Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Participants
2.2. Synthetic Antigens
2.3. ELISA
2.4. Statistical Analyses
3. Results
3.1. Patterns of IgM and IgG Antibody Response
3.2. Pattern of Antigen-Specific IgG1, IgG2, and IgG3 Antibody Response
3.3. IgG Antibodies Longevity and Seroconversion Profile throughout Clinical Follow-Up
3.4. Correlation of IgM and IgG Antibodies with Epidemiological and Immunological Parameters
3.5. Correlation between IgG and IgM Antibody Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Characteristics | NEC (n = 20) | CH (n = 23) | AC (n = 56) | p-Value |
---|---|---|---|---|
Age (y), median (IQR) | 26.5 (23.0–31.0) | 40.0 (23.0–60.0) | 34.5 (7.0–64.0) | 0.002 |
Number (%) of males | 2 (10%) | 14 (60.87%) | 41 (73.22%) | <0.0001 |
Years of exposure to malaria | NA | 35.4 (8.0–60.0) | 29.5 (7.0–60.0) | 0.021 |
Number of previous laboratory-confirmed malarial episodes, mean (SD) | NA | 2.1 (3.4) | 3.8 (5.4) | 0.31 |
Time from last malarial episode, median (IQR) | NA | 6 (0–30.0) | 11.5 (0–20.0) | 0.74 |
Topic | Rodolphi et al. | Previous Studies |
---|---|---|
Frequency of IgG against PvTRAP(P344-G374) | 57% | 32% |
RI for PvTRAP(P344-G374) | 1–6.2 | 1–4.2 |
Frequency of IgG against PvCelTOS(I133-G147) | 52% | 92% |
RI for PvCelTOS(I133-G147) | 1–2.4 | 1–3.5 |
Subclasses for PvTRAP(P344-G374) | IgG3 as the prominent subclass (32%) | IgG1 as the prominent subclass (68%) |
Subclasses for PvCelTOS(I133-G147) | IgG3 as the prominent subclass (22%) | IgG1 as the prominent subclass (66%) |
References
- WHO. World Malaria Report 2023a. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed on 15 January 2024).
- De Alvarenga, D.A.M.; Rodrigues, D.F.; Culleton, R.; De Pina-Costa, A.; Bianco, C.B., Jr.; Silva, S.; Nunes, A.J.L.; De Souza, J.C., Jr.; Hirano, Z.M.B.; Moreira, S.B.; et al. An assay for the identification of Plasmodium simium infection for diagnosis of zoonotic malaria in the Brazilian Atlantic Forest. Sci. Rep. 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- WHO. Health Topics—Malaria 2023. Available online: https://www.who.int/health-topics/malaria#tab=tab_1 (accessed on 20 January 2024).
- Cogswell, F.B. The Hypnozoite and Relapse in Primate Malaria. Clin. Microbiol. Rev. 1992, 5, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Escalante, A.E.; Cepeda, A.S.; Pacheco, M.A. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar. J. 2022, 21, 139. [Google Scholar] [CrossRef]
- Olbadian III, N.; Meibalan, E.; As, J.M.; Ma, S.; Clarck, M.A.; Mejia, P.; Barros, R.R.M.; Otero, W.; Ferreira, M.U.; Mitchell, J.R.; et al. Bone Marrow Is a Major Parasite Reservoir in Plasmodium vivax Infection. mBio 2018, 9, 3. [Google Scholar] [CrossRef]
- Rabinovich, R.N.; Drakeley, C.; Djimde, A.A.; Hall, F.; Hay, S.I.; Hemingway, J.; Kaslow, D.C.; Noor, A.; Okumu, F.; Steketeel, R.; et al. maIERA: An Updated Research Agenda for Insecticide and Drug Resistance in Malaria Elimination and Eradication. PLoS Med. 2017, 14, e1002450. [Google Scholar] [CrossRef] [PubMed]
- De Jong, R.M.; Tebeje, S.K.; Meerstein-Kessel, L.; Tadesse, F.G.; Jore, M.M.; Stone, W.; Bousema, T. Immunity against Sexual Stage Plasmodium falciparum and Plasmodium vivax Parasites. Immunol. Rev. 2019, 293, 190–215. [Google Scholar] [CrossRef] [PubMed]
- Duffy, P.E.; Gorres, J.P. Malaria Vaccines Since 2000: Progress, Priorities, Products. NPJ Vaccines 2020, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Rts,S/As01 Malaria Vaccine (Mosquirix®): A Profile Of Its Use. Drugs Ther. Perspect. 2022, 38, 373–381. [Google Scholar] [CrossRef] [PubMed]
- WHO. Malaria Vaccine: Who Position Paper—March 2022. Available online: https://www.who.int/publications/I/item/who-wer9709-61%E2%80%9380 (accessed on 21 January 2024).
