Transcriptome Analysis Reveals the Induction of Apoptosis-Related Genes by a Monoclonal Antibody against a New Epitope of CD99 on T-Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells, Cell Lines and Antibodies
2.2. Cell Apoptosis Assay
2.3. RNA Extraction
2.4. mRNA Library Constructing and Sequencing
2.5. RNA-Sequencing Data Analysis
2.6. Real-Time Quantitative RT-PCR
- FOS—Fw: 5′-CTTACTACCACTCACCCGCA-3′
- FOS—Rv: 5′-AGTGACCGTGGGAATGAAGT-3′
- TNF—Fw: 5′-TGCACTTTGGAGTGATCGGC-3′
- TNF—Rv: 5′-ACTCGGGGTTCGAGAAGATG-3′
- FASLG—Fw: 5′-TACCAGCCAGATGCACACAG-3′
- FASLG—Rv: 5′-GGCATGGACCTTGAGTTGGA-3′
- BCL2A1—Fw: 5′-GATAAGGCAAAACGGAGGCTG-3′
- BCL2A1—Rv: 5′-ATGGAGTGTCCTTTCTGGTCAA-3′
- JUNB—Fw: 5′-AACAGCCCTTCTACCACGAC-3′
- JUNB—Rv: 5′-CAGGCTCGGTTTCAGGAGTT-3′
- SOCS1—Fw: 5′-AGCTGCACGGCTCCTG-3′
- SOCS1—Rv: 5′-TGTGGAGACTGCATTGTCGG-3′
- IL27RA—Fw: 5′-ACTTGAACTGCTCGTGGGAG-3′
- IL27RA—Rv: 5′-CCTTAGTGCCCCAGACAAGG-3′
- PTPN6—Fw: 5′-ACCTCAAGTACCCGCTGAAC-3′
- PTPN6—Rv: 5′-GGCTCTCACGCACAAGAAAC-3′
- PDGFA—Fw: 5′-TACCTCGCCCATGTTCTGGC-3′
- PDGFA—Rv: 5′-TCCCTACGGAGTCTATCTCCAGG-3′
- NR4A1—Fw: 5′-CCACATTGTTGCCAAGACCTG-3′
- NR4A1—Rv: 5′-CTGGTGTCCCATATTGGGCTT-3′
- SGK1—Fw: 5′-GGCATGGTGGCAATTCTCATCG-3′
- SGK1—Rv: 5′-AGGTTGATTTGCTGAGAAGGACT-3′
- LPAR5—Fw: 5′-CGCAGAGCAACACGGA-3′
- LPAR5—Rv: 5′-GGTCATGGGAATGTGGGCTA-3′
- LTB—Fw: 5′-CAGCAAGGACTGGGGTTTC-3′
- LTB—Rv: 5′-GCCTGTTCCTTCGTCGTCT-3′
- GAPDH—Fw: 5′-GCAAATTCCATGGCACCGT-3′
- GAPDH—Rv: 5′-TCGCCCCACTTGATTTTGG-3′
2.7. Epitope Mapping via Phage Display Random Peptide Library
2.8. Epitope Mapping via Overlapping Peptide Libraries
2.9. Statistical Analysis
3. Results
3.1. mAb MT99/3 Strongly Induces Apoptosis in T-Acute Lymphoblastic Leukemia Cell Lines
3.2. mAb MT99/3-Induced Differential Gene Expression
3.3. Analysis of KEGG Pathway Enrichment of DEGs
3.4. DEGs Were Verified by RT-qPCR
3.5. Identification of CD99 Epitope Recognized by mAb MT99/3
4. Discussion
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, L.C.; Dunphy, C.H. Immunoreactivity of MIC2 (CD99) and terminal deoxynucleotidyl transferase in bone marrow clot and core specimens of acute myeloid leukemias and myelodysplastic syndromes. Arch. Pathol. Lab. Med. 2006, 130, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Dworzak, M.N.; Fröschl, G.; Printz, D.; Zen, L.D.; Gaipa, G.; Ratei, R.; Basso, G.; Biondi, A.; Ludwig, W.D.; Gadner, H.; et al. CD99 expression in T-lineage ALL: Implications for flow cytometric detection of minimal residual disease. Leukemia 2004, 18, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Jonart, L.M.; Ostergaard, J.; Gordon, P.M. CD99 antibody disrupts T-cell acute lymphoblastic leukemia adhesion to meningeal cells and attenuates chemoresistance. Sci. Rep. 2021, 11, 24374. [Google Scholar] [CrossRef]
- Waclavicek, M.; Majdic, O.; Stulnig, T.; Berger, M.; Sunder-Plassmann, R.; Zlabinger, G.J.; Baumruker, T.; Stockl, J.; Ebner, C.; Knapp, W.; et al. CD99 engagement on human peripheral blood T cells results in TCR/CD3-dependent cellular activation and allows for Th1-restricted cytokine production. J. Immunol. 1998, 161, 4671–4678. [Google Scholar] [CrossRef]
