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Abstract: The objective of this work was to develop a population physiologically based pharmacoki-
netic (popPBPK) model to characterize the variability in the clinical PK of monoclonal antibodies
(mAbs) following intravenous (IV) and subcutaneous (SC) administration. An extensive literature
search was conducted and clinical PK data for FDA-approved as well as non-approved mAbs were
collected. Training and validation datasets of 44 and 9 mAbs exhibiting linear pharmacokinetics
were used for model development. The variability in antibody PK was captured by accounting for
different rate constants of pinocytosis (CLup) and intracellular degradation (kdeg) for different mAbs.

Typical values for CLup and kdeg and their respective inter-antibody variabilities (ωClup, ωKdeg

)
were

estimated to be 0.32 L/h/L and 26.1 h−1 (73% and 46%). Varied absorption profiles following SC
dosing were characterized by incorporating inter-antibody variability in local degradation (kSC) and
rate of lymphatic uptake (S_Lu) of mAbs. Estimates for typical kSC and S_Lu values, and ωKsc, ωS_Lu,
were found to be 0.0015 h−1 and 0.54 (193%, and 49%). FDA-approved mAbs showed less local
degradation (0.0014 h−1 vs. 0.0038 h−1) compared with other clinically tested mAbs, whereas no
substantial differences in physiological processes involved in disposition were observed. To evaluate
the generalizability of estimated PK parameters and model validation, the final popPBPK model was
used to simulate the range of expected PK for mAbs following SC administration of nine different
mAbs that were not used for model-building purposes. The predicted PK of all nine mAbs was
within the expected range specified a priori. Thus, the popPBPK model presented here may serve
as a tool to predict the clinical PK of mAbs with linear disposition before administering them to
humans. The model may also support preclinical-to-clinical translation and ‘first-in-human’ dose
determination for mAbs.

Keywords: antibody; clinical pharmacology; pharmacokinetics; PBPK model

1. Introduction

Monoclonal antibodies (mAbs) have revolutionized the field of medicine in the last
couple of decades. Their ability to provide targeted therapy with fewer off-target effects,
long half-life, reduced immunogenicity, and less propensity for drug–drug interactions
make them highly desirable therapeutic modalities. A total of 155 mAbs have been ap-
proved by the FDA up until 2022, with a significant increase in FDA approvals post-2013 [1].
This versatile modality has found application in the treatment of almost all types of dis-
eases and has also provided relief to patients suffering from diseases with few treatment
options such as infectious diseases (e.g., Ebola), refractory cancers (e.g., refractory diffuse
large B-cell lymphoma), and rare diseases (e.g., eosinophilic granulomatosis with polyangi-
itis) [2]. Advances in protein engineering and antibody discovery technologies (e.g., phage
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display, yeast display, affinity maturation, antibody humanization, etc.) have significantly
expedited the discovery and development of antibody-based therapies, with more than
twenty submissions to regulatory agencies every year. With such a fast pace of discovery,
it is becoming increasingly important to expedite the preclinical evaluation and clinical
translation of these modalities. An objective and quantitative way to accomplish this is
to employ the model-informed drug development (MIDD) strategy [3,4], which can not
only help characterize and predict the pharmacokinetics (PK) and pharmacology of drug
molecules but can also provide insights into the variability associated with these proper-
ties using learn and confirm paradigms. To facilitate the application of this quantitative
strategy for mAb development, we have developed a population-based PK model that can
characterize and predict the PK and associated variability of mAbs in the clinic.

Even though therapeutic mAbs follow some general patterns of absorption and dispo-
sition based on their shared size and structure, individual mAbs have diverse PK profiles
post-administration. Antibody half-lives ranging from a few days to more than three weeks
have been reported in the clinic. Varying binding affinities to FcRn and dose-dependent
target-mediated drug disposition are considered primary sources of this variability [5].
Antibody binding to FcRn regulates its ability to recycle and escape catabolic clearance, and
different FcRn affinities can introduce inter-antibody variability in systemic drug exposure.
Target-mediated drug disposition introduces significant variability in PK as it depends on
multiple factors like receptor expression, receptor internalization rate, antibody binding
affinity, and dose [6]. Pharmacokinetic variability has also been observed for mAbs that
have similar affinity to FcRn and exhibit linear pharmacokinetics. There is a dearth of
knowledge in the literature regarding the extent of this diversity in the clinic. Whereas some
studies have compiled non-compartmental analysis (NCA) and compartmental model-
derived parameters, such as clearance and volume of distribution for different mAbs
and their variabilities [7,8], a comprehensive analysis of inter-antibody variability using a
physiologically based PK (PBPK) model is lacking.

PBPK models mathematically describe the physiological processes involved in drug
absorption and disposition. They can provide a platform to characterize antibody PK
in the clinic and investigate the mechanisms involved in the absorption, distribution,
and elimination variability between mAbs [9]. In contrast, population PK models are
regularly used to characterize the variability in drug exposure amongst study subjects
and patients [10]. However, population PBPK models have not been used to capture the
inter-antibody variability in clinical PK to date. Previously, a minimal PBPK model was
used to obtain a better understanding of the clinical PK of mAbs [11]. However, this
approach can include empirical clearance and distribution parameters and by its definition
excludes a whole-body description of drug disposition.

Therefore, in this study, data from all clinically tested mAbs (approved and inves-
tigational) were used to develop a population physiologically based pharmacokinetic
(popPBPK) model that provides insights into the general pharmacokinetic behavior of
mAbs with linear PK as well as their variability observed in the clinic. We hypothesize
that the inter-antibody variability in disposition stems from variability in physiological
processes of pinocytic uptake by endothelial cells and lysosomal degradation of mAbs and
that absorption comes from variability in lymphatic uptake and local degradation. An
exhaustive database of published clinical PK profiles was first established from all clinically
tested mAbs with linear pharmacokinetics post intravenous (IV) and subcutaneous (SC)
administration. The database was used to develop a popPBPK model by characterizing the
inter-antibody variability in key physiological processes mentioned above. The established
model was then used to simulate a range of possible PK profiles in the clinic for IV and
SC administration. This range was then externally validated with a separate dataset of
antibody PK profiles following SC administration.
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2. Methods
2.1. mAb Clinical PK Data Collection

All published clinical PK data for mAbs were collected from the literature. Extensive
lists of therapeutic mAbs from The Antibody Society were referenced to find all published
clinical PK mAb data. A thorough search was conducted using online resource platforms
like Google Scholar, Web of Science, Elsevier, and PubMed with the keywords antibody
drug name, pharmacokinetics, single dose, and clinical PK. Pharmacokinetic data on FDA-
approved mAbs were also obtained from BLA review documents available on the official
FDA website: www.accessdata.fda.gov (accessed on 1 January 2023). The majority of data
obtained were from Phase 1 studies spanning multiple dose levels post intravenous and
subcutaneous administration. PK data solely consisting of trough concentrations were
available from multiple dose studies but were excluded owing to the lack of time points
to confidently estimate parameters. Only data from the first cycle of multiple dosing
studies were incorporated in the analysis. All published PK profiles were digitized online
using the free web tool Webplot digitizer [12] to build the database. The PK profiles in
our database were dose-normalized to identify and exclude mAbs that exhibit nonlinear
pharmacokinetics due to target-mediated drug disposition (TMDD). Any antibody with
published proof of dose-dependent PK in the literature was also excluded from the current
analysis to focus on variability stemming from linear disposition pathways. For mAbs
like infliximab, which are known to elicit substantial immunogenicity in the body, mean
PK profiles from non-immunogenic patients were incorporated in the analysis. The PK
profiles were further classified as ‘FDA Approved’ or ‘clinically tested’ to explore possible
differences in PK as a factor influencing mAb approval. For the purposes of this text, ‘FDA
approved’ refers to mAbs that have been approved by the FDA, and ‘clinically tested’ mAbs
refer to mAbs that have been tested in the clinic but have not yet received FDA approval.
Non-compartmental analysis of digitized concentration–time profiles was conducted using
the ‘PKNCA’ package in R.

2.2. Model Structure

The PBPK model was adapted from Shah and Betts [9]. Briefly, the model consists of
blood and fifteen tissues, namely lung, liver, heart, kidney, spleen, muscle, skin, adipose,
bone, thymus, small intestine, large intestine, pancreas, lymph node, and ‘other’ compart-
ments. All tissues are physiologically interconnected via blood and lymphatic flow as
shown in Figure 1.

Each tissue, apart from the lymph node, is further made up of vascular (plasma and
blood cells), endosomal, interstitial, and cellular sub-compartments, as shown in the tissue-
level model structure in Figure 2. In summary, mAbs enter the tissue via arterial blood flow.
These mAbs can then undergo pinocytosis (CLup) into an endosomal sub-compartment
or are transported into the interstitial sub-compartment via convection (L). The model
assumes that FcRn is only present in the endosomal compartment of endothelial cells
lining the blood vessels. Thus, the mAbs present in the endosomal compartment can either
interact with FcRn to form an ‘FcRn-mAb’ complex via binding parameters (KFcRn

on and
KFcRn

o f f ) or undergo non-specific clearance (kdeg). The FcRn-bound antibody is recycled (FR)
into the plasma or exocytosed (1-FR) into the interstitial compartment. The antibody in the
interstitial compartment can either be endocytosed into the endosomal compartment or
transported to the lymph node via convective flow (L). The resistance to convective flow
from vascular to interstitial tissue and interstitial tissue to a lymph node is represented
by vascular (σv) and interstitial (σi) reflection coefficients. The mAbs used in the current
analysis only display linear pharmacokinetics, thus antigen binding in the tissue-level
model was not included.

www.accessdata.fda.gov
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Figure 1. Model structure of the whole body PBPK model for mAbs. Each compartment refers to a 
specific organ in the body. The remaining organs not represented as separate compartments have 
been lumped into the ‘Other’ compartment. All compartments are interconnected physiologically 
via lymph and blood flow. The SC compartment was added to capture PK data post-SC administra-
tion. IV dose is administered into the plasma compartment and the SC dose is administered into the 
SC compartment. S.I., L.I., Du, Je, Ile, Ce, and Co represent small intestine, large intestine, duode-
num, jejunum, ileum, cecum, and colon. 

