Humanization of Pan-HLA-DR mAb 44H10 Hinges on Critical Residues in the Antibody Framework
Abstract
:1. Introduction
2. Results
2.1. Humanization of mAb 44H10 by CDR Grafting Is Insufficient to Retain Affinity to HLA-DR
2.2. Critical mAb 44H10 Light Chain Framework Residues Mediate Contacts with HLA-DR
2.3. Framework Residues in the 44H10 Heavy Chain Modulate Antibody Paratope Stability and Antigen Binding
2.4. Humanized mAb 44H10 Displays Favorable Biophysical Properties
2.5. Parental and Humanized 44H10 Fabs Target HLA-DR in Highly Analogous Binding Modes
3. Discussion
Limitations of the Study
4. Methods
4.1. Mammalian Cell Lines and Culture Conditions
4.2. Analysis of mAb 44H10 CDRs and Framework Regions
4.3. Plasmid Design and Synthesis
4.4. Expression and Purification of Recombinant Humanized 44H10 IgGs
4.5. Expression and Purification of Recombinant Humanized 44H10 Fabs
4.6. Expression and Purification of Recombinant HLA-DR
4.7. Detection of Binding to BJAB cells by Flow Cytometry
4.8. Biolayer Interferometry for Measurement of HLA-DR Binding to Humanized 44H10 mAbs
4.9. Differential Scanning Calorimetry
4.10. Molecular Dynamics (MD)
4.11. Dynamic Light Scattering
4.12. Crystallization of Humanized 44H10 Fabs
4.13. Co-Crystallization of the V22 Fab-HLA-DR Complex
4.14. X-ray Diffraction Data Collection, Processing and Refinement
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stone, C.A.; Spiller, B.W.; Smith, S.A. Engineering therapeutic monoclonal antibodies. J. Allergy Clin. Immunol. 2023, 153, 539–548. [Google Scholar] [CrossRef]
- van Schouwenburg, P.A.; van de Stadt, L.A.; de Jong, R.N.; van Buren, E.E.L.; Kruithof, S.; de Groot, E.; Hart, M.; van Ham, S.M.; Rispens, T.; Aarden, L.; et al. Adalimumab elicits a restricted anti-idiotypic antibody response in autoimmune patients resulting in functional neutralisation. Ann. Rheum. Dis. 2013, 72, 104–109. [Google Scholar] [CrossRef]
- van Schie, K.A.; Hart, M.H.; de Groot, E.R.; Kruithof, S.; Aarden, L.A.; Wolbink, G.J.; Rispens, T. The antibody response against human and chimeric anti-TNF therapeutic antibodies primarily targets the TNF binding region. Ann. Rheum. Dis. 2015, 74, 311–314. [Google Scholar] [CrossRef]
- Krishna, M.; Nadler, S.G. Immunogenicity to Biotherapeutics—The Role of Anti-drug Immune Complexes. Front. Immunol. 2016, 7, 21. [Google Scholar] [CrossRef]
- Vande Casteele, N.; Gils, A.; Singh, S.; Ohrmund, L.; Hauenstein, S.; Rutgeerts, P.; Vermeire, S. Antibody Response to Infliximab and its Impact on Pharmacokinetics can be Transient. Am. J. Gastroenterol. 2013, 108, 962–971. [Google Scholar] [CrossRef]
- Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J.T. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [Google Scholar] [CrossRef]
- Jones, P.T.; Dear, P.H.; Foote, J.; Neuberger, M.S.; Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986, 321, 522–525. [Google Scholar] [CrossRef]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef]
- Dondelinger, M.; Filée, P.; Sauvage, E.; Quinting, B.; Muyldermans, S.; Galleni, M.; Vandevenne, M.S. Understanding the Significance and Implications of Antibody Numbering and Antigen-Binding Surface/Residue Definition. Front. Immunol. 2018, 9, 2278. [Google Scholar] [CrossRef] [PubMed]