- Skwarczynski, M.; Chandrudu, S.; Rigau-Planella, B.; Islam, M.T.; Cheong, Y.S.; Liu, G.; Wang, X.; Toth, I.; Hussein, W.M. Progress in the Development of Subunit Vaccines against Malaria. Vaccines 2020, 8, 373. [Google Scholar] [CrossRef]
- Alves, E.; Salman, A.M.; Leoratti, F.; Lopez-Camacho, C.; Viveros-Sandoval, M.E.; Lall, A.; El-Turabi, A.; Bachmann, M.F.; Hill, A.V.S.; Janse, C.J.; et al. Evaluation of Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites as a Preerythrocytic, P. vivax Vaccine. Clin. Vaccine Immunol. 2017, 24, e00501-16. [Google Scholar] [CrossRef]
- Bauza, K.; Malinauskas, T.; Pfander, C.; Anar, B.; Jones, Y.; Bilker, O.; Hill, A.V.S.; Reyes-Sandoval, A. Efficacy of a Plasmodium vivax Malaria Vaccine Using Chad63 and Modified Vaccinia Ankara Expressing Thrombospondin-Related Anonymous Proteinas Assessed with Transgenic Plasmodium berghei Parasites. Infect. Immun. 2014, 82, 1277–1286. [Google Scholar] [CrossRef]
- França, C.T.; Hostetler, J.B.; Sharma, S.; White, M.T.; Lin, E.; Kiniboro, B.; Waltmann, A.; Darcy, A.W.; Suen, C.S.N.L.W.; Siba, P.; et al. An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection. PLoS Negl. Trop. Dis. 2016, 10, e0004639. [Google Scholar] [CrossRef] [PubMed]
- Pirahmadi, S.; Zakeri, S.; Mehrizi, A.A.; Djadid, N.D.; Raz, A.-A.; Sani, J.J.; Abbasi, R.; Ghorbanzadeh, Z. Cell-Traversal Protein for Ookinetes and Sporozoites (Celtos) Formulated with Potent Tlr Adjuvants Induces High-Afnity Antibodies That Inhibit Plasmodium falciparum Infection in Anopheles stephensi. Malar. J. 2019, 18, 146. [Google Scholar] [CrossRef]
- Kariu, T.; Ishino, T.; Yano, K.; Chinzei, Y.; Yuda, M. Celtos, a Novel Malarial Protein That Mediates Transmission to Mosquito and Vertebrate Hosts. Mol. Microbiol. 2006, 59, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Kappe, S.; Bruderer, T.; Gantt, S.; Fujioka, H.; Nussenzweig, V.; Ménard, R. Conservation of a Gliding Motility and Cell Invasion Machinery in Apicomplexan Parasites. J. Cell Biol. 1999, 147, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Kosuwin, R.; Putaporntip, C.; Tachibana, H.; Jongwutiwes, S. Spatial Variation in Genetic Diversity and Natural Selection on Thet Hrombospondin-Related Adhesive Protein Locus of Plasmodium vivax (PvTRAP). PLoS ONE 2014, 9, e110463. [Google Scholar] [CrossRef]
- Müller, M.-H.; Reckmann, I.; Hollingdale, M.R.; Bujard, H.; Robson, K.J.H.; Crisanti, A. Thrombospondin Related Anonymous Protein (TRAP) of Plasmodium falciparum Binds Specifically to Sulfated Glycoconjugates and to Hepg2 Hepatoma Cells Suggesting a Role for This Molecule in Sporozoite Invasion of Hepatocytes. EMBO J. 1993, 12, 2881–2889. [Google Scholar] [CrossRef]
- Sinnis, P.; Sim, K.L. Cell Invasion by the Vertebrate Stages of Plasmodium. Trends Microbiol. 1997, 5, 52–58. [Google Scholar] [CrossRef]
- Favuzza, P.; Guffarts, E.; Tamborrini, M.; Scherer, B.; Dreyer, A.M.; Rufer, A.C.; Erny, J.; Hoernschemeyer, J.; Thoma, R.; Schimid, G.; et al. Structure of the Malaria Vaccine Candidate Antigen CyRPA and Its Complex with a Parasite Invasion Inhibitory Antibody. Elife 2017, 6, e20383. [Google Scholar] [CrossRef]