 
Figure 2. Tissue-level PBPK model structure. Structure of all tissues (except lymph node and SC) 
(A) and the SC tissue space (B). Inter-antibody variability was assigned to kdeg and CLup for IV mAbs 
and to kdeg, CLup, S_LU, and kSC for SC-administered mAbs. 

Figure 1. Model structure of the whole body PBPK model for mAbs. Each compartment refers to a
specific organ in the body. The remaining organs not represented as separate compartments have
been lumped into the ‘Other’ compartment. All compartments are interconnected physiologically via
lymph and blood flow. The SC compartment was added to capture PK data post-SC administration.
IV dose is administered into the plasma compartment and the SC dose is administered into the SC
compartment. S.I., L.I., Du, Je, Ile, Ce, and Co represent small intestine, large intestine, duodenum,
jejunum, ileum, cecum, and colon.
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Figure 2. Tissue-level PBPK model structure. Structure of all tissues (except lymph node and SC) (A)
and the SC tissue space (B). Inter-antibody variability was assigned to kdeg and CLup for IV mAbs
and to kdeg, CLup, S_LU, and kSC for SC-administered mAbs.
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2.3. SC Model Structure

The SC model structure was adapted from a previously published model [13]. To
capture the PK of mAbs administered subcutaneously, the skin was divided into 2 separate
compartments—a subcutaneous compartment (a smaller part of the skin where the dose is
administered) and the ‘rest of the skin’ compartment. The subcutaneous tissue, like other
tissues, is also subdivided into 4 sub-compartments—vascular, endothelial, interstitial, and
cellular—and has a similar structure to other tissues (Figure 2). The subcutaneous dose
is administered in the interstitial region of the subcutaneous compartment. Additionally,
a first-order degradation rate (kSC) was introduced in the SC interstitial compartment
to account for local degradation near the injection site. A scaling factor, S_LU, was also
multiplied by the convective flow of antibodies from the interstitial region to the lymph
node compartment. S_LU is an antibody-specific parameter and accounts for differences
in driving forces for lymphatic uptake of the antibody based on the local distribution and
nonspecific interaction of antibodies at the injection site.

2.4. Model Equations

The model equations for the PBPK model used to capture IV data are the same as
previously published [9]. The general equations for the SC model that have been modified
from the IV model are:

Central Blood Compartment
Plasma

dCpl
dt = ((Qhe − Lhe).CV

he + (Qki − Lki).CV
ki + (Qmu − Lmu).CV

mu + (Qsk − Lsk).CV
sk + (QSC − LSC).CV

SC + ((Qliv−
Lliv) + (Qsp − Lsp) + (Qpa − Lpa) + (QSI − LSI) + (QLI − LLI)).CV

liv + (Qbr − Lbr).CV
br + (Qad − Lad).CV

ad + (Qth−
Lth).CV

th + (Qbo − Lbo).CV
th + (Qoth − Loth).CV

oth + LLN . CLN − (Qlu.Cpl))/Vpl

Blood cells
dCBC

dt = (Qhe.CBC
he + Qki.CBC

ki + Qmu.CBC
mu + Qsk.CBC

sk + Qsc.CBC
SC + (Qliv + Qsp + Qpa + QSI + QLI).CBC

liv
+Qbr.CBC

br + Qad.CBC
ad + Qth.CBC

th + Qbo.CBC
bo + Qoth.CBC

oth − (Qlu.CBC))/VBC

Lymph Node

dCLN
dt = ((1 − σI

lu). Llu.CI
lu + (1 − σI

he).Lhe.CI
he + (1 − σI

ki).Lki.CI
ki + (1 − σI

mu).Lmu.CI
mu + (1 − σI

sk).Lsk.CI
sk

+(1 − σI
SC).LSC.CI

SC + (1 − σI
LI).LLI .CI

LI + (1 − σI
SI).LSI .CI

SI + (1 − σI
sp).Lsp.CI

sp + (1 − σI
pa).Lpa.CI

pa
+(1 − σI

liv).Lliv.CI
liv + (1 − σI

br).Lbr.CI
br + (1 − σI

ad).Lad.CI
ad + (1 − σI

th).Lth.CI
th

+(1 − σI
bo).Lbo.CI

bo + (1 − σI
oth).Loth.CI

oth − LLN .CLN)/VLN

The model equations for all tissues other than the interstitial sub-compartment of
subcutaneous tissue are the same as those of the IV model.

Subcutaneous tissue interstitial compartment

dCI
SC

dt
=

((
1 − σV

SC

)
.LSC.CV

SC − SLU .
(

1 − σI
SC

)
.LSC.CI

SC + CLSC
up .(1 − FR).CE_Bound

SC − CLSC
up .CSC

I − KSC.CSC
I

)
/V I

SC

Please refer to Supplementary Tables S1 and S2 for description and units of the symbols
used in the above equations.

2.5. Model Parameterization and Estimation

All model parameters apart from pinocytosis rate (CLup) and non-specific degradation
rate of unbound antibody (kdeg) are the same as those used for humans by Shah and
Betts [9]. The central plasma volume and blood cell volume used in the current model are
equal to the total blood volume subtracted from the vascular volume present in the tissues.
Thus, the central plasma volume and blood cell volume used in the current model are 1412
and 1155 mL. To estimate inter-antibody variability similar to inter-individual modeling,
each antibody was treated as an individual. Population as well as antibody-specific Clup
and Kdeg estimates and inter-antibody variability of these parameters were obtained by
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fitting the model to the multiple-dose-level IV pharmacokinetic data of the 46 mAbs in
Monolix 2021R1.

For the SC model, the skin was divided into a subcutaneous compartment and the rest
of the skin compartment in order to account for the region of skin where the subcutaneous
dose is administered. Since subcutaneous doses are usually given as ~2 mL injections, we
considered the interstitial sub-compartment of the SC compartment to be 2.25 mL as the
SC dose is administered in the interstitial region of the skin. The other sub-compartment
volumes of the SC compartment were then calculated by maintaining the ratio between
the sub-compartments to be the same as that in the skin. The plasma, blood cell flow,
and lymph flow rates for the SC compartment were also scaled down and calculated
based on the new SC tissue volume from the original skin compartment. The parameters
related to the Skin and SC compartments in both IV as well as SC models have been
provided in Table 1. Antibody-specific CLup and kdeg estimates obtained previously by
fitting IV data were fixed (used as regressors in Monolix) for the sixteen mAbs that had
both IV and SC pharmacokinetic data available. The SC model was then fitted to their
SC PK profiles, and population, as well as individual absorption-related parameters (kSC
and S_LU), were estimated along with their inter-antibody variability. The Stochastic
Approximation Expectation-Maximization (SAEM) algorithm in Monolix 2021R1 was used
for nonlinear mixed effects modeling, and standard errors were computed with the Fisher
information matrix. The combined error model was specified, and it was assumed that
CLup, kdeg, ksc, and S_LU parameters follow log-normal distributions.

Table 1. SC tissue compartment volumes and flows in the popPBPK model.

Tissue Volumes (mL) Skin (SC) SC (SC)

Total volume 3401 6.82

Plasma volume 127.2 0.25

Blood cell volume 104.1 0.21

Interstitial volume 1123 2.25

Endosomal volume 17.01 0.03

Cellular volume 2031 4.07

Tissue flow (mL/h)

Plasma flow 11,600 23.25

Blood cell flow 9493 19.02

To quantitatively compare observed and model-predicted PK profiles, the % prediction
error for AUC0-t was calculated using the equation below.

%PE = 1 −

∣∣∣AUCpred − AUCobs|
AUCobs

× 100

where AUCpred refers to AUC0−t for the model-predicted PK profile and AUCobs refers to
AUC0−t for the observed PK profile. For antibodies with PK data at multiple dose levels,
the median of %PE values for different dose levels was calculated.

2.6. Sensitivity Analysis

In order to better understand the effect of two novel parameters introduced to capture
the PK of antibodies following SC administration, a local sensitivity analysis was performed,
where the effect of changes in S_LU and ksc on the PK behavior of mAbs was assessed.
The parameters were altered ±50%, and the percent change in the area under the antibody
exposure curve (AUC) was calculated using the following equation:
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% Change in AUC =

(
AUC±50% − AUCorig

)
AUCorig

where AUC±50% refers to the AUC obtained after changing the parameters by 50%, and
AUCorig refers to the AUC with model-estimated population parameters.

2.7. Monte Carlo Simulations

The established PBPK models were used to simulate a range of possible PK profiles
for mAbs that exhibit linear pharmacokinetics post intravenous and subcutaneous adminis-
tration. The Monte Carlo simulations were conducted for 1000 patients using the Ubiquity
package in R [14]. The profiles were simulated with estimated population parameter values
of CLup, kdeg, kSC, and S_LU; the inter-antibody variability that was estimated for these
parameters was also incorporated. To validate the predicted window of SC PK profiles,
we overlay SC PK data for nine mAbs on the predicted population simulation. These
mAbs were not used for developing the model. Several of the mAbs used for validation
had pharmacokinetic data at multiple dose levels. Thus, all PK data for each antibody
were dose-normalized to their highest dose profile and overlaid on population simulations
conducted for the highest dose to validate a priori model-predicted antibody PK following
SC administration.

3. Results
3.1. mAb Clinical PK Data

PK data were collected for a total of 143 mAbs out of which 75 were FDA-approved and
68 others were clinically tested. Among the mAbs in our database, 55 exhibited linear PK
and were used for further analysis. Panobacumab (IgM) and Suvratoxumab (Fc-modified)
showed linear PK but were excluded from model development as they have substantially
different binding affinities for FcRn compared to the rest of the IgG molecules. A total of
44 mAbs with IV data were used to establish the IV popPBPK model, and 16 mAbs with
both IV and SC data were used to establish the SC popPBPK model. Nine mAbs that lacked
IV data but had SC data were used to validate the established popPBPK model. A summary
of all datasets used in the development of the popPBPK model is provided in Table 2.
Additional information on the antibody datasets can be found in Supplementary Table S3.