- Foote, J.; Winter, G. Antibody Framework Residues Affecting the Conformation of the Hypervariable Loops. J. Mol. Biol. 1992, 224, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Makabe, K.; Nakanishi, T.; Tsumoto, K.; Tanaka, Y.; Kondo, H.; Umetsu, M.; Sone, Y.; Asano, R.; Kumagai, I. Thermodynamic consequences of mutations in vernier zone residues of a humanized anti-human epidermal growth factor receptor murine antibody, 528. J. Biol. Chem. 2008, 283, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, E.R.; Faris, J.G.; Petersen, B.M.; Sprenger, K.G. Common framework mutations impact antibody interfacial dynamics and flexibility. Front. Immunol. 2023, 14, 582. [Google Scholar] [CrossRef]
- Liang, W.-C.; Yin, J.; Lupardus, P.; Zhang, J.; Loyet, K.M.; Sudhamsu, J.; Wu, Y. Dramatic activation of an antibody by a single amino acid change in framework. Sci. Rep. 2021, 11, 22365. [Google Scholar] [CrossRef] [PubMed]
- Kunik, V.; Peters, B.; Ofran, Y. Structural Consensus among Antibodies Defines the Antigen Binding Site. PLoS Comput. Biol. 2012, 8, e1002388. [Google Scholar] [CrossRef] [PubMed]
- Jonker, M.; Ringers, J.; Kuhn, E.-M.; Hart, B.; Foulkes, R. Treatment with Anti-MHC-Class-II Antibody Postpones Kidney Allograft Rejection in Primates but Increases the Risk of CMV Activation. Am. J. Transplant. 2004, 4, 1756–1761. [Google Scholar] [CrossRef]
- Saxton, N.E.; Hallaway, R.V.; Ladyman, H.M.; Janczynski, B.T.; Nesbitt, A.M.; Zinkewich-Peotti, K.; Smith, R.; Foulkes, R. Anti-major histocompatibility complex class II treatment prevents graft rejection in the hamster-to-rat cardiac xenograft. Transplantation 1999, 67, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Morgant, A.; Wraith, D.C. Anti-class II MHC antibodies prevent and treat EAE without APC depletion. Immunology 1994, 83, 1–8. [Google Scholar] [PubMed]
- Dechant, M.; Bruenke, J.; Valerius, T. HLA class II antibodies in the treatment of hematologic malignancies. Semin. Oncol. 2003, 30, 465–475. [Google Scholar] [CrossRef]
- Dechant, M.; Vidarsson, G.; Stockmeyer, B.; Repp, R.; Glennie, M.J.; Gramatzki, M.; van de Winkel, J.G.J.; Valerius, T. Chimeric IgA antibodies against HLA class II effectively trigger lymphoma cell killing. Blood 2002, 100, 4574–4580. [Google Scholar] [CrossRef]
- Crowley, S.J.; Bruck, P.T.; Bhuiyan, M.A.; Mitchell-Gears, A.; Walsh, M.J.; Zhangxu, K.; Ali, L.R.; Jeong, H.-J.; Ingram, J.R.; Knipe, D.M.; et al. Neoleukin-2 enhances anti-tumour immunity downstream of peptide vaccination targeted by an anti-MHC class II VHH. Open Biol. 2020, 10, 190235. [Google Scholar] [CrossRef]
- Matsuoka, S.; Ishii, Y.; Nakao, A.; Abe, M.; Ohtsuji, N.; Momose, S.; Jin, H.; Arase, H.; Sugimoto, K.; Nakauchi, Y.; et al. Establishment of a Therapeutic Anti-Pan HLA-Class II Monoclonal Antibody That Directly Induces Lymphoma Cell Death via Large Pore Formation. PLoS ONE 2016, 11, e0150496. [Google Scholar] [CrossRef]
- Quackenbush, E.J.; Letarte, M. Identification of several cell surface proteins of non-T, non-B acute lymphoblastic leukemia by using monoclonal antibodies. J. Immunol. 1985, 134, 1276–1285. [Google Scholar] [CrossRef]
- Kassardjian, A.; Sun, E.; Sookhoo, J.; Muthuraman, K.; Boligan, K.F.; Kucharska, I.; Rujas, E.; Jetha, A.; Branch, D.R.; Babiuk, S.; et al. Modular adjuvant-free pan-HLA-DR-immunotargeting subunit vaccine against SARS-CoV-2 elicits broad sarbecovirus-neutralizing antibody responses. Cell Rep. 2023, 42, 112391. [Google Scholar] [CrossRef]
