, G.; Champtiaux, N.; Mariampillai, K.; Rigolet, A.; Hufnagl, P.; Zerbe, N.; et al. Necrosis in Anti-SRP+ and Anti-HMGCR+myopathies: Role of Autoantibodies and Complement. Neurology 2018, 90, e507–e517. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Choi, D.-K.; Shin, J.-Y.; Shin, S.-M.; Park, S.-W.; Cho, H.-S.; Kim, Y.-S. Endosomal Acidic pH-Induced Conformational Changes of a Cytosol-Penetrating Antibody Mediate Endosomal Escape. J. Control. Release 2016, 235, 165–175. [Google Scholar] [CrossRef]
- Rider, L.G.; Koziol, D.; Giannini, E.H.; Jain, M.S.; Smith, M.R.; Whitney-Mahoney, K.; Feldman, B.M.; Wright, S.J.; Lindsley, C.B.; Pachman, L.M.; et al. Validation of Manual Muscle Testing and a Subset of Eight Muscles (MMT8) for Adult and Juvenile Idiopathic Inflammatory Myopathies. Arthritis Care Res. 2010, 62, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Fionda, L.; Vanoli, F.; Di Pasquale, A.; Leonardi, L.; Morino, S.; Merlonghi, G.; Lauletta, A.; Alfieri, G.; Costanzo, R.; Tufano, L.; et al. Comparison of Quantitative Muscle Ultrasound and Whole-Body Muscle MRI in Facioscapulohumeral Muscular Dystrophy Type 1 Patients. Neurol. Sci. 2023, 44, 4057–4064. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Troyanov, Y.; Drouin, J.; Oligny-Longpré, G.; Landon-Cardinal, O.; Hoa, S.; Hervier, B.; Bourré-Tessier, J.; Mansour, A.-M.; Hussein, S.; et al. Statin-Induced Anti-HMGCR Myopathy: Successful Therapeutic Strategies for Corticosteroid-Free Remission in 55 Patients. Arthritis Res. Ther. 2020, 22, 5. [Google Scholar] [CrossRef]
- Kruse, R.L.; Albayda, J.; Vozniak, S.O.; Lawrence, C.E.; Goel, R.; Lokhandwala, P.M.; Ness, P.M.; Tobian, A.A.R.; Bloch, E.M.; Crowe, E.P. Therapeutic Plasma Exchange for the Treatment of Refractory Necrotizing Autoimmune Myopathy. J. Clin. Apher. 2022, 37, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Landon-Cardinal, O.; Allenbach, Y.; Soulages, A.; Rigolet, A.; Hervier, B.; Champtiaux, N.; Monzani, Q.; Solé, G.; Benveniste, O. Rituximab in the Treatment of Refractory Anti-HMGCR Immune-Mediated Necrotizing Myopathy. J. Rheumatol. 2019, 46, 623–627. [Google Scholar] [CrossRef]
- Allenbach, Y.; Mammen, A.L.; Benveniste, O.; Stenzel, W.; on behalf of the Immune-Mediated Necrotizing Myopathies Working Group. 224th ENMC International Workshop: Clinico-Sero-Pathological Classification of Immune-Mediated Necrotizing Myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscul. Disord. 2018, 28, 87–99. [Google Scholar] [CrossRef]
- Menon, D.; Bril, V. Pharmacotherapy of Generalized Myasthenia Gravis with Special Emphasis on Newer Biologicals. Drugs 2022, 82, 865–887. [Google Scholar] [CrossRef]
- Miyasaka, N.; Hara, M.; Koike, T.; Saito, E.; Yamada, M.; Tanaka, Y.; GB-0998 Study Group. Effects of Intravenous Immunoglobulin Therapy in Japanese Patients with Polymyositis and Dermatomyositis Resistant to Corticosteroids: A Randomized Double-Blind Placebo-Controlled Trial. Mod. Rheumatol. 2012, 22, 382–393. [Google Scholar] [CrossRef]