Table 2. List of all the antibodies used for the development of the PopPBPK model.

ID Name IV Doses SC Doses Status Reference

Datasets used for IV and SC model development

1 Adalimumab (0.25, 0.5, 1, 3, and 5) mg/kg 40 mg Approved [15]

2 Belimumab 200 mg 200 mg Approved [16]

3 Benralizumab (0.03, 0.1, 0.3, 1 and 3) mg/kg 30 mg Approved [17,18]

4 Canakinumab (1 and 3) mg/kg and 600 mg (150, 300) mg Approved [19]

5 Daclizumab 200 and 400 mg (150, 300) mg Approved [20]

6 Enokizumab (0.3, 1, 3 and 9) mg/kg (3, 9) mg/kg Tested [21]

7 Fulranumab (1, 3, 10 and 30) mg (10, 30) mg Tested [22]

8 Gevokizumab (0.01, 0.03, 0.1, 0.3, 1 and 3) mg/kg (2.1, 7, 21)mg Approved [23]

9 Guselkumab (0.03, 0.1, 0.3, 1, 3, and 10) mg/kg (10, 30, 100, 300) mg Approved [24]

10 Mepolizumab (0.05, 0.5, 2.5 and 10) mg/kg 250 mg Approved [25]

11 Olokizumab (0.01, 0.03, 0.1, 0.3, 1, 3 and 10) mg/kg (0.3, 1, 3) mg/kg Tested [26]

12 Ralpancizumab (1, 3 and 6) mg/kg (0.3, 1, 3, 6) mg/kg Tested [27]

13 Risankizumab (0.01, 0.05, 0.25, 1,3 and 5) mg/kg (18, 90, 300) mg Approved [28,29]
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Table 2. Cont.

ID Name IV Doses SC Doses Status Reference

14 Secukinumab (3 and 10) mg/kg 300 mg Approved [30,31]

15 Tezepelumab (3 and 10) mg/kg (2.1, 7, 21, 70, 210, 420) mg Approved [32]

16 Tildrakizumab (0.1, 0.5, 3 and 10) mg/kg (50, 200) mg Approved [33]

Datasets used only for IV model development

17 Bezlotoxumab (10 and 20) mg/kg - Approved [34]

18 Cemiplimab (1, 3 and 10) mg/kg - Approved [35]

19 Cetrelimab (80, 240, 460, 480 and 800) mg - Tested [36]

20 Crenezumab (15, 30, 45, 60 and 120) mg/kg - Tested [37]

21 Enavatuzumab 1 mg/kg - Tested [38]

22 Farletuzumab (85, 190, 380 and 760) mg - Tested [39]

23 Gedivumab (3600 and 8400) mg - Tested [40]

24 Infliximab 5 mg/kg - Approved [41]

25 Ipilimumab (0.3, 3 and 10) mg/kg - Approved [42]

26 Lesofavumab (120, 1200, 3600, 8400 and 10,800) mg - Tested [43]

27 Lexatumumab (0.1, 0.3, 1, 3 and 10) mg/kg - Tested [44]

28 Mogamulizumab (0.1, 0.3 and 1) mg/kg - Approved [45]

29 Nesvacumab (1, 3, 6, 12 and 20) mg/kg - Tested [46]

30 Nivolumab (1, 3 and 10) mg/kg - Approved [47]

31 Obiltoxaximab 1120 mg - Approved [48]

32 Ozanezumab (0.1, 1, 5 and 15) mg/kg - Tested [49]

33 Pateclizumab (0.3, 1, 3 and 5) mg/kg - Tested [50]

34 Pembrolizumab (2 and 10) mg/kg - Approved [51]

35 Pertuzumab (5, 10, 15, 20 and 25) mg/kg - Approved [52]

36 Raxibacumab 2800 mg - Approved [53]

37 Reslizumab (0.3, 1, 2 and 3) mg/kg - Approved [54]

38 Siltuximab (1,3 and 6) mg/kg - Approved [55]

39 Tafasitamab 12 mg/kg - Approved [56]

40 Tefibazumab (2,5,10 and 20) mg/kg - Tested [57]

41 Tigatuzumab (1,2,4 and 8) mg/kg - Tested [58]

42 Tildrakizumab (0.1, 0.5, 3 and 10) mg/kg - Approved [33]

43 Ublituximab 1200 mg - Approved [59]

Datasets used for validation

44 Emicizumab - 1 mg/kg Approved [60]

45 Etrolizumab - 105 mg Tested [61]

46 Fremanezumab - (225, 675, 900) mg Approved [62]

47 Galcanezumab - (1, 5, 25, 75, 200, 600) mg Approved [63]

48 Ixekizumab - (80, 160) mg Approved [64]

49 Lanadelumab - (0.1, 0.3, 1, 3) mg/kg Approved [65]

50 Omalizumab - (75, 300, 600) mg Approved FDA

51 Quilizumab - (70,210) mg Tested [66]

52 Tralokinumab - (150, 300, 600) mg Approved [67]

IV and SC PK profiles of all mAbs were dose-normalized to 1 mg/kg and overlaid
on each other to visually inspect inter-antibody variability and its influence on FDA ap-
proval. In the absence of TMDD and immunogenicity, moderately diverse PK profiles were
observed post IV and SC administration. There was an approximately 6-fold difference
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in dose-normalized antibody exposures (AUCs), with AUC values falling in the range of
1970–12,900 µg/mL·h. No clear distinction in pharmacokinetics was observed between
mAbs that were FDA-approved and those that were solely clinically tested (Figure 3).
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3.2. popPBPK Model Fitting and Parameter Estimation

The IV PBPK model was adapted from Shah and Betts [9], and all original parameter
values, apart from CLup and kdeg, were retained. In order to capture the inter-antibody
variability in the pharmacokinetics of linear mAbs, variability was added to the pinocytic
uptake (CLup) and non-specific degradation (kdeg) parameters. In a prior local sensitivity
analysis of the PBPK model [9], both kdeg and CLup were found to be drug-specific sensitive
parameters in the model. The popPBPK model was able to adequately capture the PK of
all 43 mAbs, as shown in Figure 4. The %PE for all antibodies was below 30%, individual
%PE are provided in Table 3. The population PK parameters and their inter-antibody
variability were estimated with reasonable confidence (<20% CV). The estimated CLup

(pop), ωClup, kdeg (pop), and ωKdeg were 0.32 L/h/L, 73%, 26.1 h−1, and 46%. In order
to capture the SC data, the skin compartment was bifurcated into an ‘SC compartment’,
which represents the area of skin where the dose is administered and the ‘rest of the skin
compartment’. Further variability was assigned to the lymphatic uptake process (S_LU)
and local degradation (ksc) to account for reported heterogeneity in the antibody absorption
process. The SC popPBPK model was able to fit the model to the data well (Figure 5), with
%PE values < 30% (Table 4), and estimated the population parameters ksc and S_LU with
reasonable confidence (66% and 14% RSE). The model estimates for ksc (pop), ωKsc, S_LU
(pop), and ωS_LU were 0.0015 h−1, 193%, 0.54, and 49%.

Based on individual parameter estimates obtained in the model development process,
distributions of possible parameter values in the clinic were obtained; these are shown in
Figure 6. The distributions of parameters were categorized based on their status of approval
to identify any potential differences. FDA-approved mAbs had a median CLup value of
0.39 L/h/L whereas that of the clinically tested mAbs was 0.28 L/h/L. The approved and
clinically tested mAbs had similar median kdeg estimates of 25.5 and 29.3 h−1. Thus, no
clear distinction was inferred in the disposition of FDA-approved and clinically tested
mAbs. FDA-approved mAbs showed 2.7 times lower median local degradation (0.0014 vs.
0.0038 h−1) and marginally greater lymphatic uptake (0.59 vs. 0.47), suggesting a better
absorption profile of FDA-approved mAbs.
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Figure 4. Clinical PK of IV-administered mAbs with individual model fittings. Solid dots represent
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color for mAbs with multiple dose-level data.
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Table 3. Median percent prediction error (%PE) for quantitative comparison of observed and model-
generated data for intravenously administered antibodies.

ID Antibody Median %PE ID Antibody Median %PE

1 Belimumab 7.5 23 Olokizumab 12.8

2 Reslizumab 5.9 24 Ozanezumab 7.9

3 Siltuximab 6.0 25 Gevokizumab 8.3

4 Pembrolizumab 5.0 26 Guselkumab 16.1

5 Tezepelumab 3.3 27 Benralizumab 4.8

6 Pateclizumab 11.8 28 Mepolizumab 4.2

7 Ralpancizumab 2.8 29 Tildrakizumab 4.9

8 Tefibazumab 6.3 30 Adalimumab 7.3

9 Enokizumab 9.3 31 Canakinumab 3.9

10 Fulranumab 6.8 32 Ipilimumab 3.0

11 Obiltoxaximab 12.9 33 Raxibacumab 28.4

12 Bezlotoxumab 6.7 34 Daclizumab 8.7

13 Infliximab 7.2 35 Ublituximab 2.6

14 Nivolumab 14.2 36 Tigatuzumab 19.3

15 Enavatuzumab 5.0 37 Gedivumab 3.3

16 Risankizumab 12.4 38 Cemiplimab 3.4

17 Tremelimumab 13.8 39 Mogamulizumab 22.7

18 Crenezumab 6.5 40 Tafasitamab 4.9

19 Cetrelimab 11.2 41 Secukinumab 5.6

20 Lesofavumab 8.2 42 Farletuzumab 9.6

21 Lexatumumab 13.1 43 Pertuzumab 5.6

22 Nesvacumab 5.1

Table 4. Median percent prediction error (%PE) for quantitative comparison of observed and model-
generated data for subcutaneously administered antibodies.

