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Abstract: This study investigated a novel radioimmunotherapy strategy for targeting tumor angio-
genesis. We developed a radiopharmaceutical complex by labeling an anti-adenosine triphosphate
synthase (ATPS) monoclonal antibody (mAb) with the radioisotope 177Lu using DOTA as a chelat-
ing agent. 177Lu-DOTA-ATPS mAb demonstrated high labeling efficiency (99.0%) and stability in
serum. MKN-45 cancer cells exhibited the highest cellular uptake, which could be specifically blocked
by unlabeled ATPS mAb. In mice, 177Lu-DOTA-ATPS mAb accumulated significantly in tumors,
with a tumor uptake of 16.0 ± 1.5%ID/g on day 7. 177Lu-DOTA-ATPS mAb treatment significantly
reduced the viability of MKN-45 cells in a dose-dependent manner. In a xenograft tumor model,
this radioimmunotherapy strategy led to substantial tumor growth inhibition (82.8%). Furthermore,
combining 177Lu-DOTA-ATPS mAb with sunitinib, an anti-angiogenic drug, enhanced the therapeu-
tic efficacy of sunitinib in the mouse model. Our study successfully developed 177Lu-DOTA-ATPS
mAb, a radioimmunotherapy agent targeting tumor blood vessels. This approach demonstrates
significant promise for inhibiting tumor growth, both as a single therapy and in combination with
other anti-cancer drugs.
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1. Introduction

Angiogenesis, the formation of new blood vessels, is a crucial process for normal
tissue growth and tumor expansion. Disrupting this process has become a major focus
for researchers aiming to develop effective cancer therapies. Tumors hijack angiogenesis
to fuel their growth and metastasis [1]. This uncontrolled vessel formation is countered
by endogenous inhibitors like angiostatin. Angiostatin maintains a balanced angiogenic
environment by suppressing the effects of proangiogenic factors like vascular endothelial
growth factor and fibroblast growth factor [2]. While typically residing within the mitochon-
drial inner membrane, adenosine triphosphate synthase (ATPS), an enzyme responsible
for ATP generation, has been found on the surface of endothelial and tumor cells, called
“ectopic” ATPS [3]. Specific subunits (α/β) of this ectopic ATPS serve as binding sites for
angiostatin [4]. Antibodies developed against specific ATPS subunits can directly inhibit
the enzyme’s activity on the endothelial cell surface, which, in turn, disrupts the forma-
tion of new blood vessels and directly hinders the proliferation and migration of cancer
cells [5–7]. We also have shown that radiolabeled anti-ATPS antibodies are promising
tools for radioimmunotherapy and immuno-positron emission tomography (PET) imaging.
Radioiodine (131I)-labeled anti-ATPS antibody effectively suppressed the tumor growth
by 2.5-fold in a gastric cancer model [8]. Anti-ATPS antibodies labeled with Zirconium-89
(89Zr) demonstrated significantly higher targeting specificity for MDA-MB-231 tumors
with abundant ectopic ATPS expression compared to PC-3 tumors with low expression [9].
Given its role in tumor angiogenesis, ectopic ATPS emerges as a novel target for developing
effective anti-angiogenic therapies.
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Since the landmark report in 1981 on a successful radiolabeled antibody targeting
carcinoembryonic antigen [10], radioimmunotherapy has remained a beacon of hope in
the fight against cancer, offering a powerful tool for targeted therapy. Zevalin™ and
Bexxar™, being used for the treatment of non-Hodgkin’s lymphoma, are prime examples of
radioimmunotherapy successfully employed in modern medicine. Lutetium-177 (177Lu) has
gained widespread popularity as a preferred radioisotope in recent years. This radioisotope
demonstrates its versatility in cancer treatment. Studies have shown its effectiveness in
treating two distinct cancers: unresectable metastatic neuroendocrine tumors [11] and
metastatic castration-resistant prostate cancer [12]. In both cases, it is used as a targeted
therapy approach (peptide receptor radionuclide therapy and radioligand therapy). 177Lu
has favorable characteristics for radioimmunotherapy. It emits both high-energy β-ray
(Emax = 761 KeV) and γ-rays (113 in 6.4% and 208 KeV in 13%) and decays with a half-life
of 6.7 days [13], which is favorable for radioimmunotherapy.

This study aims to develop a new radioimmunotherapy approach that specifically
targets tumor angiogenesis. We synthesized 177Lu-labeled anti-ATPS antibody to achieve
this and evaluated its antitumor efficacy in a gastric cancer animal model.