- Matos, A.S.; Rodrigues-Da-Silva, R.N.; Soares, I.F.; Baptista, B.O.; De Souza, R.M.; Bitencourt-Chaves, L.; Totino, P.R.R.; Sánchez-Arcila, J.C.; Daniel-Ribeiro, C.T.; López-Camacho, C.; et al. Antibody Responses against Plasmodium vivax TRAP Recombinant and Synthetic Antigens in Naturally Exposed Individuals from the Brazilian Amazon. Front. Immunol. 2019, 10, 2230. [Google Scholar] [CrossRef]
- Rodrigues-Da-Silva, R.N.; Soares, I.F.; Lopez-Camacho, C.; Da Silva, J.H.M.; Perce-Da-Silva, D.S.; Têva, A.; Franco, A.M.R.; Pinheiro, F.G.; Chaves, L.B.; Pratt-Riccio, L.R.; et al. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants. Front. Immunol. 2017, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Lestari, C.S.W.; Novientri, G. Advantages of Yeast-Based Recombinant Protein Technology as Vaccine Products against Infectious Diseases. IOP Conf. Ser. 2021, 913, 012099. [Google Scholar] [CrossRef]
- Arora, N.; Anbalagan, L.C.; Pannu, A.K. Towards Eradication of Malaria: Is the Who’s RTS,S/AS01 Vaccination Effective Enough? Risk Manag. Healthc. Policy 2021, 14, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Laurens, M.B. RTS,S/AS01 Vaccine (Mosquirix™): An Overview. Hum. Vaccin. Immunother. 2020, 16, 480–489. [Google Scholar] [CrossRef]
- Aderinto, N.; Olatunji, G.; Kokori, E.; Sikirullahi, S.; Aboje, J.E.; Ojabo, R. A Perspective on Oxford’s R21/Matrix-M™ Malaria Vaccine and the Future of Global Eradication Eforts. Malar. J. 2024, 23, 16. [Google Scholar] [CrossRef] [PubMed]
- Pollet, J.; Chen, W.-H.; Strych, U. Recombinant Protein Vaccines, a Proven Approach against Coronavirus Pandemics. Adv. Drug Deliv. Rev. 2021, 170, 71–82. [Google Scholar] [CrossRef]
- Yepes-Pérez, Y.; López, C.; Suárez, C.F.; Patarroyo, M.A. Plasmodium vivax Pv12 B-Cell Epitopes and Hla-Drβ1-Dependent T-Cell Epitopes In Vitro Antigenicity. PLoS ONE 2018, 13, e0203715. [Google Scholar] [CrossRef]
- Atcheson, E.; Hill, A.V.S.; Reyes-Sandoval, A. A VLP for validation of the Plasmodium falciparum circumsporozoite protein junctional epitope for vaccine development. NPJ Vaccines 2021, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Atcheson, E.; Reyes-Sandoval, A. Protective efficacy of peptides from Plasmodium vivax circumsporozoite protein. Vaccine 2020, 38, 4346–4354. [Google Scholar] [CrossRef]
- Villard, V.; Agak, G.W.; Frank, G.; Jafarshad, A.; Servis, C.; Nébié, I.; Sirima, S.B.; Felger, I.; Arevalo-Herrera, M.; Herrera, S.; et al. Rapid Identification of Malaria Vaccine Candidates Based on α-Helical Coiled Coil Protein Motif. PLoS ONE 2007, 2, e645. [Google Scholar] [CrossRef]
- Casey, J.L.; Coley, A.M.; Anders, R.F.; Murphy, V.J.; Humberstone, K.S.; Thomas, A.W.; Foley, M. Antibodies to Malaria Peptide Mimics Inhibit Plasmodium falciparum Invasion of Erythrocytes. Infect. Immun. 2004, 72, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.R.; Cunha, C.F.; Ferraz-Nogueira, R.; Marins-Dos-Santos, A.; Rodrigues-Da-Silva, R.N.; Soares, I.S.; Lima-Junior, J.C.; Bertho, A.L.; Ferreira, M.U.; Scopel, K.K.G. Apical Membrane Protein 1-Specific Antibody Profile and Temporal Changes in Peripheral Blood B-Cell Populations in Plasmodium vivax Malaria. Parasite Immunol. 2019, 41, e12662. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Butcher, G.A.; Mitchell, G.H. Mechanisms of Immunity to Malaria. Bull. World Health Organ. 1974, 50, 251–257. [Google Scholar] [PubMed]