ID Antibody Median % PE ID Antibody Median % PE

1 Adalimumab 3.6 9 Daclizumab 5.0

2 Canakinumab 2.3 10 Benralizumab 6.1

3 Guselkumab 28.9 11 Belimumab 13.7

4 Risankizumab 10.7 12 Enokizumab 7.2

5 Secukinumab 7.6 13 Gevokizumab 2.7

6 Tezepelumab 11.5 14 Fulranumab 28.1

7 Tildrakizumab 8.0 15 Olokizumab 4.12

8 Mepolizumab 19.8 16 Ralpancizumab 10.69
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Figure 5. Clinical PK of SC-administered mAbs with individual model fittings. Solid dots represent
observed data and solid lines represent model-fitted profiles. Each dose is plotted with a different
color for mAbs with multiple dose-level data.
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Figure 6. Distribution of parameters (A) CLup, (B) kdeg, (C) kSC, and (D) S_LU for FDA-approved
and clinically tested mAbs. Gray and yellow dotted lines indicate the distribution medians for
FDA-approved and clinically tested mAbs.

3.3. Sensitivity Analysis

A local sensitivity analysis helps identify how sensitive model predictions are to
change with certain parameter values. It also helps explore how much individual processes
influence mAb pharmacokinetics and the direction of their effects. Here, a sensitivity
analysis was performed on S_LU and kSC, which refer to the lymphatic uptake scaling
factor and rate of local degradation at the drug administration site. Greater sensitivity
to a certain parameter would lead to a greater absolute value of percent change in AUC.
The model was found to be significantly sensitive to both absorption-related parameters,
with S_LU being the more sensitive parameter (Figure 7). The Tmax of the PK profiles was
directly proportional to lymphatic uptake, thus highlighting the importance of this process
in the rate and extent of absorption. Additionally, S_LU was directly proportional to drug
exposure, with greater lymphatic uptake associated with more drugs in the system and
greater net exposures. On the contrary, kSC was inversely proportional to drug exposure
as expected. Greater rates of local degradation would lead to decreased bioavailability of
drugs and thus lower net exposures.
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Figure 7. Local sensitivity analysis of absorption-related parameters ksc and S_LU. Percent change
and the direction of change in AUC with an increase or decrease of 50% in parameter values are
shown. A greater absolute value indicates a more sensitive parameter, and S_LU is a more sensitive
term than ksc.

3.4. Monte Carlo Simulations and Model Validation

Monte Carlo simulations were conducted to simulate a prediction window of PK
profiles for linear mAbs post-SC dosing. SC PK profiles of emicizumab, etrolizumab,
fremanezumab, galcanezumab, ixekizumab, lanadelumab, omalizumab, quilizumab, and
tralokinumab were used to validate the simulated prediction window. Data for multiple
dose levels was available for fremanezumab, galcanezumab, omalizumab, tralokinumab,
and lanadelumab, and Monte Carlo simulations were carried out for the highest dose
available for each of these mAbs. All observed PK data were normalized to the highest
dose and overlaid onto the simulations (Figure 8). In general, all SC PK profiles fall within
the prediction window simulated from the popPBPK model, thus providing confidence
in the use of the model to a priori predict the range of clinical PK for mAbs exhibiting
linear clearance.
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Figure 8. popPBPK model-predicted window and observed concentration–time profiles for valida-
tion mAbs following SC injection. Data were dose-normalized to the highest available dose, and
simulations were performed for the same dose. The mAbs shown are: (A) Emicizumab (70 mg),
(B) Etrolizumab (105 mg), (C) Fremanezumab (900 mg), (D) Galcanezumab (600 mg), (E) Ixekizumab
(160 mg), (F) Lanadelumab (210 mg), (G) Omalizumab (600 mg), (H) Quilizumab (210 mg), and
(I) Tralokinumab (600 mg).

4. Discussion

In the past twenty years, the mAb drug class has grown exponentially, with more than
1000 mAbs currently in the clinical pipelines of pharmaceutical companies, and redefined
targeted therapy. The field has expanded beyond cancer, infections, and immunological
disorders to neurological diseases [68], rare genetic disorders [69], migraines [70], osteo-
porosis [71], eye disorders [72], and many others. Studies have reported relatively similar
pharmacokinetics of mAbs with linear clearance regardless of their targets owing to their
similar size and structure [7]. This is highly advantageous as it can help predict the clinical
PK behavior of certain mAbs. In order to make informed predictions, it is necessary to not
only understand general PK behavior but also the source and extent of clinical PK variabil-
ity. Whereas several studies have attempted to identify the variability source and build
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mathematical relations to predict PK [73–75], there have been few efforts to characterize
the extent of this variability [7,8]. Additionally, previous analyses have been limited to
general NCA or empirical compartmental modeling parameters, like central volume, pe-
ripheral volume, and clearance, thus providing limited mechanistic insight into variability
in individual processes involved in antibody absorption, distribution, and elimination.

In this study, available clinical PK data of all approved and clinically tested mAbs were
collected and used to build a popPBPK model to characterize the general behavior as well as
inter-antibody pharmacokinetic variability of mAbs with linear PK. The use of a popPBPK
model to characterize this variability accommodated the mathematical representation of the
human body and various physiological processes involved in antibody PK and assigned
variability terms to discrete processes. This enabled the exploration of the distribution of
drug-specific parameters like CLup, kdeg, S_LU, and kSC and the prediction of the clinical
PK of mAbs with linear disposition.

Subcutaneous administration of mAbs is becoming increasingly popular owing to its
ease of administration, increased patient adherence, and reduced burden on the healthcare
system. Despite extensive interest in the field, the development of SC mAbs is relatively
slow as the absorption is highly variable and there are several gaps in understanding
of factors regulating the absorption process [76]. Furthermore, substantial differences in
SC mAb absorption in preclinical species and humans have been reported [77]. In such
scenarios, in silico tools like PBPK models are very useful and have been used to explore
determinants of antibody SC absorption [78]. In order to characterize the SC absorption
of mAbs, an SC compartment was separated from the skin compartment in the popPBPK
model. SC-administered mAbs undergo local degradation at the site of injection [79], and to
account for this, a first-order rate constant of degradation was added at the site of injection
(kSC). A scaling factor (S_LU) was also multiplied by the lymphatic uptake process of mAbs
from the site of injection to represent the differences in the local distribution of mAbs at
the injection site stemming from different physiochemical properties and the variability in
antibody escape from the extracellular matrix [80].

The IV and SC PBPK models were able to capture most of the PK data. The model
was unable to adequately capture the PK profiles of a few mAbs at select dose levels.
For example, the model was unable to characterize the initial phase of fulranumab PK
following a 1 mg dose. Since the model was able to capture fulranumab PK at other dose
levels successfully, we hypothesize that this issue may have been caused by some error
in either reporting the PK data or error in data collection after the 1 mg dose. Similarly,
the model encountered difficulty fitting the PK profiles of Olokizumab at 0.01 mg/kg
and Tefibazumab at 2 mg/kg, where PK concentrations increase at later time points post
a single intravenous dose. The increase in concentrations at later time points could be
attributed to mAb lymphatic recirculation [81], measurement error, or errors in digitizing
mean data. Since increased concentrations were only observed at the lowest antibody dose
levels in both cases, where concentrations at later time points might be close to the limit
of quantification of the analytical method, it is possible that the error can be associated
with data collection or reporting issues. The population parameters for CLup, kdeg, and
S_LU and their BDV (between drug variability) were estimated with reasonable confidence
(<20 CV%). The kSC parameter was estimated with a greater RSE (66%). This could be
because the parameter is relatively less sensitive. A local sensitivity analysis was performed
to assess the dynamics of SC absorption and the impact of variability in local degradation
and lymphatic uptake. The process of lymphatic uptake was found to be more sensitive
than local degradation. These results align with other studies that have reported lymphatic
uptake to be the most important route for absorption of subcutaneously administered
mAbs [78,80].

Currently, only around 20% of the mAbs entering clinical trials get approved [82]. The
identification of a distinct favorable property profile of approved mAbs would represent a
strategic advantage and help to establish ‘benchmarks’ of clinical success. However, there
were no differences in the IV and SC PK profiles for approved vs. not yet approved mAbs,
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suggesting that poor pharmacokinetics is an unlikely source of antibody–drug attrition.
These results must be interpreted cautiously as the database might be biased with PK
data from mAbs with desirable PK properties, which are more likely to be published. The
parameter distributions of the model-estimated parameters CLup, kdeg, kSC, and S_LU
provide an additional opportunity to assess the properties of approved drugs and com-
pounds under development. Estimated CLup values ranged from lower values like 0.04 for
infliximab to higher values like 1.16 for bezlotoxumab. Whereas most mAbs fell within the
0.04–0.83 range, bezlotoxumab showed a greater rate constant of pinocytosis. The median
CLup for approved mAbs (0.39) was marginally greater than that of clinically tested mAbs
(0.28). Estimated Kdeg parameters fell in the range of 15–46 h−1 with similar median kdeg

values of 25.5 and 29 h−1 for approved and clinically tested mAbs. No clear distinctions
in CLup and kdeg distribution between FDA-approved and clinically tested mAbs were
observed. The estimated kSC and S_LU parameters ranged from 0.00012 to 0.0051 h−1 and
0.19–0.99. Guselkumab had a significantly greater local degradation rate constant (0.011)
than the rest of the mAbs. The bioavailability of guselkumab is also reported to be 49% [83],
which is less than the normal range of 60–80% reported for other marketed mAbs [84].
One hypothesis is that faster local degradation at the site of injection could be responsible
for the lower SC bioavailability of guselkumab. The FDA-approved mAbs had smaller
rate constants of local degradation and a marginally greater rate constant for lymphatic
uptake, suggesting that approved mAbs might have better absorption profiles than the
other tested mAbs. Since only four clinically tested mAbs and twelve approved mAbs were
examined, data from more mAbs are needed to confirm this conclusion. Nonetheless, the
popPBPK model developed here not only provides simulations for the mean PK profiles
but also incorporates inter-antibody variability seen in the clinic to better support antibody
development. While several parameters like Clup and plasma volume have been updated
in the current model, the predicted PK profile matches well with a previously published
PBPK model for antibodies and provides better characterization of the alpha phase of the
PK profile (Figure S1).