2. Materials and Methods

2.1. Radiosynthesis of 177Lu-DOTA-ATPS mAb

The ATPS mAb was purchased from Abcam (ab14730, MW 52 kDa; Cambridge, MA,
USA) and stored as aliquots at −78 ◦C. 177LuCl3 was obtained from PLATOM (National
Centre for Nuclear Research, Poland). For conjugation, a 50-fold molar excess of p-SCN-
Bn-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA, Futurechem, Seoul, Republic
of Korea) in 30 µL dimethyl sulfoxide was added to the ATP mAb (100–200 µg in 20 µL
0.1 N NaHCO3 buffer), and the reaction mixture was incubated at 37 ◦C for 30 min.
After incubation, the conjugation mixture was purified by using Slide-A-Lyzer™ Dialysis
Cassettes (2K MWCO, Thermo Fisher Scientific, Rockford, IL, USA) to remove unconjugated
p-SCN-Bn-DOTA. 177LuCl3 (37–111 MBq/10 µL) was buffered with 0.5 M NH4OAc (pH 5.5),
followed by 100–200 µg DOTA-mAb. The reaction mixture was incubated at 37 ◦C for 1
h [14]. After completion of synthesis, the reaction mixture was purified on a size-exclusive
PD-10 column (GE Healthcare) and 177Lu-DOTA-ATPS mAb was separated by eluting
with PBS (Figure 1). For analysis of labeled 177Lu-DOTA-ATPS mAb, it was spotted on
silica gel impregnated aluminum sheets (Merck, Darmstadt, Germany), developed with
0.02 M citrate buffer, and confirmed by using radio-thin-layer chromatography (radio-TLC)
(Bioscan, Eckert & Ziegler Radiopharma Inc., Wilmington, MA, USA). In vitro stability was
measured in triplicates at 2 h, 24 h, and on the 7th day, in PBS or serum, at 4 ◦C, room
temperature, or 37 ◦C.
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Figure 1. Schematic diagram for radiosynthesis of 177Lu-DOTA-ATPS mAb.

2.2. Cancer Cell Culture and Xenograft Tumor Model

All cancer cell lines, human breast adenocarcinoma (MDA-MB-231), human fibrosar-
coma (HT-1080), human lung adenocarcinoma (A549), human follicular thyroid carcinoma
(FTC-133), human prostate adenocarcinoma (PC-3), and human gastric adenocarcinoma
(MKN-45) were purchased from the Korean Cell Line Bank (Seoul, Republic of Korea).
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All cells except FTC-133 (FTC-133 cells were cultured in DMEM/F-12, 1:1 mixture, 10%
fetal bovine serum, WelGENE Inc., Daegu, Republic of Korea) were cultured with RPMI-
1640 medium (WelGENE) supplemented with 10% FBS and 1% penicillin/streptomycin
(WelGENE) at 37 ◦C and 5% fully humidified CO2. Animal experiments were performed
according to protocols approved by the Care of Experimental Animals Committee (IACUC
No. 2021-0067). Six-week-old female Balb/c nude mice (Orient Bio, Seongnam, Republic of
Korea) were maintained under specific pathogen-free conditions [15]. To create a tumor
xenograft model, 5 × 106 tumor cells were mixed with phenol red-free Matrigel (Corning®,
Bedford, MA, USA) and subcutaneous inoculation was injected into the right shoulder of
each mouse. Experiments were performed about 10 to 14 days after injection of cells, when
tumors reached a diameter of approximately 5 to 10 mm.

2.3. Cellular Uptake of 177Lu-DOTA-ATPS mAb in Various Cancer Cells

Cellular uptake of 177Lu-DOTA-ATPS mAb was measured in the six human cancer
cell lines as described previously [8]. In brief, 5 × 105 cells were seeded per well in 12-well
plates and cultured for 24 h. Upon attachment, 37 kBq 177Lu-DOTA-ATPS mAb was added
to freshly replaced culture media, followed by incubation of the cells for 1, 4, or 24 h at
37 ◦C and 5% CO2. After incubation, the cells were washed twice with cold PBS and
harvested with 0.1 N NaOH. Radioactivity of the cells was counted using a Gamma-HEs
gamma counter (Shinjin Medics Inc., Goyang, Republic of Korea) and normalized to the
cell protein content obtained using the Bradford method [16]. Data are presented as the
percentage of 1 h uptake.

2.4. Specific Binding of 177Lu-DOTA-ATPS mAb in MKN-45 Cells

MKN-45 cells were cultured in 12-well plates and incubated with 111 kBq free 177Lu,
177Lu-DOTA-ATPS mAb, or 177Lu-DOTA-IgG for 24 h at 37 ◦C and 5% CO2. After incu-
bation, the cells were washed twice with cold PBS, harvested with 0.1 N NaOH, and the
radioactivity was counted using a gamma counter. The cell protein content was deter-
mined using the Pierce 660TM Protein Assay Kit for normalization (Thermo Fisher Scientific,
Rockford, IL, USA). Cellular uptake was expressed as a percentage of free 177Lu uptake.