- Wipasa, J.; Elliott, S.; Xu, H.; Good, M.F. Immunity to Asexual Blood Stage Malaria and Vaccine Approaches. Immunol. Cell Biol. 2002, 80, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Battle, K.E.; Lucas, T.C.D.; Nguyen, M.; Howes, R.E.; Nandi, A.K.; Twohig, K.A.; Pfeffer, D.A.; Cameron, E.; Rao, P.C.; Casey, D.; et al. Mapping the Global Endemicity and Clinical Burden of Plasmodium vivax, 2000–2017: A Spatial and Temporal Modelling Study. Lancet 2019, 394, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Price, R.N.; Commons, R.J.; Battle, K.E.; Thriemer, K.; Mendis, K. Plasmodium vivax in the Era of the Shrinking P. falciparum Map. Trends Parasitol. 2020, 36, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Tefera, D.R.; Sinkie, S.O.; Daka, D.W. Economic Burden of Malaria and Associated Factors among Rural Households in Chewaka District, Western Ethiopia. Clinicoecon. Outcomes Res. 2020, 12, 141–152. [Google Scholar] [CrossRef]
- Kochar, D.K.; Saxena, V.; Singh, N.; Kochar, S.K.; Kumar, S.V.; Das, A. Plasmodium vivax Malaria. Emerg. Infect. Dis. 2005, 11, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Price, R.N.; Tjitra, E.; Guerra, C.A.; Yeung, S.; White, N.J.; Anstey, N.M. Vivax Malaria: Neglected and Not Benign. Am. J. Trop. Med. Hyg. 2007, 77, 79–87. [Google Scholar] [CrossRef]
- Douglas, N.M.; Anstey, N.M.; Buffet, P.A.; Poespoprodjo, J.R.; Yeo, T.W.; White, N.J.; Price, R.N. The Anaemia of Plasmodium vivax Malária. Malar. J. 2012, 11, 135. [Google Scholar] [CrossRef]
- Naing, C.; Whittaker, M.A.; Wai, V.N.; Mak, J.W. Is Plasmodium vivax Malaria a Severe Malaria?: A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2014, 8, e3071. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Cebrián-Carmona, J.; González-Cerón, L.; Manzano-Agugliaro, F.; Mesa-Valle, C. Analysis of Global Research on Malaria and Plasmodium vivax. Int. J. Environ. Res. Public Health 2019, 16, 1928. [Google Scholar] [CrossRef] [PubMed]
- Arévalo-Herrera, M.; Chitnis, C.; Herrera, S. Current Status of Plasmodium vivax Vaccine. Hum. Vaccin. 2010, 6, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.R.; Nakaie, C.R.; Rodrigues-da-Silva, R.N.; Da Silva, R.L.; Lima-Junior, J.C.; Scopel, K.K.G. Main B-cell epitopes of PvAMA-1 and PvMSP-9 are targeted by naturally acquired antibodies and epitope-specific memory cells in acute and convalescent phases of vivax malaria. Parasite Immunol. 2020, 42, e12705. [Google Scholar] [CrossRef]
- Druilhe, P.; Pradier, O.; Marc, J.P.; Miltgen, F.; Mazier, D.; Parent, G. Levels of Antibodies to Plasmodium falciparum Sporozoite Surface Antigens Reflect Malaria Transmission Rates and Are Persistent in the Absence of Reinfection. Infect. Immun. 1986, 53, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Wipasa, J.; Suphavilai, C.; Okell, L.C.; Cook, J.; Corran, P.H.; Thaikla, K.; Liewsaree, W.; Riley, E.M.; Hafalla, J.C.R. Long-Lived Antibody and B Cell Memory Responses to the Human Malaria Parasites Plasmodium falciparum and Plasmodium vivax. PLoS Pathog. 2010, 6, e1000770. [Google Scholar] [CrossRef] [PubMed]