- Kim, M.K.; Choi, Y.L.; Kim, M.K.; Kim, S.H.; Choi, E.Y.; Park, W.S.; Bae, Y.M.; Woo, S.K.; Park, S.H. MHC class II engagement inhibits CD99-induced apoptosis and up-regulation of T cell receptor and MHC molecules in human thymocytes and T cell line. FEBS Lett. 2003, 546, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.M.; Dhimolea, E. The future of antibodies as cancer drugs. Drug Discov. Today. 2012, 17, 954–963. [Google Scholar] [CrossRef]
- Kozani, P.; Naseri, A.; Kozani, P.; Khatami, S.; Sheikhi, A. Monoclonal Antibodies (mAbs) Approved for Cancer Treatment in the 2020s. Trends Med. Sci. 2021, 1, e116686. [Google Scholar] [CrossRef]
- Bayon-Calderon, F.; Toribio, M.L.; Gonzalez-Garcia, S. Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2020, 21, 7685. [Google Scholar] [CrossRef]
- Scherer, L.D.; Brenner, M.K.; Mamonkin, M. Chimeric Antigen Receptors for T-Cell Malignancies. Front. Oncol. 2019, 9, 126. [Google Scholar] [CrossRef]
- Yu, F.; Liu, G.; Zhang, H.; Wang, X.; Wu, Z.; Xu, Q.; Wu, Y.; Chen, D. Cell Adhesion Molecule CD99 in Cancer Immunotherapy. Curr. Mol. Med. 2023, 23, 1028–1036. [Google Scholar] [CrossRef]
- Kotemul, K.; Kasinrerk, W.; Takheaw, N. CD99 tumor associated antigen is a potential target for antibody therapy of T-cell acute lymphoblastic leukemia. Explor. Target. Antitumor Ther. 2024, 5, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Alberti, I.; Bernard, G.; Rouquette-Jazdanian, A.K.; Pelassy, C.; Pourtein, M.; Aussel, C.; Bernard, A. CD99 isoforms expression dictates T cell functional outcomes. FASEB J. 2002, 16, 1946–1948. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, R.D.; Bernard, G.; Olafsen, M.K.; Pourtein, M.; Lie, S.O. CD99 signals caspase-independent T cell death. J. Immunol. 2001, 166, 4931–4942. [Google Scholar] [CrossRef]
- Romero, L.A.; Hattori, T.; Ali, M.A.E.; Ketavarapu, G.; Koide, A.; Park, C.Y.; Koide, S. High-valency Anti-CD99 Antibodies Toward the Treatment of T Cell Acute Lymphoblastic Leukemia. J. Mol. Biol. 2022, 434, 167402. [Google Scholar] [CrossRef] [PubMed]
- Kasinrerk, W.; Tokrasinwit, N.; Moonsom, S.; Stockinger, H. CD99 monoclonal antibody induce homotypic adhesion of Jurkat cells through protein tyrosine kinase and protein kinase C-dependent pathway. Immunol. Lett. 2000, 71, 33–41. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Kay, B.K.; Kasanov, J.; Yamabhai, M. Screening Phage-Displayed Combinatorial Peptide Libraries. Methods 2001, 24, 240–246. [Google Scholar] [CrossRef]
- Srila, W.; Yamabhai, M. Identification of amino acid residues responsible for the binding to anti-FLAG™ M2 antibody using a phage display combinatorial peptide library. Appl. Biochem. Biotechnol. 2013, 171, 583–589. [Google Scholar] [CrossRef]
- Khoushab, F.; Jaruseranee, N.; Tanthanuch, W.; Yamabhai, M. Formation of chitin-based nanomaterials using a chitin-binding peptide selected by phage-display. Int. J. Biol. Macromol. 2012, 50, 1267–1274. [Google Scholar] [CrossRef]
- Hahn, J.H.; Kim, M.K.; Choi, E.Y.; Kim, S.H.; Sohn, H.W.; Ham, D.I.; Chung, D.H.; Kim, T.J.; Lee, W.J.; Park, C.K.; et al. CD99 (MIC2) regulates the LFA-1/ICAM-1-mediated adhesion of lymphocytes, and its gene encodes both positive and negative regulators of cellular adhesion. J. Immunol. 1997, 159, 2250–2258. [Google Scholar] [CrossRef] [PubMed]