2.5. Competitive Binding of 177Lu-DOTA-ATPS mAb in MKN-45 Cells

Competitive inhibition of 177Lu-DOTA-ATPS mAb binding was examined using unla-
beled ATPS mAb in MKN-45 cells. Cells were cultured in 12-well plates and treated with
10% FBS and 1% penicillin/streptomycin at 37 ◦C and 5% CO2 (as described previously).
The cells were pretreated with 6.4 µM unlabeled ATPS mAb for 1 h, while control cells were
incubated with the vehicle. Then, 111 kBq 177Lu-DOTA-ATPS mAb was added to the cells
and incubated for 4 or 24 h under the same conditions. After incubation, cellular uptake
was calculated and expressed as a percentage relative to that of untreated control. Cellular
uptake, specific binding, and inhibition experiments were all performed in triplicate.

2.6. 177Lu-DOTA-ATPS mAb Radioimmunotherapy in MKN-45 Cells

MKN-45 cells were cultured in 96-well plates and treated with 3.7 or 7.4 MBq 177Lu-
DOTA-ATPS mAb, unlabeled ATPS mAb, or left untreated for 24 h at 37 ◦C and 5% CO2.
To investigate the effect of combination therapy, MKN-45 cells were treated with either
7.4 MBq 177Lu-DOTA-ATPS mAb or 5 mg/mL sunitinib (LC Laboratories®®, Woburn, MA,
USA), both, or left untreated for 24 h at 37 ◦C and 5% CO2 [17]. After incubation, cell
viability was measured using an XTT assay kit (Cayman Chemical, Ann Arbor, MI, USA)
with a further 2 h incubation at 37 ◦C. Absorbance was read at 450 nm using a microplate
reader (Bio-Rad Laboratories Inc., Hercules, CA, USA).

2.7. Biodistribution Study of Wild-Type Mice and MKN-45 Tumor Xenograft Models

Wild-type mice and MKN-45 tumor-bearing mice (n = 4–5 per time point) were
intravenously injected with 3.7 MBq 177Lu-DOTA-ATPS mAb, 177Lu-IgG, or free 177Lu. The
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mice were then anesthetized, sacrificed, and dissected for organ radioactivity analysis at 1,
2, 4, and 7 days after injection. Major organs (heart, lung, liver, spleen, stomach, kidneys,
intestine, muscle, and bone), blood, and tumors were dissected, weighed, and counted for
radioactivity using a gamma counter. Uptake in the organs and tumors was expressed as
the percentage of the injected dose per gram of tissue (%ID/g).

2.8. Blocking Study of 177Lu-DOTA-ATPS mAb in MKN-45 Tumor-Bearing Mice

To investigate blocking efficacy, 50 µg of unlabeled ATPS mAb was co-injected with
3.7 MBq 177Lu-DOTA-ATPS mAb (1 µg as mAb) through the tail vein (n = 2). Tumors
and organs were then removed at 1 and 7 days after injection for subsequent radioactivity
analysis. The organs were weighed and counted for radioactivity using a gamma counter.
Results were expressed as %ID/g.

2.9. Radioimmunotherapy, Immunohistochemical Staining, and 18F-FDG-PET Imaging in
MKN-45 Tumor-Bearing Mice

To investigate radioimmunotherapy, tumor models were intravenously injected with
18.5 MBq 177Lu-DOPA-ATPS mAb, 30 µg unlabeled ATPS mAb (10 times larger than
the therapeutic dosage of 177Lu-DOPA-ATPS mAb), 30 µg unlabeled IgG, and vehicle
(normal saline), respectively, once a week for 4 weeks (n = 4 for each group) [8]. Tu-
mor size was measured twice a week in two dimensions (length and width). Tumor
volume was calculated using the formula, V = (length ×. width2)/2, and compared among
the groups [18]. Tumor growth inhibition (TGI, %) was calculated using the formula,
TGI = (1 − mean volume of treated tumors/mean volume of control tumors) × 100.

The effect of combination therapy of 177Lu-DOTA-ATPS mAb and sunitinib was
evaluated in mice bearing MKN-45 tumors. Mice were divided into four groups: vehicle
(0.9% NaCl), 18.5 MBq 177Lu-DOTA-ATPS mAb alone, 40 mg/kg sunitinib alone, or a
combination of both (n = 6 for each group). Mice received 18.5 MBq 177Lu-DOTA-ATPS
mAb and 40 mg/kg sunitinib once a week for 4 weeks [19]. Tumor size was measured
twice a week as described above. Body weights were measured once a week.

For imaging, PET images were acquired 1 h after intravenous injection of 18.5 MBq
2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) using a PET scanner (SimPET, BRIGHTONIX
IMAGING®, Seoul, Republic of Korea) before and after therapies. Mice were scanned for
20 min under anesthesia with isoflurane inhalation.

For immunohistochemistry, tumors were dissected immediately after the PET imag-
ing at the 4th week. Slides were stained using an anti-CD31 antibody (ab28364, abcam)
according to the manufacturer’s standard procedure.

2.10. Statistical Analysis

All data are presented as means ± standard errors. The statistical comparison of
cellular uptake and tumor size was evaluated by Student’s t-test and Kruskal–Wallis test
using statistical software (R, version 3.1.2), and the difference was considered significant at
p < 0.05.