- Dubiski, S.; Cinader, B.; Chou, C.T.; Charpentier, L.; Letarte, M. Cross-reaction of a monoclonal antibody to human MHC class II molecules with rabbit B cells. Mol. Immunol. 1988, 25, 713–718. [Google Scholar] [CrossRef]
- Skea, D.L.; Douglas, A.R.; Skehel, J.J.; Barber, B.H. The immunotargeting approach to adjuvant-independent immunization with influenza haemagglutinin. Vaccine 1993, 11, 994–1002. [Google Scholar] [CrossRef]
- Ehrenmann, F.; Lefranc, M.-P. IMGT/DomainGapAlign: IMGT standardized analysis of amino acid sequences of variable, constant, and groove domains (IG, TR, MH, IgSF, MhSF). Cold Spring Harb. Protoc. 2011, 2011, 737–749. [Google Scholar] [CrossRef]
- Ehrenmann, F.; Kaas, Q.; Lefranc, M.-P. IMGT/3Dstructure-DB and IMGT/DomainGapAlign: A database and a tool for immunoglobulins or antibodies, T cell receptors, MHC, IgSF and MhcSF. Nucleic Acids Res. 2010, 38, D301–D307. [Google Scholar] [CrossRef]
- Menezes, J.; Leibold, W.; Klein, G.; Clements, G. Establishment and characterization of an Epstein-Barr virus (EBC)-negative lymphoblastoid B cell line (BJA-B) from an exceptional, EBV-genome-negative African Burkitt’s lymphoma. Biomedicine 1975, 22, 276–284. [Google Scholar]
- Kunik, V.; Ashkenazi, S.; Ofran, Y. Paratome: An online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res. 2012, 40, W521–W524. [Google Scholar] [CrossRef] [PubMed]
- Krauss, J.; Arndt, M.A.E.; Zhu, Z.; Newton, D.L.; Vu, B.K.; Choudhry, V.; Darbha, R.; Ji, X.; Courtenay-Luck, N.S.; Deonarain, M.P.; et al. Impact of antibody framework residue VH-71 on the stability of a humanised anti-MUC1 scFv and derived immunoenzyme. Br. J. Cancer 2004, 90, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Quintero, M.L.; Kroell, K.B.; Hofer, F.; Riccabona, J.R.; Liedl, K.R. Mutation of Framework Residue H71 Results in Different Antibody Paratope States in Solution. Front. Immunol. 2021, 12, 34. [Google Scholar] [CrossRef]
- Tramontano, A.; Chothia, C.; Lesk, A.M. Framework Residue 71 is a Major Determinant of the Position and Conformation of the Second Hypervariable Region in the V H Domains of Immunoglobulins. J. Mol. Biol. 1990, 215, 175–182. [Google Scholar] [CrossRef]
- Xiang, J.; Sha, Y.; Jia, Z.; Prasad, L.; Delbaere, L.T.J. Framework Residues 71 and 93 of the Chimeric B72.3 Antibody are Major Determinants of the Conformation of Heavy-chain Hypervariable Loops. J. Mol. Biol. 1995, 253, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.G.; Xu, H.; Khan, A.R.; O’Donnell, T.; Khurana, S.; King, L.R.; Manischewitz, J.; Golding, H.; Suphaphiphat, P.; Carfi, A.; et al. Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc. Natl. Acad. Sci. USA 2013, 110, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, V.; Louveau, J.E.; Barton, J.P.; Karplus, M.; Chakraborty, A.K. Role of framework mutations and antibody flexibility in the evolution of broadly neutralizing antibodies. eLife 2018, 7, e33038. [Google Scholar] [CrossRef]
- Yin, J.; Beuscher, A.E.; Andryski, S.E.; Stevens, R.C.; Schultz, P.G. Structural plasticity and the evolution of antibody affinity and specificity. J. Mol. Biol. 2003, 330, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Manivel, V.; Sahoo, N.C.; Salunke, D.M.; Rao, K.V.S. Maturation of an Antibody Response Is Governed by Modulations in Flexibility of the Antigen-Combining Site. Immunity 2000, 13, 611–620. [Google Scholar] [CrossRef]