The primary value of the established popPBPK model lies in its ability to simulate a
prediction window at different dose levels for mAbs with linear clearance. We validated
the model-based prediction window by overlaying digitized SC concentration–time data
from nine different mAbs, which could not be used for model development owing to a
lack of IV data. The model was able to a priori predict the range within which the PK
profiles of all validation mAbs fell. This prediction window provides a general idea of what
to expect in the clinic post IV or SC administration for mAbs with linear PK. This prior
knowledge could help identify optimal doses for clinical trials, consolidate trial sample
size, and expedite the time to drug approval. Additionally, molecules with substantial
deviations from this general mAb PK profile during the drug discovery and development
process could be flagged for further analysis. The parameter distributions also provide
information about the variability in individual processes of antibody pharmacokinetics.

In this study, we observed considerable variability in the clinical PK of mAbs with
linear PK, leading to a relatively broad prediction window for antibody PK. While previous
research has established that the size of protein therapeutics significantly influences their
PK properties [85], our findings suggest that antibodies of similar size can exhibit substan-
tially different PK profiles. This variability may be attributed to other physicochemical
properties, such as charge, glycosylation pattern, and hydrophobicity [86]. Multiple studies
have been conducted to identify relationships between the physicochemical properties of
antibodies and their PK, yielding promising results [73,74]. However, further quantitative
structure–pharmacokinetic relationship (QSPKR) studies are required to elucidate some of
this variability and help narrow the prediction window. Future research in this area will be
essential for a more comprehensive understanding of the factors influencing variability in
antibody PK.

The final popPBPK model does not account for diverse study populations and analysis
methods. Since mean concentration–time profiles from different clinical studies conducted
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in diverse populations were utilized, the variability observed in digitized PK profiles
might be inflated possibly owing to distinct study populations, analysis methods, sample
collection techniques, and patient co-medications as well. While the current study facilitates
prediction of the pharmacokinetics for mAbs that exhibit linear PK, there is a need to
incorporate target-mediated drug disposition and its associated variability in the model to
be able to successfully predict the clinical PK for all mAbs. Further analysis is required to
associate sources of variability like different physicochemical properties to explain some of
the inter-antibody variability and make more accurate predictions.

In summary, a popPBPK model for IV- and SC-administered mAbs using a compre-
hensive clinical PK dataset, which characterizes the extent of inter-antibody variability
in pharmacokinetics seen in the clinic, has been developed. The established model en-
ables predictions of IV and SC PK for mAbs with linear PK before conducting clinical
trials and could possibly assist with preclinical-to-clinical translation and ‘first-in-human’
dose determination.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antib13030054/s1, Table S1: A glossary of parameters
utilized in the antibody popPBPK model. ‘Sc’ refers to subcutaneous tissue. All other parameters are
same as [9]; Table S2: Population parameters estimated from the antibody popPBPK model; Table S3:
Information on Clinical studies; Figure S1: Comparison of current PBPK model with previously
published PBPK model.

Author Contributions: D.K.S. and D.E.M. designed the study; M.K., S.L., A.Y. and M.E. collected and
analyzed the data; M.K., M.E., D.E.M. and D.K.S. wrote the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Center for Protein Therapeutics at the University of
Buffalo. DKS is also supported by National Institute of General Medical Sciences grants (GM114179,
GM146097), a National Institute of Allergy and Infectious Diseases grant (AI138195), and National
Cancer Institute grants (R01CA246785, R01CA256928, and R01CA275967).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used for this publication come from the public domain,
and the source of each dataset is cited in the publication.

Conflicts of Interest: Dr. Donald E. Mager was employed by the Enhanced Pharmacodynamics, LLC.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Cai, H.H.; Pandit, A. Therapeutic Monoclonal Antibodies Approved by FDA in 2022. J. Clin. Exp. Immunol. 2023, 8, 533–535.
2. Sharma, P.; Joshi, R.V.; Pritchard, R.; Xu, K.; Eicher, M.A. Therapeutic Antibodies in Medicine. Molecules 2023, 28, 6438. [CrossRef]

[PubMed]
3. Kinch, M.S.; Kraft, Z.; Schwartz, T. Monoclonal antibodies: Trends in therapeutic success and commercial focus. Drug Discov.

Today 2023, 28, 103415. [CrossRef]
4. Kaplon, H.; Crescioli, S.; Chenoweth, A.; Visweswaraiah, J.; Reichert, J.M. Antibodies to watch in 2023. mAbs 2023, 15, 2153410.

[CrossRef]
5. Kelly, R.L.; Yu, Y.; Sun, T.; Caffry, I.; Lynaugh, H.; Brown, M.; Jain, T.; Xu, Y.; Wittrup, K.D. Target-independent variable region

mediated effects on antibody clearance can be FcRn independent. mAbs 2016, 8, 1269–1275. [CrossRef] [PubMed]
6. Mager, D.E. Target-mediated drug disposition and dynamics. Biochem. Pharmacol. 2006, 72, 1–10. [CrossRef]
7. Dirks, N.L.; Meibohm, B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49,

633–659. [CrossRef]
8. Bensalem, A.; Ternant, D. Pharmacokinetic Variability of Therapeutic Antibodies in Humans: A Comprehensive Review of

Population Pharmacokinetic Modeling Publications. Clin. Pharmacokinet. 2020, 59, 857–874. [CrossRef]
9. Shah, D.K.; Betts, A.M. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal

antibodies in preclinical species and human. J. Pharmacokinet. Pharmacodyn. 2012, 39, 67–86. [CrossRef]

https://www.mdpi.com/article/10.3390/antib13030054/s1
https://doi.org/10.3390/molecules28186438
https://www.ncbi.nlm.nih.gov/pubmed/37764213
https://doi.org/10.1016/j.drudis.2022.103415
https://doi.org/10.1080/19420862.2022.2153410
https://doi.org/10.1080/19420862.2016.1208330
https://www.ncbi.nlm.nih.gov/pubmed/27610650
https://doi.org/10.1016/j.bcp.2005.12.041
https://doi.org/10.2165/11535960-000000000-00000
https://doi.org/10.1007/s40262-020-00874-2
https://doi.org/10.1007/s10928-011-9232-2


Antibodies 2024, 13, 54 22 of 25

10. Mould, D.R.; Upton, R.N. Basic concepts in population modeling, simulation, and model-based drug development-part 2:
Introduction to pharmacokinetic modeling methods. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e38. [CrossRef]

11. Cao, Y.; Jusko, W.J. Survey of monoclonal antibody disposition in man utilizing a minimal physiologically-based pharmacokinetic
model. J. Pharmacokinet. Pharmacodyn. 2014, 41, 571–580. [CrossRef]

12. Rohatgi, A. WebPlotDigitizer. September 2022. Available online: https://automeris.io/WebPlotDigitizer (accessed on 1 January
2023).

13. Li, Z.; Yu, X.; Li, Y.; Verma, A.; Chang, H.P.; Shah, D.K. A Two-Pore Physiologically Based Pharmacokinetic Model to Predict
Subcutaneously Administered Different-Size Antibody/Antibody Fragments. AAPS J. 2021, 23, 62. [CrossRef] [PubMed]

14. Harrold, J.M.; Abraham, A.K. Ubiquity: A framework for physiological/mechanism-based pharmacokinetic/pharmacodynamic
model development and deployment. J. Pharmacokinet. Pharmacodyn. 2014, 41, 141–151. [CrossRef]

15. Weisman, M.H.; Moreland, L.W.; Furst, D.E.; Weinblatt, M.E.; Keystone, E.C.; Paulus, H.E.; Teoh, L.S.; Velagapudi, R.B.;
Noertersheuser, P.A.; Granneman, G.R.; et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human
anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: A
pilot study. Clin. Ther. 2003, 25, 1700–1721. [CrossRef]

16. Shida, Y.; Takahashi, N.; Sakamoto, T.; Ino, H.; Endo, A.; Hirama, T. The pharmacokinetics and safety profiles of belimumab after
single subcutaneous and intravenous doses in healthy Japanese volunteers. J. Clin. Pharm. Ther. 2014, 39, 97–101. [CrossRef]
[PubMed]

17. Busse, W.W.; Katial, R.; Gossage, D.; Sari, S.; Wang, B.; Kolbeck, R.; Coyle, A.J.; Koike, M.; Spitalny, G.L.; Kiener, P.A.; et al. Safety
profile, pharmacokinetics, and biologic activity of MEDI-563, an anti–IL-5 receptor α antibody, in a phase I study of subjects with
mild asthma. J. Allergy Clin. Immunol. 2010, 125, 1237–1244.e2. [CrossRef]

18. Martin, U.J.; Fuhr, R.; Forte, P.; Barker, P.; Axley, M.J.; Aurivillius, M.; Yan, L.; Roskos, L. Comparison of autoinjector with
accessorized prefilled syringe for benralizumab pharmacokinetic exposure: AMES trial results. J. Asthma 2019, 58, 93–101.
[CrossRef]

19. Chakraborty, A.; Tannenbaum, S.; Rordorf, C.; Lowe, P.J.; Floch, D.; Gram, H.; Roy, S. Pharmacokinetic and pharmacodynamic
properties of canakinumab, a human anti-interleukin-1β monoclonal antibody. Clin. Pharmacokinet. 2012, 51, e1–e18. [CrossRef]
[PubMed]