3. Results

3.1. Labeling Efficiency and In Vitro Stability of 177Lu-DOTA-ATPS mAb

The 177Lu-DOTA-ATPS mAb was successfully synthesized according to the schematic
representation. The radiochemical yield of 177Lu-DOTA-ATPS mAb was 99.0% (Figure 2A).
The in vitro stabilities of 177Lu-DOTA-ATPS mAb in serum were at least 95% on the 2nd
day and 85% on the 7th day at all temperature conditions (Figure 2B). Similarly, the in-vitro
stabilities of 177Lu-DOTA-ATPS mAb in PBS were at least 94% on the 2nd day, regardless
of temperature. However, on the 7th day, the stability dropped significantly to 65%, 68%,
and 91% at 4 ◦C, room temperature, and 37 ◦C, respectively (all p < 0.005).
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Figure 2. Labeling efficiency (A) and in vitro stability (B) of 177Lu-DOTA-ATPS mAb. The Rf value
of 177Lu-DOTA-ATPS mAb was between 0.01 and 0.05, while that of 177LuCl3 was between 0.6 and
1.0. The in vitro stabilities of 177Lu-DOTA-ATPS mAb in serum remained unchanged up to 7 days.
DOTA, tetraazacyclododecane-1,4,7,10-tetraacetic acid; ATPS, adenosine triphosphate synthase; mAb,
monoclonal antibody; RT, room temperature; PBS, phosphate-buffered saline.

3.2. Cellular Uptake, Specific Binding, and Inhibition of 177Lu-DOTA-ATPS mAb

Six cancer cell lines were evaluated for their cellular uptake of 177Lu-DOTA-ATPS
(Figure 3A). MKN-45 cells exhibited a time-dependent increase in uptake reaching
189.3% ± 9.8% and 450.8% ± 13.3% of the 1 h uptake at 4 and 24 h, respectively
(p < 0.0005 and < 0.0001, respectively). PC-3 also showed increased uptake at both 4 h
(121.9% ± 4.9%, p < 0.05) and at 24 h (190.7% ± 8.8%, p < 0.0005). Similarly, MDA-MB-231
(186.4% ± 7.7%, p < 0.001), HT-1080 (158.7% ± 9.5%, p < 0.005), A549 (128.0% ± 9.9%,
p < 0.05), and FTC-133 (186.2% ± 4.9%, p < 0.001) showed a significant increase in cellular
uptake of 177Lu-DOTA-ATPS mAb at 24 h, while their 4 h uptake remained unchanged (p >
0.05). Notably, MKN-45 cells demonstrated significantly higher uptake compared to other
cell lines at 24 h (all p < 0.0005). This finding prompted further cellular and animal studies
using MKN-45 cells.

In MKN-45 cells, the uptake of 177Lu-DOTA-ATPS mAb was compared with that
of free 177Lu (177LuCl3) and 177Lu-DOTA-IgG at 24 h (Figure 3B). The cellular uptake of
177Lu-DOTA-ATPS mAb (128.7% ± 3.6%) was significantly higher than that of free 177Lu
and 177Lu-DOTA-IgG (88.5% ± 7.8%) (all p < 0.05). There was no significant difference in
cellular uptake between free 177Lu and 177Lu-DOTA-IgG (p > 0.05).
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mAb in MKN-45 cells. DOTA, tetraazacyclododecane-1,4,7,10-tetraacetic acid; ATPS, adenosine
triphosphate synthase; mAb, monoclonal antibody. p < 0.05 *, p < 0.005 **, ns: not significant.

The uptake of 177Lu-DOTA-ATPS mAb was inhibited by a high dose of unlabeled
ATPS mAb at both 4 h (81.0% ± 5.9%, p < 0.005) and at 24 h (62.2% ± 5.4%, p < 0.005)
(Figure 3C). The inhibitory effect of unlabeled ATPS mAb was more pronounced at 24 h
compared to 4 h (p < 0.05).

3.3. 177Lu-DOTA-ATPS mAb Radioimmunotherapy in MKN-45 Cells

Radioimmunotherapy with 177Lu-DOTA-ATPS mAb significantly reduced cell viability
(Figure 4A) compared with vehicle-treated controls. Treatment with 3.7 MBq (78.9% ± 1.2%,
p < 0.005) and 7.4 MBq (70.4% ± 1.7%, p < 0.01) of 177Lu-DOTA-ATPS mAb resulted in a
dose-dependent decrease in viable cells (p < 0.005). Unlabeled ATPS mAb also significantly
reduced cell viability (89.8% ± 0.5%, p < 0.001 vs. control); however, the therapeutic effect
of either dose of 177Lu-DOTA-ATPS mAb was significantly greater (all p < 0.0001).
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Figure 4. Radioimmunotherapy with 177Lu-DOTA-ATPS mAb alone (A) and 177Lu-DOTA-ATPS mAb
in combination with sunitinib (B) in MKN-45 cells. DOTA, tetraazacyclododecane-1,4,7,10-tetraacetic
acid; ATPS, adenosine triphosphate synthase; mAb, monoclonal antibody. p < 0.05 *, p < 0.005 **,
p < 0.001 ***, p < 0.0005 +, p < 0.00005 ++.