- Kamperman, R.G.; Bogaards, J.A.; Evers, S.W.; Walter, H.A.W.; de Visser, M.; de Borgie, C.; Colen-de Koning, J.C.A.; Verhamme, C.; Maas, M.; Eftimov, F.; et al. Treatment with Add-on IVIg in Myositis Early In the diSease Course May Be sUperior to Steroids Alone for Reaching CLinical improvEment (TIME IS MUSCLE): Study Protocol of a Phase-2 Double-Blind Placebo-Controlled Randomised Trial. BMJ Open 2023, 13, e067435. [Google Scholar] [CrossRef]
- Blumberg, L.J.; Humphries, J.E.; Jones, S.D.; Pearce, L.B.; Holgate, R.; Hearn, A.; Cheung, J.; Mahmood, A.; Del Tito, B.; Graydon, J.S.; et al. Blocking FcRn in Humans Reduces Circulating IgG Levels and Inhibits IgG Immune Complex-Mediated Immune Responses. Sci. Adv. 2019, 5, eaax9586. [Google Scholar] [CrossRef]
- Howard, J.F.; Bril, V.; Vu, T.; Karam, C.; Peric, S.; Margania, T.; Murai, H.; Bilinska, M.; Shakarishvili, R.; Smilowski, M.; et al. Safety, Efficacy, and Tolerability of Efgartigimod in Patients with Generalised Myasthenia Gravis (ADAPT): A Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Neurol. 2021, 20, 526–536. [Google Scholar] [CrossRef]
- Julien, S.; van der Woning, B.; De Ceuninck, L.; Briand, E.; Jaworski, T.; Roussel, G.; Zoubaïri, R.; Allenbach, Y.; Benveniste, O.; Drouot, L.; et al. Efgartigimod Restores Muscle Function in a Humanized Mouse Model of Immune-Mediated Necrotizing Myopathy. Rheumatology 2023, 62, 4006–4011. [Google Scholar] [CrossRef]
- Smith, B.; Kiessling, A.; Lledo-Garcia, R.; Dixon, K.L.; Christodoulou, L.; Catley, M.C.; Atherfold, P.; D’Hooghe, L.E.; Finney, H.; Greenslade, K.; et al. Generation and Characterization of a High Affinity Anti-Human FcRn Antibody, Rozanolixizumab, and the Effects of Different Molecular Formats on the Reduction of Plasma IgG Concentration. mAbs 2018, 10, 1111–1130. [Google Scholar] [CrossRef]
- Peter, H.-H.; Ochs, H.D.; Cunningham-Rundles, C.; Vinh, D.C.; Kiessling, P.; Greve, B.; Jolles, S. Targeting FcRn for Immunomodulation: Benefits, Risks, and Practical Considerations. J. Allergy Clin. Immunol. 2020, 146, 479–491.e5. [Google Scholar] [CrossRef]
- Ulrichts, P.; Guglietta, A.; Dreier, T.; van Bragt, T.; Hanssens, V.; Hofman, E.; Vankerckhoven, B.; Verheesen, P.; Ongenae, N.; Lykhopiy, V.; et al. Neonatal Fc Receptor Antagonist Efgartigimod Safely and Sustainably Reduces IgGs in Humans. J. Clin. Investig. 2018, 128, 4372–4386. [Google Scholar] [CrossRef] [PubMed]
- Newland, A.C.; Sánchez-González, B.; Rejtő, L.; Egyed, M.; Romanyuk, N.; Godar, M.; Verschueren, K.; Gandini, D.; Ulrichts, P.; Beauchamp, J.; et al. Phase 2 Study of Efgartigimod, a Novel FcRn Antagonist, in Adult Patients with Primary Immune Thrombocytopenia. Am. J. Hematol. 2020, 95, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Goebeler, M.; Bata-Csörgő, Z.; De Simone, C.; Didona, B.; Remenyik, E.; Reznichenko, N.; Stoevesandt, J.; Ward, E.S.; Parys, W.; de Haard, H.; et al. Treatment of Pemphigus Vulgaris and Foliaceus with Efgartigimod, a Neonatal Fc Receptor Inhibitor: A Phase II Multicentre, Open-Label Feasibility Trial. Br. J. Dermatol. 2022, 186, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Devanaboyina, S.C.; Khare, P.; Challa, D.K.; Ober, R.J.; Ward, E.S. Engineered Clearing Agents for the Selective Depletion of Antigen-Specific Antibodies. Nat. Commun. 2017, 8, 15314. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Khare, P.; Wang, X.; Challa, D.K.; Greenberg, B.M.; Ober, R.J.; Ward, E.S. Selective Depletion of Antigen-Specific Antibodies for the Treatment of Demyelinating Disease. Mol. Ther. 2021, 29, 1312–1323. [Google Scholar] [CrossRef]