- Wedemayer, G.J.; Patten, P.A.; Wang, L.H.; Schultz, P.G.; Stevens, R.C. Structural insights into the evolution of an antibody combining site. Science 1997, 276, 1665–1669. [Google Scholar] [CrossRef]
- Xu, H.; Schmidt, A.G.; O’Donnell, T.; Therkelsen, M.D.; Kepler, T.B.; Moody, M.A.; Haynes, B.F.; Liao, H.X.; Harrison, S.C.; Shaw, D.E. Key mutations stabilize antigen-binding conformation during affinity maturation of a broadly neutralizing influenza antibody lineage. Proteins 2015, 83, 771–780. [Google Scholar] [CrossRef]
- Holmes, M.A.; Buss, T.N.; Foote, J. Structural effects of framework mutations on a humanized anti-lysozyme antibody. J. Immunol. 2001, 167, 296–301. [Google Scholar] [CrossRef]
- Teplyakov, A.; Obmolova, G.; Malia, T.J.; Raghunathan, G.; Martinez, C.; Fransson, J.; Edwards, W.; Connor, J.; Husovsky, M.; Beck, H.; et al. Structural insights into humanization of anti-tissue factor antibody 10H10. mAbs 2018, 10, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Mitchell, D.A.; Buss, T.N.; Holmes, M.A.; Anasetti, C.; Foote, J. “Superhumanized” Antibodies: Reduction of Immunogenic Potential by Complementarity-Determining Region Grafting with Human Germline Sequences: Application to an Anti-CD281. J. Immunol. 2002, 169, 1119–1125. [Google Scholar] [CrossRef]
- Khee Hwang, W.Y.; Almagro, J.C.; Buss, T.N.; Tan, P.; Foote, J. Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 2005, 36, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Roguska, M.A.; Pedersen, J.T.; Keddy, C.A.; Henry, A.H.; Searle, S.J.; Lambert, J.M.; Goldmacher, V.S.; Blättler, W.A.; Rees, A.R.; Guild, B.C. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl. Acad. Sci. USA 1994, 91, 969–973. [Google Scholar] [CrossRef]
- Adolf-Bryfogle, J.; Kalyuzhniy, O.; Kubitz, M.; Weitzner, B.D.; Hu, X.; Adachi, Y.; Schief, W.R.; Dunbrack, R.L. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design. PLoS Comput. Biol. 2018, 14, e1006112. [Google Scholar] [CrossRef]
- Tennenhouse, A.; Khmelnitsky, L.; Khalaila, R.; Yeshaya, N.; Noronha, A.; Lindzen, M.; Makowski, E.K.; Zaretsky, I.; Sirkis, Y.F.; Galon-Wolfenson, Y.; et al. Computational optimization of antibody humanness and stability by systematic energy-based ranking. Nat. Biomed. Eng. 2023, 8, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Lazar, G.A.; Desjarlais, J.R.; Jacinto, J.; Karki, S.; Hammond, P.W. A molecular immunology approach to antibody humanization and functional optimization. Mol. Immunol. 2007, 44, 1986–1998. [Google Scholar] [CrossRef]
- Choi, Y.; Hua, C.; Sentman, C.L.; Ackerman, M.E.; Bailey-Kellogg, C. Antibody humanization by structure-based computational protein design. mAbs 2015, 7, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Sun, T.; Durand, S.; Hall, A.; Houston, N.R.; Nett, J.H.; Sharkey, B.; Bobrowicz, B.; Caffry, I.; Yu, Y.; et al. Biophysical properties of the clinical-stage antibody landscape. Proc. Natl. Acad. Sci. USA 2017, 114, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Azevedo Reis Teixeira, A.; Erasmus, M.F.; D’Angelo, S.; Naranjo, L.; Ferrara, F.; Leal-Lopes, C.; Durrant, O.; Galmiche, C.; Morelli, A.; Scott-Tucker, A.; et al. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries. mAbs 2021, 13, 1980942. [Google Scholar] [CrossRef]