An anti-angiogenic therapy with sunitinib (5 mg/mL) significantly decreased the num-
ber of viable MKN-45 cells (73.8% ± 1.0% of controls, p < 0.00005) (Figure 4B). Combination
therapy with 7.4 MBq of 177Lu-DOTA-ATPS mAb and sunitinib showed a greater reduction
in cell viability (46.5% ± 1.5%) compared to single therapy with 177Lu-DOTA-ATPS mAb
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(52.5% ± 0.2%, p < 0.05) or sunitinib (p < 0.00005). Notably, among single therapies, 7.4 MBq
of 177Lu-DOTA-ATPS mAb exhibited a greater therapeutic effect than 5 mg/mL sunitinib
(p < 0.00005).

3.4. Biodistribution of 177Lu-DOTA-ATPS mAb in Wild-Type Mice and MKN-45 Tumor
Xenograft Models

The biodistribution of 177Lu-DOTA-ATPS mAb was evaluated in wild-type mice
(Figure 5) and mice bearing MKN-45 tumors (Figure 6) on days 1, 2, 4, and 7. In wild-
type mice, bone marrow uptake of 177Lu-DOTA-ATPS mAb reached 20.4 ± 1.3%ID/g
on day 1 and remained stable from day 2 to day 7. Renal uptake was highest on day 1
(25.4 ± 0.6%ID/g) and decreased slightly from day 2 to day 7 (13.0 to 17.4%ID/g). Hepatic
uptake ranged from 17.9 to 20.6%ID/g.
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Figure 6. Biodistribution of 177Lu-DOTA-ATPS mAb (A), 177LuCl3 (B), and 177Lu-DOTA-IgG (C)
in mice bearing MKN-45 tumors on day 1, 2, 4, and 7. Comparison of bone marrow and tumor
uptake among radiopharmaceuticals (D). Inhibition of 177Lu-DOTA-ATPS mAb uptake in tumors by
unlabeled ATPS mAb (E). DOTA, tetraazacyclododecane-1,4,7,10-tetraacetic acid; ATPS, adenosine
triphosphate synthase; mAb, monoclonal antibody. p < 0.05 *, p < 0.005 **, ns: not significant.

In contrast, 177LuCl3 primarily accumulated in the bone marrow (68.1 ± 1.2%ID/g,
70.4 ± 1.6%ID/g, 75.6 ± 1.7%ID/g, and 72.7 ± 2.2%ID/g on days 1, 2, 4, and 7, respectively).
Renal uptake peaked at 11.8 ± 0.7%ID/g on day 1 and decreased slowly thereafter. The
liver uptake ranged from 5.6 to 6.2%ID/g.

For 177Lu-DOTA-IgG, bone marrow uptake remained lower than that of 177Lu-DOTA-
ATPS mAb and 177LuCl3 throughout the study (all < 10%ID/g). Uptake of 177Lu-DOTA-IgG
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was similar among the liver, spleen, and kidneys. Renal uptake reached a peak on day 1,
while hepatic and splenic uptake increased over time.

Tumor uptake of 177Lu-DOTA-ATPS mAb reached 16.0 ± 1.5%ID/g on day 7, which
was significantly higher than that of 177LuCl3 (7.6 ± 0.5%ID/g, p < 0.05) and 177Lu-DOTA-
IgG (8.9 ± 0.5%ID/g, p < 0.05). Similarly, on day 4, 177Lu-DOTA-ATPS mAb showed greater
tumor uptake (12.4 ± 0.4%ID/g) compared to 177LuCl3 (4.2 ± 0.5%ID/g, p < 0.005) and
177Lu-DOTA-IgG (8.8 ± 0.5%ID/g, p < 0.00005). There was no significant difference in tumor
uptake between 177LuCl3 and 177Lu-DOTA-IgG on day 7. The biodistribution patterns of
177Lu-DOTA-ATPS mAb, 177LuCl3, and 177Lu-DOTA-IgG in the liver, spleen, kidney, and
bone marrow of tumor-bearing mice mirrored those observed in wild-type mice.

In an inhibition study, a high dose of unlabeled ATPS mAb significantly reduced the
tumoral uptake of 177Lu-DOTA-ATPS mAb from 6.08 ± 1.0%ID/g on day 1 to 3.8 ± 1.1%ID/g
(p < 0.05).