- Pickering, M.C.; Ismajli, M.; Condon, M.B.; McKenna, N.; Hall, A.E.; Lightstone, L.; Terence Cook, H.; Cairns, T.D. Eculizumab as Rescue Therapy in Severe Resistant Lupus Nephritis. Rheumatology 2015, 54, 2286–2288. [Google Scholar] [CrossRef]
- Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; et al. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 614–625. [Google Scholar] [CrossRef]
- Mammen, A.L.; Amato, A.A.; Dimachkie, M.M.; Chinoy, H.; Hussain, Y.; Lilleker, J.B.; Pinal-Fernandez, I.; Allenbach, Y.; Boroojerdi, B.; Vanderkelen, M.; et al. Zilucoplan in Immune-Mediated Necrotising Myopathy: A Phase 2, Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial. Lancet Rheumatol. 2023, 5, e67–e76. [Google Scholar] [CrossRef]
- Julien, S.; Vadysirisack, D.; Sayegh, C.; Ragunathan, S.; Tang, Y.; Briand, E.; Carrette, M.; Jean, L.; Zoubairi, R.; Gondé, H.; et al. Prevention of Anti-HMGCR Immune-Mediated Necrotising Myopathy by C5 Complement Inhibition in a Humanised Mouse Model. Biomedicines 2022, 10, 2036. [Google Scholar] [CrossRef]
- Oddis, C.V.; Reed, A.M.; Aggarwal, R.; Rider, L.G.; Ascherman, D.P.; Levesque, M.C.; Barohn, R.J.; Feldman, B.M.; Harris-Love, M.O.; Koontz, D.C.; et al. Rituximab in the Treatment of Refractory Adult and Juvenile Dermatomyositis and Adult Polymyositis: A Randomized, Placebo-Phase Trial. Arthritis Rheum. 2013, 65, 314–324. [Google Scholar] [CrossRef]
- Allenbach, Y.; Guiguet, M.; Rigolet, A.; Marie, I.; Hachulla, E.; Drouot, L.; Jouen, F.; Jacquot, S.; Mariampillai, K.; Musset, L.; et al. Efficacy of Rituximab in Refractory Inflammatory Myopathies Associated with Anti- Synthetase Auto-Antibodies: An Open-Label, Phase II Trial. PLoS ONE 2015, 10, e0133702. [Google Scholar] [CrossRef]
- Maher, T.M.; Tudor, V.A.; Saunders, P.; Gibbons, M.A.; Fletcher, S.V.; Denton, C.P.; Hoyles, R.K.; Parfrey, H.; Renzoni, E.A.; Kokosi, M.; et al. Rituximab versus Intravenous Cyclophosphamide in Patients with Connective Tissue Disease-Associated Interstitial Lung Disease in the UK (RECITAL): A Double-Blind, Double-Dummy, Randomised, Controlled, Phase 2b Trial. Lancet Respir. Med. 2023, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Marder, G.; Quach, T.; Chadha, P.; Nandkumar, P.; Tsang, J.; Levine, T.; Schiopu, E.; Furie, R.; Davidson, A.; Narain, S. Belimumab Treatment of Adult Idiopathic Inflammatory Myopathy. Rheumatology 2023, kead281. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Q.; Pu, C.; Zhu, K.; Lu, C.; Jiang, Y.; Xiao, L.; Han, Y.; Lu, L. Therapeutic Efficacy of Anti-CD19 CAR-T Cells in a Mouse Model of Systemic Lupus Erythematosus. Cell. Mol. Immunol. 