- Bernard, G.; Breittmayer, J.P.; De Matteis, M.; Trampont, P.; Hofman, P.; Senik, A.; Bernard, A. Apoptosis of immature thymocytes mediated by E2/CD99. J. Immunol. 1997, 158, 2543–2550. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, M.; Lee, D.H.; Durham, B.; Chung, S.S.; Park, C.Y. Targeting CD99 in T-Cell Neoplasms with Monoclonal Antibodies. Blood 2015, 126, 2749. [Google Scholar] [CrossRef]
- Husak, Z.; Printz, D.; Schumich, A.; Pötschger, U.; Dworzak, M.N. Death induction by CD99 ligation in TEL/AML1-positive acute lymphoblastic leukemia and normal B cell precursors. J. Leukoc. Biol. 2010, 88, 405–412. [Google Scholar] [CrossRef]
- Guerzoni, C.; Fiori, V.; Terracciano, M.; Manara, M.C.; Moricoli, D.; Pasello, M.; Sciandra, M.; Nicoletti, G.; Gellini, M.; Dominici, S.; et al. CD99 triggering in Ewing sarcoma delivers a lethal signal through p53 pathway reactivation and cooperates with doxorubicin. Clin. Cancer Res. 2015, 21, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Pak, H.K.; Park, S.J.; Lee, A.N.; Park, Y.S.; Lee, H.; Lee, H.; Kim, K.E.; Lee, K.J.; Yoon, D.H.; et al. Engagement of CD99 Reduces AP-1 Activity by Inducing BATF in the Human Multiple Myeloma Cell Line RPMI8226. Immune Netw. 2015, 15, 260–267. [Google Scholar] [CrossRef]
- Manara, M.C.; Terracciano, M.; Mancarella, C.; Sciandra, M.; Guerzoni, C.; Pasello, M.; Grilli, A.; Zini, N.; Picci, P.; Colombo, M.P.; et al. CD99 triggering induces methuosis of Ewing sarcoma cells through IGF-1R/RAS/Rac1 signaling. Oncotarget 2016, 7, 79925–79942. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.C.; Kim, N.H.; Park, W.S.; Park, S.H.; Bae, Y. The CD99 signal enhances Fas-mediated apoptosis in the human leukemic cell line, Jurkat. FEBS Lett. 2003, 554, 478–484. [Google Scholar] [CrossRef]
- Gil, M.C.; Lee, M.H.; Seo, J.I.; Choi, Y.L.; Kim, M.K.; Jung, K.C.; Park, S.H.; Kim, T.J. Characterization and epitope mapping of two monoclonal antibodies against human CD99. Exp. Mol. Med. 2002, 34, 411–418. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Z.; Cen, H.; Wu, H.; Zhang, S.; Liu, J.; Leng, Y.; Ren, A.; Liu, X.; Zhang, Z.; et al. CAR T cells targeting CD99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity. J. Hematol. Oncol. 2021, 14, 162. [Google Scholar] [CrossRef]
- Byun, H.J.; Hong, I.K.; Kim, E.; Jin, Y.J.; Jeoung, D.I.; Hahn, J.H.; Kim, Y.M.; Park, S.H.; Lee, H. A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J. Biol. Chem. 2006, 281, 34833–34847. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.; Angel, P.; Schorpp-Kistner, M. AP-1 subunits: Quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 5965–5973. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, N.; Imamura, R.; Suda, T. Caspase-8- and JNK-dependent AP-1 activation is required for Fas ligand-induced IL-8 production. FEBS J. 2007, 274, 2376–2384. [Google Scholar] [CrossRef] [PubMed]
- Furuichi, K.; Kokubo, S.; Hara, A.; Imamura, R.; Wang, Q.; Kitajima, S.; Toyama, T.; Okumura, T.; Matsushima, K.; Suda, T.; et al. Fas Ligand Has a Greater Impact than TNF-alpha on Apoptosis and Inflammation in Ischemic Acute Kidney Injury. Nephron Extra 2012, 2, 27–38. [Google Scholar] [CrossRef]
- Alvarez, S.; Blanco, A.; Fresno, M.; Munoz-Fernandez, M.A. TNF-alpha contributes to caspase-3 independent apoptosis in neuroblastoma cells: Role of NFAT. PLoS ONE 2011, 6, e16100. [Google Scholar] [CrossRef]