3.5. Radioimmunotherapy, Immunohistochemical Staining, and 18F-FDG-PET Imaging in
MKN-45 Tumor-Bearing Mice

All animals survived until the end of the experiment regardless of treatment (single
agent or combination). The therapeutic efficacy of single agents is shown in
Figure 7A. No significant difference in initial tumor volume was observed among the groups
(177Lu-DOTA-ATPS mAb, 92.0 ± 15.5 mm3; unlabeled ATPS mAb, 93.6 ± 3.5 mm3; IgG,
104.6 ± 6.2 mm3; vehicle, 97.1 ± 8.6 mm3, p > 0.05). After four weeks, tumors treated with
177Lu-DOTA-ATPS mAb (269.1 ± 130.4 mm3) were significantly smaller than those treated
with unlabeled ATPS mAb (836.4 ± 53.1 mm3, p < 0.01), IgG (1117.1 ± 364.5 mm3, p < 0.05),
or vehicle (1561.4 ± 420.4 mm3, p < 0.05). While tumors treated with unlabeled ATPS mAb
or IgG displayed smaller volumes compared to controls, these differences were not statis-
tically significant. %TGI after four weeks of treatment was 82.8% for 177Lu-DOTA-ATPS
mAb, 46.4% for unlabeled ATPS mAb, and 28.5% for IgG treatment. Tumor volume in the
177Lu-DOTA-ATPS mAb treated group did not significantly change from baseline to the
4th week (p > 0.05).

Immunohistochemistry using an anti-CD31 antibody revealed moderate to strong
staining in the small vessels of the tumors treated with unlabeled ATPS mAb, IgG, or
vehicle (Figure 7B). Conversely, tumors treated with 177Lu-DOTA-ATPS mAb exhibited
minimal staining.

Representative 18F-FDG PET images of mice after four weeks of treatment are shown
in Figure 7C. Tumor volume increased in mice treated with unlabeled ATPS mAb, IgG, or
vehicle at the 4th week. These tumors also displayed central metabolic defects, indicative
of necrotic change. In contrast, tumor volume remained stable in mice treated with 177Lu-
DOTA-ATPS mAb.

The efficacy of combination therapy is shown in Figure 8A. Initial tumor volume did
not differ significantly among groups (177Lu-DOTA-ATPS mAb + sunitinib, 209.3 ± 31.3 mm3;
177Lu-DOTA-ATPS mAb, 210.3 ± 4.2 mm3; sunitinib, 207.6 ± 22.9 mm3; vehicle,
203.7 ± 18.9 mm3, p > 0.05). After four weeks, tumors treated with 177Lu-DOTA-ATPS mAb
(2644.4 ± 703.7 mm3, p < 0.05), sunitinib (3619.3 ± 1114.0 mm3, p < 0.05), or the combination
(1727.6 ± 793.5 mm3, p < 0.01) were significantly smaller than those in the vehicle group.
Combination therapy with 177Lu-DOTA-ATPS mAb and sunitinib demonstrated a greater
therapeutic effect compared to either single agent (177Lu-DOTA-ATPS mAb, p < 0.05; suni-
tinib, p < 0.005). %TGI after four weeks of treatment was 70.3% for the combination, 54.6%
for 177Lu-DOTA-ATPS mAb alone, and 37.8% for sunitinib alone.
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Figure 7. Radioimmunotherapy with 177Lu-DOTA-ATPS mAb. (A) Tumor growth curve during the
4-week treatment with 177Lu-DOTA-ATPS mAb, unlabeled ATPS mAb, IgG, and vehicle. (B) Im-
munohistochemical staining with anti-CD31 antibody for MKN-45 tumors after 4 weeks of treatment.
(C) 18F-FDG PET imaging in mice bearing MKN-45 tumors at baseline and at 4th week of treatment.
DOTA, tetraazacyclododecane-1,4,7,10-tetraacetic acid; ATPS, adenosine triphosphate synthase; mAb,
monoclonal antibody. p < 0.05 *, p < 0.01 **, arrows indicate positive staining.

Immunohistochemistry using an anti-CD31 antibody revealed strong staining in the
small vessels of tumors from the vehicle group only (Figure 8B). In contrast, tumors treated
with 177Lu-DOTA-ATPS mAb, sunitinib or the combination exhibited minimal staining.
These findings indicate an anti-angiogenic effect of the therapeutic approaches.

Representative 18F-FDG PET images of mice after four weeks of treatment are shown
in Figure 8C. Tumor volume increased in all groups at the 4th week. Tumors treated with
single agents or vehicle were larger than those treated with the combination and displayed
central metabolic defects.
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Figure 8. Combination chemo-radioimmunotherapy with sunitinib and 177Lu-DOTA-ATPS mAb.
(A) Tumor growth curve during the 4-week treatment with 177Lu-DOTA-ATPS mAb, sunitinib,
combination, and vehicle. (B) Immunohistochemical staining with anti-CD31 antibody for MKN-45
tumors after 4 weeks of treatment. (C) 18F-FDG PET imaging in mice bearing MKN-45 tumors at
baseline and 4th week of treatment. DOTA, tetraazacyclododecane-1,4,7,10-tetraacetic acid; ATPS,
adenosine triphosphate synthase; mAb, monoclonal antibody. p < 0.05 *, p < 0.01 **, p < 0.005 ***,
arrows indicate positive staining.