- Braga, E.M.; Fontes, C.J.; Krettli, A.U. Persistence of Humoral Response against Sporozoite and Blood-Stage Malaria Antigens 7 Years after A Brief Exposure to Plasmodium vivax. J. Infect. Dis. 1998, 177, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.J.; Chan, J.A.; Handayuni, I.; Reiling, L.; Feng, G.; Hilton, A.; Kurtovic, L.; Oyong, D.; Piera, K.A.; Barber, B.E.; et al. IgM in Human Immunity to Plasmodium falciparum Malaria. Sci. Adv. 2019, 5, eaax4489. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, C.; Powers, R.; Satyabhama, L.; Cui, A.; Tipton, C.; Michaeli, M.; Skountzou, I.; Mittler, R.S.; Kleinstein, S.H.; Mehr, R.; et al. Long-Lived Antigen-Induced IgM Plasma Cells Demonstrate Somatic Mutations and Contribute to Long-Term Protection. Nat. Commun. 2016, 7, 11826. [Google Scholar] [CrossRef]
- De Assis, G.M.P.; De Alvarenga, D.A.M.; Souza, L.B.; Sánchez-Arcila, J.C.; Silva, E.F.; De Pina-Costa, A.; Gonçalves, G.H.P.; Junior, J.C.S.; Nunes, A.J.D.; Pissinatti, A.; et al. IgM Antibody Responses against Plasmodium Antigens in Neotropical Primates in the Brazilian Atlantic Forest. Front. Cell. Infect. Microbiol. 2023, 13, 1169552. [Google Scholar] [CrossRef]
- Walker, M.R.; Knudsen, A.S.; Partey, F.D.; Bassi, M.R.; Frank, A.M.; Castberg, F.C.; Sarbah, E.W.; Ofori, M.F.; Hviid, L.; Barfod, L. Acquisition and Decay of IgM and IgG Responses to Merozoite Antigens after Plasmodium falciparum Malaria in Ghanaian Children. PLoS ONE 2020, 15, e0243943. [Google Scholar] [CrossRef]
- Krishnamurty, A.T.; Thouvenel, C.D.; Portugal, S.; Keitany, G.J.; Kim, K.S.; Holder, A.; Crompton, P.D.; Rawlings, D.J.; Pepper, M. Somatically Hypermutated Plasmodium-Specific IgM+ Memory B Cells Are Rapid, Plastic, Early Responders upon Malaria Rechallenge. Immunity 2016, 45, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.A.; Sánchez-Arcila, J.C.; Vasconcelos, M.P.A.; Ferreira, A.R.; Videira, L.S.; Teva, A.; Perce-da-Silva, D.; Marques, M.T.Q.; de Carvalho, L.H.; Banic, D.M.; et al. Evaluating seroprevalence to circumsporozoite protein to estimate exposure to three species of Plasmodium in the Brazilian Amazon. Infect. Dis. Poverty 2018, 7, 46. [Google Scholar] [CrossRef]
- Oliveira-Ferreira, J.; Pratt-Riccio, L.R.; Arruda, M.; Santos, F.; Ribeiro, C.T.D.; Goldberg, A.C.; Banic, D.M. HLA class II and antibody responses to circumsporozoite protein repeats of P. vivax (VK210, VK247 and P. vivax-like) in individuals naturally exposed to malaria. Acta Trop. 2004, 92, 63–69. [Google Scholar] [CrossRef]
- Pinto, A.Y.N.; Ventura, A.M.R.S.; De Souza, J.M. IgG Antibody Response against Plasmodium vivax in Children Exposed to Malaria before and after Specific Treatment. J. Pediatr. 2001, 77, 299–306. [Google Scholar] [CrossRef]
- Oeuvray, C.; Bouharoun-Tayoun, H.; Gras-Masse, H.; Bottius, E.; Kaidoh, T.; Aikawa, M.; Filgueira, M.-C.; Tartar, A.; Druilhe, P. Merozoite Surface Protein-3: A Malaria Protein Inducing Antibodies That Promote Plasmodium falciparum Killing by Cooperation with Blood Monocytes. Blood 1994, 84, 1594–1602. [Google Scholar] [CrossRef]