20. Diao, L.; Hang, Y.; Othman, A.A.; Nestorov, I.; Tran, J.Q. Population Pharmacokinetics of Daclizumab High-Yield Process in
Healthy Volunteers and Subjects with Multiple Sclerosis: Analysis of Phase I–III Clinical Trials. Clin. Pharmacokinet. 2016, 55,
943–955. [CrossRef]

21. White, B.; Leon, F.; White, W.; Robbie, G. Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a
monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin. Ther. 2009, 31, 728–740. [CrossRef]

22. Gow, J.M.; Tsuji, W.H.; Williams, G.J.; Mytych, D.; Sciberras, D.; Searle, S.L.; Mant, T.; Gibbs, J.P. Safety, tolerability, pharmacoki-
netics, and efficacy of AMG 403, a human anti-nerve growth factor monoclonal antibody, in two phase I studies with healthy
volunteers and knee osteoarthritis subjects. Arthritis Res. Ther. 2015, 17, 282. [CrossRef] [PubMed]

23. Cavelti-Weder, C.; Babians-Brunner, A.; Keller, C.; Stahel, M.A.; Kurz-Levin, M.; Zayed, H.; Solinger, A.M.; Mandrup-Poulsen, T.;
Dinarello, C.A.; Donath, M.Y. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care
2012, 35, 1654–1662. [CrossRef]

24. Zhuang, Y.; Calderon, C.; Marciniak, S.J.; Bouman-Thio, E.; Szapary, P.; Yang, T.-Y.; Schantz, A.; Davis, H.M.; Zhou, H.; Xu, Z.
First-in-human study to assess guselkumab (anti-IL-23 mAb) pharmacokinetics/safety in healthy subjects and patients with
moderate-to-severe psoriasis. Eur. J. Clin. Pharmacol. 2016, 72, 1303–1310. [CrossRef]

25. Smith, D.A.; Minthorn, E.A.; Beerahee, M. Pharmacokinetics and pharmacodynamics of mepolizumab, an anti-interleukin-5
monoclonal antibody. Clin. Pharmacokinet. 2011, 50, 215–227. [CrossRef]

26. Kretsos, K.; Golor, G.; Jullion, A.; Hickling, M.; McCabe, S.; Shaw, S.; Jose, J.; Oliver, R. Safety and pharmacokinetics of olokizumab,
an anti-IL-6 monoclonal antibody, administered to healthy male volunteers: A randomized phase I study. Clin. Pharmacol. Drug
Dev. 2014, 3, 388–395. [CrossRef]

27. Levisetti, M.; Joh, T.; Wan, H.; Liang, H.; Forgues, P.; Gumbiner, B.; Garzone, P.D. A Phase I Randomized Study of a Specifically
Engineered, pH-Sensitive PCSK9 Inhibitor RN317 (PF-05335810) in Hypercholesterolemic Subjects on Statin Therapy. Clin. Transl.
Sci. 2017, 10, 3–11. [CrossRef] [PubMed]

28. Pang, Y.; Khatri, A.; Suleiman, A.A.; Othman, A.A. Clinical Pharmacokinetics and Pharmacodynamics of Risankizumab in
Psoriasis Patients. Clin. Pharmacokinet. 2020, 59, 311–326. [CrossRef] [PubMed]

29. Khatri, A.; Eckert, D.; Oberoi, R.; Suleiman, A.; Pang, Y.; Cheng, L.; Othman, A.A. Pharmacokinetics of Risankizumab in Asian
Healthy Subjects and Patients With Moderate to Severe Plaque Psoriasis, Generalized Pustular Psoriasis, and Erythrodermic
Psoriasis. J. Clin. Pharmacol. 2019, 59, 1656–1668. [CrossRef]

30. FDA, Center for Drug Evaluation and Research. COSENTYX (secukinumab) Subcutaneous Injections NDA Summary Review; Center
for Drug Evaluation and Research: Silver Spring, MD, USA, 2015.

31. Bruin, G.; Hockey, H.P.; La Stella, P.; Sigurgeirsson, B.; Fu, R.; Patekar, M.; Charef, P.; Woessner, R.; Boutouyrie-Dumont, B.
Comparison of pharmacokinetics, safety and tolerability of secukinumab administered subcutaneously using different delivery
systems in healthy volunteers and in psoriasis patients. Br. J. Clin. Pharmacol. 2020, 86, 338–351. [CrossRef]

https://doi.org/10.1038/psp.2013.14
https://doi.org/10.1007/s10928-014-9374-0
https://automeris.io/WebPlotDigitizer
https://doi.org/10.1208/s12248-021-00588-8
https://www.ncbi.nlm.nih.gov/pubmed/33942169
https://doi.org/10.1007/s10928-014-9352-6
https://doi.org/10.1016/S0149-2918(03)80164-9
https://doi.org/10.1111/jcpt.12101
https://www.ncbi.nlm.nih.gov/pubmed/24117862
https://doi.org/10.1016/j.jaci.2010.04.005
https://doi.org/10.1080/02770903.2019.1663428
https://doi.org/10.2165/11599820-000000000-00000
https://www.ncbi.nlm.nih.gov/pubmed/22550964
https://doi.org/10.1007/s40262-016-0366-7
https://doi.org/10.1016/j.clinthera.2009.04.019
https://doi.org/10.1186/s13075-015-0797-9
https://www.ncbi.nlm.nih.gov/pubmed/26449617
https://doi.org/10.2337/dc11-2219
https://doi.org/10.1007/s00228-016-2110-5
https://doi.org/10.2165/11584340-000000000-00000
https://doi.org/10.1002/cpdd.121
https://doi.org/10.1111/cts.12430
https://www.ncbi.nlm.nih.gov/pubmed/27860267
https://doi.org/10.1007/s40262-019-00842-5
https://www.ncbi.nlm.nih.gov/pubmed/31758502
https://doi.org/10.1002/jcph.1473
https://doi.org/10.1111/bcp.14155


Antibodies 2024, 13, 54 23 of 25

32. Parnes, J.R.; Sullivan, J.T.; Chen, L.; Dias, C. Pharmacokinetics, Safety, and Tolerability of Tezepelumab (AMG 157) in Healthy and
Atopic Dermatitis Adult Subjects. Clin. Pharmacol. Ther. 2019, 106, 441–449. [CrossRef]

33. Khalilieh, S.; Hodsman, P.; Xu, C.; Tzontcheva, A.; Glasgow, S.; Montgomery, D. Pharmacokinetics of Tildrakizumab (MK-3222),
an Anti-IL-23 Monoclonal Antibody, After Intravenous or Subcutaneous Administration in Healthy Subjects. Basic Clin. Pharmacol.
Toxicol. 2018, 123, 294–300. [CrossRef]

34. FDA, Center for Drug Evaluation and Research. Bezlotoxumab (a.k.a. MK-6072) NDA Summary Review; Center for Drug Evaluation
and Research: Silver Spring, MD, USA, 2016.

35. Papadopoulos, K.P.; Johnson, M.L.; Lockhart, A.C.; Moore, K.N.; Falchook, G.S.; Formenti, S.C.; Naing, A.; Carvajal, R.D.; Rosen,
L.S.; Weiss, G.J.; et al. First-In-Human Study of Cemiplimab Alone or In Combination with Radiotherapy and/or Low-dose
Cyclophosphamide in Patients with Advanced Malignancies. Clin. Cancer Res. 2020, 26, 1025–1033. [CrossRef] [PubMed]

36. Felip, E.; Moreno, V.; Morgensztern, D.; Curigliano, G.; Rutkowski, P.; Trigo, J.M.; Calvo, A.; Kowalski, D.; Cortinovis, D.;
Plummer, R.; et al. First-in-human, open-label, phase 1/2 study of the monoclonal antibody programmed cell death protein-1
(PD-1) inhibitor cetrelimab (JNJ-63723283) in patients with advanced cancers. Cancer Chemother. Pharmacol. 2022, 89, 499–514.
[CrossRef] [PubMed]

37. Guthrie, H.; Honig, L.S.; Lin, H.; Sink, K.M.; Blondeau, K.; Quartino, A.; Dolton, M.; Carrasco-Triguero, M.; Lian, Q.; Bittner, T.;
et al. Safety, Tolerability, and Pharmacokinetics of Crenezumab in Patients with Mild-to-Moderate Alzheimer’s Disease Treated
with Escalating Doses for up to 133 Weeks. J. Alzheimer’s Dis. 2020, 76, 967–979. [CrossRef] [PubMed]

38. Lam, E.T.; Eckhardt, S.G.; Messersmith, W.; Jimeno, A.; O’Bryant, C.L.; Ramanathan, R.K.; Weiss, G.J.; Chadha, M.; Oey, A.; Ding,
H.T.; et al. Phase I Study of Enavatuzumab, a First-in-Class Humanized Monoclonal Antibody Targeting the TWEAK Receptor, in
Patients with Advanced Solid Tumors. Mol. Cancer Ther. 2018, 17, 215–221. [CrossRef] [PubMed]

39. Sasaki, Y.; Miwa, K.; Yamashita, K.; Sunakawa, Y.; Shimada, K.; Ishida, H.; Hasegawa, K.; Fujiwara, K.; Kodaira, M.; Fujiwara,
Y.; et al. A phase I study of farletuzumab, a humanized anti-folate receptor alpha monoclonal antibody, in patients with solid
tumors. Investig. New Drugs 2015, 33, 332–340. [CrossRef]

40. Deng, R.; She, G.; Maia, M.; Lim, J.J.; Peck, M.C.; McBride, J.M.; Kulkarni, P.; Horn, P.; Castro, A.; Newton, E.; et al. Pharmacoki-
netics of the Monoclonal Antibody MHAA4549A Administered in Combination With Oseltamivir in Patients Hospitalized With
Severe Influenza A Infection. J. Clin. Pharmacol. 2020, 60, 1509–1518. [CrossRef]

41. Ehrenpreis, E.D. Pharmacokinetic Effects of Antidrug Antibodies Occurring in Healthy Subjects After a Single Dose of Intravenous
Infliximab. Drugs RD 2017, 17, 607–613. [CrossRef]