4. Discussion

In the present study, we aimed to develop a radioimmunotherapy agent targeting
tumor angiogenesis. We achieved this by coupling anti-ATPS mAb to 177Lu using DOTA as
a chelator. Based on cellular uptake results, MKN-45 gastric cancer cells were selected for
further development and the evaluation of the therapeutic efficacy of 177Lu-DOTA-ATPS
mAb. The uptake of 177Lu-DOTA-ATPS mAb was specific and inhibited by unlabeled ATPS
mAb in both in vitro and in vivo experiments. 177Lu-DOTA-ATPS mAb demonstrated
a superior therapeutic effect compared to unlabeled ATPS mAb against MKN-45 cells,
both in vitro and in vivo. Furthermore, the combination of 177Lu-DOTA-ATPS mAb with
sunitinib significantly enhanced the therapeutic effect in mice bearing MKN-45 tumors. This
enhanced efficacy was also evident in 18F-FDG PET imaging and immunohistochemistry
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analysis. These results suggest that radioimmunotherapy using 177Lu-DOTA-ATPS mAb
has potential for application in cancer therapy targeting tumor angiogenesis.

177Lu is a long-lived (half-life of 6.7 days), β-ray emitting (Emax = 0.49 MeV, range = 670
µm in soft tissue) radioisotope suitable for therapy. The success of 177Lu-based radioligand
therapy and peptide receptor radionuclide therapy has contributed to the growing pop-
ularity of 177Lu as a radioisotope for radioimmunotherapy [20]. 177Lu-PSMA has shown
promising results as a treatment option for metastatic castration-resistant prostate can-
cer following chemotherapy and hormonal therapy [21]. 177Lu-DOTA-TATE effectively
reduces tumor growth and stabilizes disease in patients with gastroenteropancreatic well-
differentiated neuroendocrine tumors, leading to its establishment as a second- or third-line
treatment option [22]. 177Lu-labeled trastuzumab, an antibody that targets the HER2 recep-
tor protein, exemplifies radioimmunotherapy using 177Lu. This approach demonstrates
specific uptake in HER2-positive primary breast cancers and their metastatic sites [23].
Radioimmunotherapy with 177Lu has also been explored in anti-angiogenesis cancer treat-
ment. 177Lu-labeled TRC105, an antibody targeting CD105, demonstrated tumor uptake in
mice with breast cancer. The uptake was 14.3 ± 2.3%ID/g on day 1 and 11.6 ± 6.1%ID/g
on day 7, similar to our findings. This approach also inhibited tumor growth and im-
proved survival [24]. These results provide strong support for the use of 177Lu-labeled
radiopharmaceuticals in radioimmunotherapy.

Among the 177Lu-labeled radiopharmaceuticals previously mentioned, 177Lu-DOTA-
TATE (Lutathera®) was approved by the FDA in 2018 for the treatment of somatostatin
receptor-positive gastroenteropancreatic neuroendocrine tumors [25]. Additionally, 177Lu
-PSMA-617 (Pluvicto®) was approved in 2022 for the treatment of adult patients with
prostate-specific membrane antigen-positive metastatic castration-resistant prostate can-
cer who have previously been treated with androgen receptor pathway inhibition and
taxane-based chemotherapy [26]. Due to the success of 177Lu-based therapy, it has recently
garnered significant attention. In the near future, we can expect the development of more
radiopharmaceutical therapies, not limited to those labeled with 177Lu. This progress will
provide clinicians with a broader range of treatment options for their cancer patients.

177Lu, a radiometal isotope, requires a chelating agent to form a stable complex
with antibodies. DOTA, diethylenetriamine pentaacetate (DTPA), and ethylene-diamine-
tetraacetic acid (EDTA) are the most common chelators for radiometal isotopes [27,28].
In our preliminary study, 177Lu-DOTA-ATPS mAb exhibited excellent labeling efficiency
(around 99.0%) and stability in repeated experiments. Conversely, the labeling efficiency of
177Lu-DTPA-ATPS mAb was significantly lower. This aligns with previous reports [29,30].
We opted for DOTA-based mAb on these findings.

DOTA, a macrocyclic chelator offers greater in vivo stability compared to acyclic chela-
tors like DTPA and EDTA (“macrocyclic effect”) [27]. This translates to its recommendation
for labeling 177Lu. As shown in this study, free 177Lu accumulates significantly in bone
marrow (72.7% for wild-type mice and 69.5% for tumor-bearing mice on day 7). In vivo
dissociation of 177Lu-DOTA-ATPS mAb can decrease therapeutic efficacy and increases
bone marrow toxicity. Despite maintaining high in vitro stability (85.5% at 37 ◦C on day
7) in serum, 177Lu-DOTA-ATPS mAb exhibited significant bone marrow uptake of free
177Lu (27.0% for wild-type mice and 39.3% for tumor-bearing mice on day 7). This can be
explained by two factors: first, the presence of various blood proteins like transferrin and al-
bumin that strongly bind to 177Lu and, furthermore, the dilution of 177Lu-DOTA-ATPS mAb
in vivo [28]. Overcoming this limitation is crucial, as researchers are actively developing
new chelators [31]. Further studies to improve the in vivo stability of 177Lu-DOTA-ATPS
mAb are required.