- Bouharoun-Tayoun, H.; Druilhe, P. Plasmodium falciparum Malaria: Evidence for an Isotype Imbalance Which May Be Responsible for Delayed Acquisition of Protective Immunity. Infect. Immun. 1992, 60, 1473–1481. [Google Scholar] [CrossRef]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef]
- França, C.T.; He, W.-Q.; Gruszczyk, J.; Lim, N.T.Y.; Lin, E.; Kiniboro, B.; Siba, P.M.; Tham, W.-H.; Mueller, I. Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children. PLoS Negl. Trop. Dis. 2016, 10, e0005014. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Xia, J.; Shen, J.; Fang, Q.; Xia, H.; Zheng, M.; Han, J.-H.; Han, E.-T.; Wang, B.; Xu, Y. An Erythrocyte Membrane-Associated Antigen, Pvtrag-26 of Plasmodium vivax: A Study of Its Antigenicity and Immunogenicity. Front. Public Health 2020, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Changrob, S.; Wang, B.; Han, J.-H.; Lee, S.-K.; Nyunt, M.H.; Lim, C.S.; Tsuboi, T.; Chootong, P.; Han, E.-T. Naturally-Acquired Immune Response against Plasmodium vivax Rhoptry Associated Membrane Antigen. PLoS ONE 2016, 11, e0148723. [Google Scholar] [CrossRef]
- Dobaño, C.; Santano, R.; Vidal, M.; Jiménez, A.; Jairoce, C.; Ubillos, I.; Dosoo, D.; Aguilar, R.; Williams, N.A.; Díez-Padrisa, N.; et al. Differential Patterns of IgG Subclass Responses to Plasmodium falciparum Antigens in Relation to Malaria Protection and RTS,S Vaccination. Front. Immunol. 2019, 10, 439. [Google Scholar] [CrossRef] [PubMed]
- Morell, A.; Terry, W.D.; Waldmann, T.A. Metabolic Properties of IgG Subclasses in Man. J. Clin. Investig. 1970, 49, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Aucan, C.; Traoré, Y.; Tall, F.; Nacro, B.; Troré-Leroux, T.; Fumoux, F.; Rihet, P. High Immunoglobulin G2 (IgG2) and Low IgG4 Levels Are Associated with Human Resistance to Plasmodium falciparum Malaria. Infect. Immun. 2000, 68, 1252–1258. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, B.; Changrob, S.; Han, J.-H.; Sattabongkot, J.; Há, K.-S.; Chootong, P.; Lu, F.; Cao, J.; Nyunt, M.H.; et al. Naturally Acquired Humoral and Cellular Imune Responses to Plasmodium vivax Merozoite Surface Protein 8 in Patients with P. vivax Infection. Malar. J. 2017, 16, 211. [Google Scholar] [CrossRef] [PubMed]
- Kinyanjui, S.M.; Bejon, P.; Osier, F.H.; Bull, P.C.; Marsh, K. What You See Is Not What You Get: Implications of the Brevity of Antibody Responses to Malaria Antigens and Transmission Heterogeneity in Longitudinal Studies of Malaria Immunity. Malar. J. 2009, 8, 242. [Google Scholar] [CrossRef] [PubMed]
- Okech, B.A.; Corran, P.H.; Todd, J.; Joyson-Hicks, A.; Uthaipibull, C.; Egwang, T.G.; Holder, A.A.; Riley, E.M. Fine Specificity of Serum Antibodies to Plasmodium falciparum Merozoite Surface Protein, PfMSP-119, Predicts Protection from Malaria Infection and High-Density Parasitemia. Infect. Immun. 2004, 72, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Osier, F.H.A.; Fegan, G.; Polley, S.D.; Murungi, L.; Verra, F.; Tetteh, K.K.A.; Lowe, B.; Mwangi, T.; Bull, P.C.; Thomas, A.W.; et al. Breadth and Magnitude of Antibody Responses to Multiple Plasmodium falciparum Merozoite Antigens Are Associated with Protection from Clinical Malaria. Infect. Immun. 2008, 76, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Kosuwin, R.; Feng, M.; Makiuchi, T.; Putaporntip, C.; Tachibana, H.; Jongwutiwes, S. Naturally Acquired IgGAntibodies to Thrombospondin-Related Anonymous Protein of Plasmodium vivax (PvTRAP) in Thailand Predominantly Elicit Immunological Cross-Reactivity. Trop. Med. Int. Health 2018, 23, 923–933. [Google Scholar] [CrossRef]