42. Feng, Y.; Masson, E.; Dai, D.; Parker, S.M.; Berman, D.; Roy, A. Model-based clinical pharmacology profiling of ipilimumab in
patients with advanced melanoma. Br. J. Clin. Pharmacol. 2014, 78, 106–117. [CrossRef]

43. Lim, J.J.; Derby, M.A.; Zhang, Y.; Deng, R.; Larouche, R.; Anderson, M.; Maia, M.; Carrier, S.; Pelletier, I.; Girard, J.; et al. A Phase
1, Randomized, Double-Blind, Placebo-Controlled, Single-Ascending-Dose Study To Investigate the Safety, Tolerability, and
Pharmacokinetics of an Anti-Influenza B Virus Monoclonal Antibody, MHAB5553A, in Healthy Volunteers. Antimicrob. Agents
Chemother. 2017, 61, 10–1128. [CrossRef]

44. Wakelee, H.A.; Patnaik, A.; Sikic, B.I.; Mita, M.; Fox, N.L.; Miceli, R.; Ullrich, S.J.; Fisher, G.A.; Tolcher, A.W. Phase I and
pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann. Oncol.
2010, 21, 376–381. [CrossRef] [PubMed]

45. Duvic, M.; Pinter-Brown, L.C.; Foss, F.M.; Sokol, L.; Jorgensen, J.L.; Challagundla, P.; Dwyer, K.M.; Zhang, X.; Kurman, M.R.;
Ballerini, R.; et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with
cutaneous T-cell lymphoma. Blood 2015, 125, 1883–1889. [CrossRef] [PubMed]

46. Papadopoulos, K.P.; Kelley, R.K.; Tolcher, A.W.; Razak, A.R.A.; Van Loon, K.; Patnaik, A.; Bedard, P.L.; Alfaro, A.A.; Beeram, M.;
Adriaens, L.; et al. A Phase I First-in-Human Study of Nesvacumab (REGN910), a Fully Human Anti-Angiopoietin-2 (Ang2)
Monoclonal Antibody, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2016, 22, 1348–1355. [CrossRef] [PubMed]

47. Lee, K.-W.; Lee, D.H.; Kang, J.H.; Park, J.O.; Kim, S.H.; Hong, Y.S.; Kim, S.T.; Oh, D.-Y.; Bang, Y.-J. Phase I Pharmacokinetic Study
of Nivolumab in Korean Patients with Advanced Solid Tumors. Oncologist 2017, 23, 155-e17. [CrossRef] [PubMed]

48. Nagy, C.F.; Leach, T.S.; Hoffman, J.H.; Czech, A.; Carpenter, S.E.; Guttendorf, R. Pharmacokinetics and Tolerability of Obiltoxax-
imab: A Report of 5 Healthy Volunteer Studies. Clin. Ther. 2016, 38, 2083–2097.e7. [CrossRef] [PubMed]

49. Meininger, V.; Pradat, P.-F.; Corse, A.; Al-Sarraj, S.; Brooks, B.R.; Caress, J.B.; Cudkowicz, M.; Kolb, S.J.; Lange, D.; Leigh, P.N.;
et al. Safety, Pharmacokinetic, and functional effects of the nogo-a monoclonal antibody in amyotrophic lateral sclerosis: A
randomized, first-in-human clinical trial. PLoS ONE 2014, 9, e97803. [CrossRef] [PubMed]

50. Emu, B.; Luca, D.; Offutt, C.; Grogan, J.L.; Rojkovich, B.; Williams, M.B.; Tang, M.T.; Xiao, J.; Lee, J.H.; Davis, J.C. Safety,
pharmacokinetics, and biologic activity of pateclizumab, a novel monoclonal antibody targeting lymphotoxin alpha: Results of a
phase I randomized, placebo-controlled trial. Arthritis Res. Ther. 2012, 14, R6. [CrossRef] [PubMed]

51. Shimizu, T.; Seto, T.; Hirai, F.; Takenoyama, M.; Nosaki, K.; Tsurutani, J.; Kaneda, H.; Iwasa, T.; Kawakami, H.; Noguchi, K.; et al.
Phase 1 study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in Japanese patients with advanced solid tumors.
Investig. New Drugs 2016, 34, 347–354. [CrossRef]

52. Yamamoto, N.; Yamada, Y.; Fujiwara, Y.; Yamada, K.; Fujisaka, Y.; Shimizu, T.; Tamura, T. Phase I and Pharmacokinetic Study
of HER2-targeted rhuMAb 2C4 (Pertuzumab, RO4368451) in Japanese Patients with Solid Tumors. Jpn. J. Clin. Oncol. 2009, 39,
260–266. [CrossRef]

https://doi.org/10.1002/cpt.1401
https://doi.org/10.1111/bcpt.13001
https://doi.org/10.1158/1078-0432.CCR-19-2609
https://www.ncbi.nlm.nih.gov/pubmed/31796520
https://doi.org/10.1007/s00280-022-04414-6
https://www.ncbi.nlm.nih.gov/pubmed/35298698
https://doi.org/10.3233/JAD-200134
https://www.ncbi.nlm.nih.gov/pubmed/32568196
https://doi.org/10.1158/1535-7163.MCT-17-0330
https://www.ncbi.nlm.nih.gov/pubmed/29054986
https://doi.org/10.1007/s10637-014-0180-8
https://doi.org/10.1002/jcph.1652
https://doi.org/10.1007/s40268-017-0211-y
https://doi.org/10.1111/bcp.12323
https://doi.org/10.1128/AAC.00279-17
https://doi.org/10.1093/annonc/mdp292
https://www.ncbi.nlm.nih.gov/pubmed/19633048
https://doi.org/10.1182/blood-2014-09-600924
https://www.ncbi.nlm.nih.gov/pubmed/25605368
https://doi.org/10.1158/1078-0432.CCR-15-1221
https://www.ncbi.nlm.nih.gov/pubmed/26490310
https://doi.org/10.1634/theoncologist.2017-0528
https://www.ncbi.nlm.nih.gov/pubmed/29158363
https://doi.org/10.1016/j.clinthera.2016.07.170
https://www.ncbi.nlm.nih.gov/pubmed/27568215
https://doi.org/10.1371/journal.pone.0097803
https://www.ncbi.nlm.nih.gov/pubmed/24841795
https://doi.org/10.1186/ar3554
https://www.ncbi.nlm.nih.gov/pubmed/22225620
https://doi.org/10.1007/s10637-016-0347-6
https://doi.org/10.1093/jjco/hyp006


Antibodies 2024, 13, 54 24 of 25

53. Skoura, N.; Wang-Jairaj, J.; Della Pasqua, O.; Chandrasekaran, V.; Billiard, J.; Yeakey, A.; Smith, W.; Steel, H.; Tan, L.K. Effect of
raxibacumab on immunogenicity of Anthrax Vaccine Adsorbed: A phase 4, open-label, parallel-group, randomised non-inferiority
study. Lancet Infect. Dis. 2020, 20, 983–991. [CrossRef]

54. FDA, Center for Drug Evaluation and Research. Reslizumab NDA Clinical Pharmacology and Biopharmaceutics Review; Center for
Drug Evaluation and Research: Silver Spring, MD, USA, 2016.

55. Puchalski, T.; Prabhakar, U.; Jiao, Q.; Berns, B.; Davis, H.M. Pharmacokinetic and pharmacodynamic modeling of an anti-
interleukin-6 chimeric monoclonal antibody (siltuximab) in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 2010,
16, 1652–1661. [CrossRef]

56. Salles, G.; Długosz-Danecka, M.; Ghesquières, H.; Jurczak, W. Tafasitamab for the treatment of relapsed or refractory diffuse large
B-cell lymphoma. Expert Opin. Biol. Ther. 2021, 21, 455–463. [CrossRef]

57. Reilley, S.; Wenzel, E.; Reynolds, L.; Bennett, B.; Patti, J.M.; Hetherington, S. Open-label, dose escalation study of the safety and
pharmacokinetic profile of tefibazumab in healthy volunteers. Antimicrob. Agents Chemother. 2005, 49, 959–962. [CrossRef]

58. Forero-Torres, A.; Shah, J.; Wood, T.; Posey, J.; Carlisle, R.; Copigneaux, C.; Luo, F.; Wojtowicz-Praga, S.; Percent, I.; Saleh, M.
Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer
Biother. Radiopharm. 2010, 25, 13–19. [CrossRef]

59. Sawas, A.; Farber, C.M.; Schreeder, M.T.; Khalil, M.Y.; Mahadevan, D.; Deng, C.; Amengual, J.E.; Nikolinakos, P.G.; Kolesar, J.M.;
Kuhn, J.G.; et al. A phase 1/2 trial of ublituximab, a novel anti-CD20 monoclonal antibody, in patients with B-cell non-Hodgkin
lymphoma or chronic lymphocytic leukaemia previously exposed to rituximab. Br. J. Haematol. 2017, 177, 243–253. [CrossRef]

60. Li, H.; Zhang, W.; Petry, C.; Li, L.; Fernandez, E.; Kiialainen, A.; Feng, S.; Hsu, W.; Li, L.; Wei, Y.; et al. Evaluation of the
Pharmacokinetics, Pharmacodynamics, and Safety of a Single Dose of Emicizumab in Healthy Chinese Subjects. Clin. Pharmacol.
Drug Dev. 2021, 10, 30–38. [CrossRef]

61. Zhang, W.; Tyrrell, H.; Ding, H.T.; Pulley, J.; Boruvka, A.; Erickson, R.; Abouhossein, M.; Ravanello, R.; Tang, M.T. Comparable
Pharmacokinetics, Safety, and Tolerability of Etrolizumab Administered by Prefilled Syringe or Autoinjector in a Randomized
Trial in Healthy Volunteers. Adv. Ther. 2021, 38, 2418–2434. [CrossRef]