2021, 18, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Mackensen, A.; Müller, F.; Mougiakakos, D.; Böltz, S.; Wilhelm, A.; Aigner, M.; Völkl, S.; Simon, D.; Kleyer, A.; Munoz, L.; et al. Anti-CD19 CAR T Cell Therapy for Refractory Systemic Lupus Erythematosus. Nat. Med. 2022, 28, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Müller, F.; Boeltz, S.; Knitza, J.; Aigner, M.; Völkl, S.; Kharboutli, S.; Reimann, H.; Taubmann, J.; Kretschmann, S.; Rösler, W.; et al. CD19-Targeted CAR T Cells in Refractory Antisynthetase Syndrome. Lancet 2023, 401, 815–818. [Google Scholar] [CrossRef] [PubMed]
- FDA Investigating CAR-Related T-Cell Malignancies. Cancer Discov. 2024, 14, 9–10. [CrossRef] [PubMed]
- Qin, C.; Tian, D.-S.; Zhou, L.-Q.; Shang, K.; Huang, L.; Dong, M.-H.; You, Y.-F.; Xiao, J.; Xiong, Y.; Wang, W.; et al. Anti-BCMA CAR T-Cell Therapy CT103A in Relapsed or Refractory AQP4-IgG Seropositive Neuromyelitis Optica Spectrum Disorders: Phase 1 Trial Interim Results. Signal Transduct. Target. Ther. 2023, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Tjärnlund, A.; Tang, Q.; Wick, C.; Dastmalchi, M.; Mann, H.; Tomasová Studýnková, J.; Chura, R.; Gullick, N.J.; Salerno, R.; Rönnelid, J.; et al. Abatacept in the Treatment of Adult Dermatomyositis and Polymyositis: A Randomised, Phase IIb Treatment Delayed-Start Trial. Ann. Rheum. Dis. 2018, 77, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Ramsköld, D.; Krystufkova, O.; Mann, H.F.; Wick, C.; Dastmalchi, M.; Lakshmikanth, T.; Chen, Y.; Mikes, J.; Alexanderson, H.; et al. Effect of CTLA4-Ig (Abatacept) Treatment on T Cells and B Cells in Peripheral Blood of Patients with Polymyositis and Dermatomyositis. Scand. J. Immunol. 2019, 89, e12732. [Google Scholar] [CrossRef] [PubMed]
- Collison, J. Low-Dose IL-2 Therapy for Autoimmune Diseases. Nat. Rev. Rheumatol. 2019, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Li, Y.; Huang, B.; Chen, J.; Jin, Y.; Shao, M.; Zhang, X.; Sun, X.; He, J.; Li, Z. Treatment of Active Idiopathic Inflammatory Myopathies by Low-Dose Interleukin-2: A Prospective Cohort Pilot Study. Rheumatol. Ther. 2021, 8, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Studynkova, J.; Mann, H.; Jarosova, K.; Blumhardt, S.; Maurer, B.; Dastmalchi, M.; Danko, K.; Wierkocka, K.; Olesinska, M.; Distler, O.; et al. OP0289 A Prospective, Randomized, Open-Label, Assessor-Blind, Multicenter Study of Efficacy and Safety of Combined Treatment of Methotrexate + Glucocorticoids versus Glucocorticoids Alone in Patients with Polymyositis and Dermatomyositis (Prometheus Trial). Ann. Rheum. Dis. 2014, 73, 171. [Google Scholar] [CrossRef]
- Takada, K.; Katada, Y.; Ito, S.; Hayashi, T.; Kishi, J.; Itoh, K.; Yamashita, H.; Hirakata, M.; Kawahata, K.; Kawakami, A.; et al. Impact of Adding Tacrolimus to Initial Treatment of Interstitial Pneumonitis in Polymyositis/Dermatomyositis: A Single-Arm Clinical Trial. Rheumatology 2020, 59, 1084–1093. [Google Scholar] [CrossRef]
- Muchamuel, T.; Fan, R.A.; Anderl, J.L.; Bomba, D.J.; Johnson, H.W.B.; Lowe, E.; Tuch, B.B.; McMinn, D.L.; Millare, B.; Kirk, C.J. Zetomipzomib (KZR-616) Attenuates Lupus in Mice via Modulation of Innate and Adaptive Immune Responses. Front. Immunol. 2023, 14, 1043680. [Google Scholar] [CrossRef]