- França, C.T.; White, M.T.; He, W.-Q.; Hostetler, J.B.; Brewster, J.; Frato, G.; Malhotra, I.; Gruszczyk, J.; Huon, C.; Lin, E.; et al. Identification of Highly-Protective Combinations of Plasmodium vivax Recombinant proteins for Vaccine Development. Elife 2017, 6, e28673. [Google Scholar] [CrossRef]
- Audran, R.; Cachat, M.; Lurati, F.; Soe, S.; Leroy, O.; Corradin, G.; Druilhe, P.; Spertini, F. Phase I Malaria Vaccine Trial with a Long Synthetic Peptide Derived from the Merozoite Surface Protein 3 Antigen. Infect. Immun. 2005, 73, 8017–8026. [Google Scholar] [CrossRef] [PubMed]
Peptides versus Number of Previous Malarial Episodes | IgG | IgM |
---|---|---|
PvTRAP(P344-G374) | r = −0.05759; p = 0.6943 | r = −0.1642; p = 0.2595 |
PvCelTOS(I133-G147) | r = 0.1416; p = 0.3317 | r = −0.1794; p = 0.2175 |
PvCyRPA(T289-G307) | r = 0.06536; p = 0.6555 | r = −0.1372; p = 0.3471 |
Peptides versus Malaria Exposure Time (years) | IgG | IgM |
PvTRAP(P344-G374) | r = −0.07877; p = 0.5827 | r = −0.2366; p = 0.0945 |
PvCelTOS(I133-G147) | r = 0.05917; p = 0.6800 | r = −0.3035; p = 0.0304 |
PvCyRPA(T289-G307) | r = 0.02747; p = 0.8482 | r = −0.1063; p = 0.4624 |
Peptides versus Parasitemia | IgG | IgM |
PvTRAP(P344-G374) | r = 0.1972; p = 0.1451 | r = 0.2383; p = 0.0769 |
PvCelTOS(I133-G147) | r = 0.1428; p = 0.2936 | r = 0.1873; p = 0.1669 |
PvCyRPA(T289-G307) | r = 0.08225; p = 0.5467 | r = 0.06860; p = 0.6154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodolphi, C.M.; Soares, I.F.; Matos, A.d.S.; Rodrigues-da-Silva, R.N.; Ferreira, M.U.; Pratt-Riccio, L.R.; Totino, P.R.R.; Scopel, K.K.G.; Lima-Junior, J.d.C. Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study. Antibodies 2024, 13, 69. https://doi.org/10.3390/antib13030069
Rodolphi CM, Soares IF, Matos AdS, Rodrigues-da-Silva RN, Ferreira MU, Pratt-Riccio LR, Totino PRR, Scopel KKG, Lima-Junior JdC. Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study. Antibodies. 2024; 13(3):69. https://doi.org/10.3390/antib13030069
Chicago/Turabian StyleRodolphi, Cinthia Magalhães, Isabela Ferreira Soares, Ada da Silva Matos, Rodrigo Nunes Rodrigues-da-Silva, Marcelo Urbano Ferreira, Lilian Rose Pratt-Riccio, Paulo Renato Rivas Totino, Kézia Katiani Gorza Scopel, and Josué da Costa Lima-Junior. 2024. "Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study" Antibodies 13, no. 3: 69. https://doi.org/10.3390/antib13030069
APA StyleRodolphi, C. M., Soares, I. F., Matos, A. d. S., Rodrigues-da-Silva, R. N., Ferreira, M. U., Pratt-Riccio, L. R., Totino, P. R. R., Scopel, K. K. G., & Lima-Junior, J. d. C. (2024). Dynamics of IgM and IgG Antibody Response Profile against Linear B-Cell Epitopes from Exoerythrocytic (CelTOS and TRAP) and Erythrocytic (CyRPA) Phases of Plasmodium vivax: Follow-Up Study. Antibodies, 13(3), 69. https://doi.org/10.3390/antib13030069