- Krawczyk, K.; Buchanan, A.; Marcatili, P. Data mining patented antibody sequences. mAbs 2021, 13, 1892366. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, M.; Phad, G.; Vázquez Bernat, N.; Hennig, C.; Sumida, N.; Persson, M.; Martin, M.; Karlsson Hedestam, G. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity. Nat. Commun. 2016, 7, 13642. [Google Scholar] [CrossRef] [PubMed]
- Gadala-Maria, D.; Yaari, G.; Uduman, M.; Kleinstein, S.H. Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles. Proc. Natl. Acad. Sci. USA 2015, 112, E862–E870. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.T.; Glanville, J.; Marasco, W.A. The Individual and Population Genetics of Antibody Immunity. Trends Immunol. 2017, 38, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Cohen, S.; Swanson, S.J. The immunogenicity of human-origin therapeutic antibodies are associated with V gene usage. Front. Immunol. 2023, 14, 1237754. [Google Scholar] [CrossRef] [PubMed]
- Swindells, M.B.; Porter, C.T.; Couch, M.; Hurst, J.; Abhinandan, K.R.; Nielsen, J.H.; Macindoe, G.; Hetherington, J.; Martin, A.C.R. abYsis: Integrated Antibody Sequence and Structure—Management, Analysis, and Prediction. J. Mol. Biol. 2017, 429, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the SC ’06: 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 43. [Google Scholar] [CrossRef]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef]
- Tickle, I.J.; Flensburg, C.; Keller, P.; Paciorek, W.; Sharff, A.; Vonrhein, C.; Bricogne, G. STARANISO; Global Phasing Ltd.: Cambridge, UK, 2016; Available online: http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi (accessed on 1 November 2023).
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef]
- Morin, A.; Eisenbraun, B.; Key, J.; Sanschagrin, P.C.; Timony, M.A.; Ottaviano, M.; Sliz, P. Collaboration gets the most out of software. eLife 2013, 2013, e01456. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef]
- Agirre, J.; Atanasova, M.; Bagdonas, H.; Ballard, C.B.; Baslé, A.; Beilsten-Edmands, J.; Borges, R.J.; Brown, D.G.; Burgos-Mármol, J.J.; Berrisford, J.M.; et al. The CCP4 suite: Integrative software for macromolecular crystallography. Acta Crystallogr. D Struct. Biol. 2023, 79, 449–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassardjian, A.; Ivanochko, D.; Barber, B.; Jetha, A.; Julien, J.-P. Humanization of Pan-HLA-DR mAb 44H10 Hinges on Critical Residues in the Antibody Framework. Antibodies 2024, 13, 57. https://doi.org/10.3390/antib13030057
Kassardjian A, Ivanochko D, Barber B, Jetha A, Julien J-P. Humanization of Pan-HLA-DR mAb 44H10 Hinges on Critical Residues in the Antibody Framework. Antibodies. 2024; 13(3):57. https://doi.org/10.3390/antib13030057
Chicago/Turabian StyleKassardjian, Audrey, Danton Ivanochko, Brian Barber, Arif Jetha, and Jean-Philippe Julien. 2024. "Humanization of Pan-HLA-DR mAb 44H10 Hinges on Critical Residues in the Antibody Framework" Antibodies 13, no. 3: 57. https://doi.org/10.3390/antib13030057
APA StyleKassardjian, A., Ivanochko, D., Barber, B., Jetha, A., & Julien, J. -P. (2024). Humanization of Pan-HLA-DR mAb 44H10 Hinges on Critical Residues in the Antibody Framework. Antibodies, 13(3), 57. https://doi.org/10.3390/antib13030057