Pathway Term | Gene ID | Description | Gene Symbol | Control FPKM ※ | mAb MT99/3 FPKM ※ | Regulated by mAb MT99/3 |
---|---|---|---|---|---|---|
Apoptosis | ENSG00000170345 | Fos proto-oncogene, AP-1 transcription factor subunit | FOS | 0.35 | 6.16 | Up |
ENSG00000232810 | Tumor necrosis factor | TNF | 0.10 | 1.59 | Up | |
ENSG00000117560 | Fas ligand | FASLG | 0.00 | 0.56 | Up | |
ENSG00000140379 | BCL2-related protein A1 | BCL2A1 | 0.20 | 0.95 | Up | |
TNF signaling pathway | ENSG00000171223 | JunB proto-oncogene, AP-1 transcription factor subunit | JUNB | 21.47 | 48.43 | Up |
ENSG00000170345 | Fos proto-oncogene, AP-1 transcription factor subunit | FOS | 0.35 | 6.16 | Up | |
ENSG00000232810 | Tumor necrosis factor | TNF | 0.10 | 1.59 | Up | |
JAK-STAT signaling pathway | ENSG00000185338 | Suppressor of cytokine signaling 1 | SOCS1 | 1.19 | 7.21 | Up |
ENSG00000104998 | Interleukin 27 receptor subunit alpha | IL27RA | 3.18 | 7.19 | Up | |
ENSG00000111679 | Protein tyrosine phosphatase non-receptor type 6 | PTPN6 | 18.56 | 49.36 | Up | |
ENSG00000197461 | Platelet-derived growth factor subunit A | PDGFA | 1.36 | 3.13 | Up | |
PI3K-Akt signaling pathway | ENSG00000123358 | Nuclear receptor subfamily 4 group A member 1 | NR4A1 | 1.49 | 23.57 | Up |
ENSG00000118515 | Serum/glucocorticoid-regulated kinase 1 | SGK1 | 0.72 | 2.10 | Up | |
ENSG00000197461 | Platelet-derived growth factor subunit A | PDGFA | 1.36 | 3.13 | Up | |
ENSG00000117560 | Fas ligand | FASLG | 0.00 | 0.56 | Up | |
ENSG00000184574 | Lysophosphatidic acid receptor 5 | LPAR5 | 7.28 | 16.72 | Up | |
NF-kappa B signaling pathway | ENSG00000232810 | Tumor necrosis factor | TNF | 0.10 | 1.59 | Up |
ENSG00000227507 | Lymphotoxin beta | LTB | 2.47 | 5.18 | Up | |
ENSG00000140379 | BCL2-related protein A1 | BCL2A1 | 0.20 | 0.95 | Up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takheaw, N.; Kotemul, K.; Chaiwut, R.; Pata, S.; Laopajon, W.; Rangnoi, K.; Yamabhai, M.; Kasinrerk, W. Transcriptome Analysis Reveals the Induction of Apoptosis-Related Genes by a Monoclonal Antibody against a New Epitope of CD99 on T-Acute Lymphoblastic Leukemia. Antibodies 2024, 13, 42. https://doi.org/10.3390/antib13020042
Takheaw N, Kotemul K, Chaiwut R, Pata S, Laopajon W, Rangnoi K, Yamabhai M, Kasinrerk W. Transcriptome Analysis Reveals the Induction of Apoptosis-Related Genes by a Monoclonal Antibody against a New Epitope of CD99 on T-Acute Lymphoblastic Leukemia. Antibodies. 2024; 13(2):42. https://doi.org/10.3390/antib13020042
Chicago/Turabian StyleTakheaw, Nuchjira, Kamonporn Kotemul, Ratthakorn Chaiwut, Supansa Pata, Witida Laopajon, Kuntalee Rangnoi, Montarop Yamabhai, and Watchara Kasinrerk. 2024. "Transcriptome Analysis Reveals the Induction of Apoptosis-Related Genes by a Monoclonal Antibody against a New Epitope of CD99 on T-Acute Lymphoblastic Leukemia" Antibodies 13, no. 2: 42. https://doi.org/10.3390/antib13020042
APA StyleTakheaw, N., Kotemul, K., Chaiwut, R., Pata, S., Laopajon, W., Rangnoi, K., Yamabhai, M., & Kasinrerk, W. (2024). Transcriptome Analysis Reveals the Induction of Apoptosis-Related Genes by a Monoclonal Antibody against a New Epitope of CD99 on T-Acute Lymphoblastic Leukemia. Antibodies, 13(2), 42. https://doi.org/10.3390/antib13020042