ATPS is normally located in the inner mitochondrial membranes as part of the mito-
chondrial respiratory complex. It participates in ATP production using a proton gradient
generated by mitochondrial respiratory complex I-IV [32]. Interestingly, ATPS can also
be found on the surface of some cancer and endothelial cells, known as ectopic ATPS.
This ectopic ATPS can be a binding site for angiostatin [3]. Therefore, ATPS could serve
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as a novel target for anti-angiogenic cancer therapies. As previously demonstrated, the
anti-ATPS mAb used in this study can target tumor vasculature and cancer cells [9]. In this
study, 177Lu-DOTA-ATPS mAb showed a significant inhibitory effect on MKN-45 gastric
cancers. TGI of 177Lu-DOTA-ATPS mAb (82.8%) was greater than that of unlabeled ATPS
mAb (46.6%). Additionally, immunohistochemistry with an anti-CD31 antibody revealed
minimal staining in tumors treated with 177Lu-DOTA-ATPS mAb (Figure 7B). Similarly,
minimal anti-CD31 staining was observed in tumors treated with either single-agent suni-
tinib or combination therapy (Figure 8B). These findings indicate that the anticancer efficacy
of these therapeutic strategies is likely mediated through targeting tumor angiogenesis.

Combination therapy offers a significant advantage by enhancing anticancer effects
while potentially reducing side effects compared to single-agent treatment. In this study, com-
bination therapy demonstrated a synergistic increase in therapeutic efficacy (TGI = 70.3%) com-
pared to sunitinib alone (37.8%). Furthermore, 177Lu-DOTA-ATPS mAb alone
(TGI = 54.6%) also demonstrated a greater therapeutic effect than sunitinib alone. This
finding suggests promising potential for the clinical application of 177Lu-DOTA-ATPS mAb
in the future. Chemotherapeutic agents, such as tyrosine kinase inhibitors, have been
known to show a broad spectrum of adverse effects in both the hematologic system and
nonhematologic systems [33]. 177Lu-based radiopharmaceutical therapies have also been
associated with various side effects, some of which are serious hematologic diseases [34,35].
Such side effects could obstruct the appropriate treatment of cancer patients, leading to
a reduction in dosage or discontinuation of therapeutic agents. Based on the results of
this study, combining 177Lu-radioimmunotherapy with conventional chemotherapy could
decrease the therapeutic doses of each treatment, leading to fewer adverse effects than
single-agent therapy. However, further clinical studies should be conducted.

177Lu decays by emitting two γ-rays (208 and 113 KeV), which are ideal for gamma
camera imaging. While we employed 18F-FDG PET for tumor visualization in this study,
whole-body gamma camera imaging could directly visualize or predict the biodistribution
of 177Lu-DOTA-ATPS mAb. A limitation of this study is the lack of a small animal gamma
camera, which prevented us from performing this complementary imaging modality.

We were unable to achieve tumor-free survival as tumors persistently grew in all
groups, whether they were subjected to single or combination treatments. In the combi-
nation treatment group, tumors from two mice did not exhibit growth until the fourth
week of therapy, although they did not completely disappear. In contrast, all tumors in the
other groups showed significant growth by the fourth week of treatment. In this study, we
initiated treatments when the tumors reached approximately 200 mm3 in size. For a more
accurate evaluation of tumor-free survival, treatments should ideally be started earlier.
This is another limitation of the study.

In our previous study [9], we categorized six types of cancer cells into two groups
based on their membranous ATPS expression, as determined by Western blot analysis and
immunofluorescence microscope findings. From these, we chose MDA-MB-231 (which has
high ATPS expression) and PC-3 (which has low ATPS expression) for further comparison.
We evaluated these cells using in vitro cellular uptake, binding, and in vivo tumor uptake
with 89Zr-labeled ATPS mAb and positron emission tomography imaging (utilizing the
same mAb as in this study). The MDA-MB-231 cells exhibited significantly higher cellular
uptake, binding capability (Kd), and in vivo tumor uptake than the PC-3 cells. Based on
these results, we hypothesized that cells demonstrating higher in vitro cellular uptake
would inevitably show higher in vivo tumor uptake, leading to increased therapeutic
efficacy. While it is a well-established concept in clinical radioimmunotherapy to predict
therapeutic outcomes using diagnostic radiopharmaceuticals with the same antibodies,
it would be beneficial to evaluate the ATPS expression of cancer cells concurrently with
cellular uptake. As an alternative, comparing the therapeutic effects between tumors with
high ATPS expression and those with lower ATPS expression could aid in drawing more
credible conclusions. This is also acknowledged as a limitation of this study.
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Despite encouraging preclinical results, this study represents early-stage research.
Further technical refinements are necessary before clinical trials with 177Lu-DOTA-ATPS
mAb can be initiated.
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