62. Cohen-Barak, O.; Weiss, S.; Rasamoelisolo, M.; Faulhaber, N.; Yeung, P.P.; Loupe, P.S.; Yoon, E.; Gandhi, M.D.; Spiegelstein, O.;
Aycardi, E. A phase 1 study to assess the pharmacokinetics, safety, and tolerability of fremanezumab doses (225 mg, 675 mg and
900 mg) in Japanese and Caucasian healthy subjects. Cephalalgia 2018, 38, 1960–1971. [CrossRef]

63. Monteith, D.; Collins, E.C.; Vandermeulen, C.; Van Hecken, A.; Raddad, E.; Scherer, J.C.; Grayzel, D.; Schuetz, T.J.; de Hoon,
J. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the CGRP Binding Monoclonal Antibody LY2951742 (Gal-
canezumab) in Healthy Volunteers. Front. Pharmacol. 2017, 8, 740. [CrossRef]

64. Zheng, M.; Chen, X.; Wang, F.; Chen, J.; Jackson, K.; Yang, F.; Payne, C.; Li, H.; Wang, Y.; Xiao, Z.; et al. Pharmacokinetics, Safety,
and Efficacy of Ixekizumab in Chinese Patients with Moderate-to-Severe Plaque Psoriasis: A Phase 1, Single- and Multiple-Dose
Study. Adv. Ther. 2023, 40, 3804–3816. [CrossRef]

65. FDA, Center for Drug Evaluation and Research. Lanadelumab NDA/BLA Multi-Disciplinary Review and Evaluation; Center for Drug
Evaluation and Research: Silver Spring, MD, USA, 2018.

66. Harris, J.M.; Maciuca, R.; Bradley, M.S.; Cabanski, C.R.; Scheerens, H.; Lim, J.; Cai, F.; Kishnani, M.; Liao, X.C.; Samineni, D.; et al.
A randomized trial of the efficacy and safety of quilizumab in adults with inadequately controlled allergic asthma. Respir. Res.
2016, 17, 29. [CrossRef]

67. Baverel, P.; She, D.; Piper, E.; Ueda, S.; Yoshioka, T.; Faggioni, R.; Gevorkyan, H. A randomized, placebo-controlled, single
ascending-dose study to assess the safety, tolerability, pharmacokinetics, and immunogenicity of subcutaneous tralokinumab in
Japanese healthy volunteers. Drug Metab. Pharmacokinet. 2018, 33, 150–158. [CrossRef]

68. Vitek, G.E.; Decourt, B.; Sabbagh, M.N. Lecanemab (BAN2401): An anti–beta-amyloid monoclonal antibody for the treatment of
Alzheimer disease. Expert Opin. Investig. Drugs 2023, 32, 89–94. [CrossRef]

69. Zuraw, B.L.; Maurer, M.; Sexton, D.J.; Cicardi, M. Therapeutic monoclonal antibodies with a focus on hereditary angioedema.
Allergol. Int. 2023, 72, 54–62. [CrossRef]

70. Cohen, F.; Yuan, H.; DePoy, E.M.G.; Silberstein, S.D. The Arrival of Anti-CGRP Monoclonal Antibodies in Migraine. Neurothera-
peutics 2022, 19, 922–930. [CrossRef]

71. Guo, Y.; Guo, T.; Di, Y.; Xu, W.; Hu, Z.; Xiao, Y.; Yu, H.; Hou, J. Pharmacokinetics, pharmacodynamics, safety and immunogenicity
of recombinant, fully human anti-RANKL monoclonal antibody (MW031) versus denosumab in Chinese healthy subjects: A
single-center, randomized, double-blind, single-dose, parallel-controlled trial. Expert Opin. Biol. Ther. 2023, 23, 705–715. [CrossRef]
[PubMed]

72. Bocklud, B.E.; Fakhre, W.; Murphy, B.; Maddox, K.; Ahmadzadeh, S.; Viswanath, O.; Varrassi, G.; Shekoohi, S.; Kaye, A.D.
Teprotumumab-trbw as a Novel Monoclonal Antibody for Thyroid Eye Disease: A Literature Review. Cureus 2023, 15, e43878.
[CrossRef]

73. Liu, S.; Humphreys, S.C.; Cook, K.D.; Conner, K.P.; Correia, A.R.; Jacobitz, A.W.; Yang, M.; Primack, R.; Soto, M.; Padaki, R.;
et al. Utility of physiologically based pharmacokinetic modeling to predict inter-antibody variability in monoclonal antibody
pharmacokinetics in mice. mAbs 2023, 15, 2263926. [CrossRef]

74. Hu, S.; Datta-Mannan, A.; D’argenio, D.Z. Physiologically Based Modeling to Predict Monoclonal Antibody Pharmacokinetics in
Humans from in vitro Physiochemical Properties. mAbs 2022, 14, 2056944. [CrossRef]

https://doi.org/10.1016/S1473-3099(20)30069-4
https://doi.org/10.1158/1078-0432.CCR-09-2581
https://doi.org/10.1080/14712598.2021.1884677
https://doi.org/10.1128/AAC.49.3.959-962.2005
https://doi.org/10.1089/cbr.2009.0673
https://doi.org/10.1111/bjh.14534
https://doi.org/10.1002/cpdd.805
https://doi.org/10.1007/s12325-021-01661-6
https://doi.org/10.1177/0333102418771376
https://doi.org/10.3389/fphar.2017.00740
https://doi.org/10.1007/s12325-023-02575-1
https://doi.org/10.1186/s12931-016-0347-2
https://doi.org/10.1016/j.dmpk.2017.12.001
https://doi.org/10.1080/13543784.2023.2178414
https://doi.org/10.1016/j.alit.2022.06.001
https://doi.org/10.1007/s13311-022-01230-x
https://doi.org/10.1080/14712598.2023.2178298
https://www.ncbi.nlm.nih.gov/pubmed/36892190
https://doi.org/10.7759/cureus.43878
https://doi.org/10.1080/19420862.2023.2263926
https://doi.org/10.1080/19420862.2022.2056944


Antibodies 2024, 13, 54 25 of 25

75. Liu, S.; Verma, A.; Kettenberger, H.; Richter, W.F.; Shah, D.K. Effect of variable domain charge on in vitro and in vivo disposition
of monoclonal antibodies. mAbs 2021, 13, 1993769. [CrossRef]

76. Sánchez-Félix, M.; Burke, M.; Chen, H.H.; Patterson, C.; Mittal, S. Predicting bioavailability of monoclonal antibodies after
subcutaneous administration: Open innovation challenge. Adv. Drug Deliv. Rev. 2020, 167, 66–77. [CrossRef]

77. Richter, W.F.; Jacobsen, B. Subcutaneous Absorption of Biotherapeutics: Knowns and Unknowns. Drug Metab. Dispos. 2014, 42,
1881–1889. [CrossRef]

78. Hu, S.; D’argenio, D.Z. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body
physiologically-based modeling. J. Pharmacokinet. Pharmacodyn. 2020, 47, 385–409. [CrossRef]

79. Schuster, J.; Mahler, H.-C.; Joerg, S.; Kamuju, V.; Huwyler, J.; Mathaes, R. Stability of monoclonal antibodies after simulated
subcutaneous administration. J. Pharm. Sci. 2021, 110, 2386–2394. [CrossRef]

80. Rahimi, E.; Aramideh, S.; Han, D.; Gomez, H.; Ardekani, A.M. Transport and lymphatic uptake of monoclonal antibodies after
subcutaneous injection. Microvasc. Res. 2022, 139, 104228. [CrossRef]

81. Reijers, J.A.A.; Moerland, M.; Burggraaf, J. Remarkable Pharmacokinetics of Monoclonal Antibodies: A Quest for an Explanation.
Clin. Pharmacokinet. 2017, 56, 1081–1089. [CrossRef]

82. Kaplon, H.; Reichert, J.M. Antibodies to watch in 2019. mAbs 2019, 11, 219–238. [CrossRef]
83. FDA. TREMFYA (guselkumab) Injection, for Subcutaneous Use; FDA: Silver Spring, MD, USA, 2017.
84. Datta-Mannan, A.; Estwick, S.; Zhou, C.; Choi, H.; Douglass, N.E.; Witcher, D.R.; Lu, J.; Beidler, C.; Millican, R. Influence of

physiochemical properties on the subcutaneous absorption and bioavailability of monoclonal antibodies. mAbs 2020, 12, 1770028.
[CrossRef]

85. Li, Z.; Krippendorff, B.-F.; Sharma, S.; Walz, A.C.; Lavé, T.; Shah, D.K. Influence of molecular size on tissue distribution of
antibody fragments. mAbs 2016, 8, 113–119. [CrossRef]

86. Ovacik, M.; Lin, K. Tutorial on Monoclonal Antibody Pharmacokinetics and Its Considerations in Early Development. Clin.
Transl. Sci. 2018, 11, 540–552. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/19420862.2021.1993769
https://doi.org/10.1016/j.addr.2020.05.009
https://doi.org/10.1124/dmd.114.059238
https://doi.org/10.1007/s10928-020-09691-3
https://doi.org/10.1016/j.xphs.2021.03.007
https://doi.org/10.1016/j.mvr.2021.104228
https://doi.org/10.1007/s40262-016-0497-x
https://doi.org/10.1080/19420862.2018.1556465
https://doi.org/10.1080/19420862.2020.1770028
https://doi.org/10.1080/19420862.2015.1111497
https://doi.org/10.1111/cts.12567

	Introduction 
	Methods 
	mAb Clinical PK Data Collection 
	Model Structure 
	SC Model Structure 
	Model Equations 
	Model Parameterization and Estimation 
	Sensitivity Analysis 
	Monte Carlo Simulations 

	Results 
	mAb Clinical PK Data 
	popPBPK Model Fitting and Parameter Estimation 
	Sensitivity Analysis 
	Monte Carlo Simulations and Model Validation 

	Discussion 
	References