- Rowland, S.L.; Riggs, J.M.; Gilfillan, S.; Bugatti, M.; Vermi, W.; Kolbeck, R.; Unanue, E.R.; Sanjuan, M.A.; Colonna, M. Early, Transient Depletion of Plasmacytoid Dendritic Cells Ameliorates Autoimmunity in a Lupus Model. J. Exp. Med. 2014, 211, 1977–1991. [Google Scholar] [CrossRef]
- Karnell, J.L.; Wu, Y.; Mittereder, N.; Smith, M.A.; Gunsior, M.; Yan, L.; Casey, K.A.; Henault, J.; Riggs, J.M.; Nicholson, S.M.; et al. Depleting Plasmacytoid Dendritic Cells Reduces Local Type I Interferon Responses and Disease Activity in Patients with Cutaneous Lupus. Sci. Transl. Med. 2021, 13, eabf8442. [Google Scholar] [CrossRef]
- Higgs, B.W.; Zhu, W.; Morehouse, C.; White, W.I.; Brohawn, P.; Guo, X.; Rebelatto, M.; Le, C.; Amato, A.; Fiorentino, D.; et al. A Phase 1b Clinical Trial Evaluating Sifalimumab, an Anti-IFN-α Monoclonal Antibody, Shows Target Neutralisation of a Type I IFN Signature in Blood of Dermatomyositis and Polymyositis Patients. Ann. Rheum. Dis. 2014, 73, 256–262. [Google Scholar] [CrossRef]
- Cappelletti, C.; Brugnoni, R.; Bonanno, S.; Andreetta, F.; Salerno, F.; Canioni, E.; Vattemi, G.N.A.; Tonin, P.; Mantegazza, R.; Maggi, L. Toll-like Receptors and IL-7 as Potential Biomarkers for Immune-Mediated Necrotizing Myopathies. Eur. J. Immunol. 2023, 53, 2250326. [Google Scholar] [CrossRef]
- Ang, P.S.; Ezenwa, E.; Ko, K.; Hoffman, M.D. Refractory Dermatomyositis Responsive to Anifrolumab. JAAD Case Rep. 2023, 43, 27–29. [Google Scholar] [CrossRef]
- Alonso-Pérez, J.; Carrasco-Rozas, A.; Borrell-Pages, M.; Fernández-Simón, E.; Piñol-Jurado, P.; Badimon, L.; Wollin, L.; Lleixà, C.; Gallardo, E.; Olivé, M.; et al. Nintedanib Reduces Muscle Fibrosis and Improves Muscle Function of the Alpha-Sarcoglycan-Deficient Mice. Biomedicines 2022, 10, 2629. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, M.; Li, T.; Dong, N.; Yi, L.; Zhang, Q.; Mi, M. GLP-1 Regulates Exercise Endurance and Skeletal Muscle Remodeling via GLP-1R/AMPK Pathway. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2022, 1869, 119300. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, M.; Mizoguchi, F.; Yasuda, S. Amelioration of Inflammatory Myopathies by Glucagon-like Peptide-1 Receptor Agonist via Suppressing Muscle Fibre Necroptosis. J. Cachexia Sarcopenia Muscle 2022, 13, 2118–2131. [Google Scholar] [CrossRef] [PubMed]
- López-Armada, M.J.; Riveiro-Naveira, R.R.; Vaamonde-García, C.; Valcárcel-Ares, M.N. Mitochondrial Dysfunction and the Inflammatory Response. Mitochondrion 2013, 13, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-H.; Kim, S.; Kim, Y.; Lee, S.-E.; Park, J.H.; Cho, G.; Ha, J.-C.; Jung, H.; Lim, S.-M.; Han, K.; et al. Erratum to: Human Umbilical Cord Mesenchymal Stem Cell-Derived Mitochondria (PN-101) Attenuate LPS-Induced Inflammatory Responses by Inhibiting NFκB Signaling Pathway. BMB Rep. 2022, 55, 136–141, Erratum in BMB Rep. 2022, 55, 361. [Google Scholar] [CrossRef]
N° Trial | Sponsor | Mono/ Multicentric | Phase | Molecule | Number of Patients | Status | Start Date | Completion Date |
---|---|---|---|---|---|---|---|---|
NCT05832034 | Academisch Medisch Centrum—Universiteit van Amsterdam | Monocentric | Phase 2 | IVIg | 48 | Recruiting | 13 September 2021 | - |
NCT04450654 | University of Washington | Monocentric | Phase 2 | IVIg | Withdrawn | 1 May 2022 | 25 July 2022 | |
NCT05523167 | ArgenX | Multicentric | Phase 2/3 | Efgartigimod | 240 | Recruiting | 12 October 2022 | - |
NCT05979441 | ArgenX | Multicentric | Phase 3 | Efgartigimod | 240 | Recruiting | 12 September 2023 | - |
NCT05379634 | Janssen Research & Development, LLC | Multicentric | Phase 2 | Nipocalimab | 200 | Recruiting | 5 July 2022 | - |
NCT04025632 | Ra Pharmaceuticals | Multicentric | Phase 2 | Zilucoplan | 27 | Completed | 7 November 2019 | 14 June 2021 |
NCT00774462 | Assistance Publique—Hôpitaux de Paris | Monocentric | Phase 2 | Rituximab | 30 | Completed | 1 January 2008 | 1 December 2011 |
NCT02347891 | Northwell Health (New York) | Monocentric | Phase 2/3 | belimumab | 60 | Unknown status | 1 January 2015 | - |
NCT06056921 | Chongqing Precision Biotech Co., Ltd. | Monocentric | Phase 1 | CAR-T CD19 | 24 | Recruiting | 31 August 2023 | - |
NCT04561557 | Tongji Hospital | Monocentric | Phase 1 | CT103 Cells (CAR-T anti-BCMA) | 18 | Recruiting | 22 September 2020 | - |
NCT05859997 | Bioray Laboratories | Monocentric | Phase 1/2 | UCAR-T BRL-301 (anti-BCMA) | 15 | Recruiting | 17 May 2023 | - |
NCT06154252 | Cabaletta Bio | Monocentric | Phase 1/2 | CAR-T CD19 (CABA-201) | 18 | Recruiting | 17 November 2023 | - |
NCT02971683 | Bristol-Myers Squibb | Multicentric | Phase 3 | Abatacept | 149 | Terminated | 4 April 2017 | 2 August 2022 |
NCT05799755 | University of Pittsburgh | Multicentric | Phase 4 | Nintedanib | 134 | Recruiting | 1 August 2023 | - |
NCT03092180 | University Sao paulo | Monocentric | Observationnal | Glucocorticoid | 60 | Recruiting | 1 January 2005 | - |
NCT04062019 | Peking University People’s Hospital | Monocentric | Phase 2 | IL-2 | 15 | Recruiting | 30 August 2019 | - |
NCT04486261 | Rigshospitalet, Denmark | Monocentric | NA | Non pharmacological | 34 | Active not recruiting | 30 August 2021 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Julien, S.; Challier, I.; Malleter, M.; Jouen, F.; Drouot, L.; Boyer, O. Immune-Mediated Necrotizing Myopathy (IMNM): A Story of Antibodies. Antibodies 2024, 13, 12. https://doi.org/10.3390/antib13010012
Julien S, Challier I, Malleter M, Jouen F, Drouot L, Boyer O. Immune-Mediated Necrotizing Myopathy (IMNM): A Story of Antibodies. Antibodies. 2024; 13(1):12. https://doi.org/10.3390/antib13010012
Chicago/Turabian StyleJulien, Sarah, Inès Challier, Marine Malleter, Fabienne Jouen, Laurent Drouot, and Olivier Boyer. 2024. "Immune-Mediated Necrotizing Myopathy (IMNM): A Story of Antibodies" Antibodies 13, no. 1: 12. https://doi.org/10.3390/antib13010012
APA StyleJulien, S., Challier, I., Malleter, M., Jouen, F., Drouot, L., & Boyer, O. (2024). Immune-Mediated Necrotizing Myopathy (IMNM): A Story of Antibodies. Antibodies, 13(1), 12. https://doi.org/10.3390/antib13010012