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Abstract: Therapeutic antibodies such as monoclonal antibodies (mAbs), bispecific and multispecific
antibodies are pivotal in therapeutic protein development and have transformed disease treatments
across various therapeutic areas. The integrity of therapeutic antibodies, however, is compromised by
sequence liabilities, notably deamidation, where asparagine (N) and glutamine (Q) residues undergo
chemical degradations. Deamidation negatively impacts the efficacy, stability, and safety of diverse
classes of antibodies, thus necessitating the critical need for the early and accurate identification of
vulnerable sites. In this article, a comprehensive antibody deamidation-specific dataset (n = 2285) of
varied modalities was created by using high-throughput automated peptide mapping followed by
supervised machine learning to predict the deamidation propensities, as well as the extents, through-
out the entire antibody sequences. We propose a novel chimeric deep learning model, integrating
protein language model (pLM)-derived embeddings with local sequence information for enhanced
deamidation predictions. Remarkably, this model requires only sequence inputs, eliminating the
need for laborious feature engineering. Our approach demonstrates state-of-the-art performance,
offering a streamlined workflow for high-throughput automated peptide mapping and deamidation
prediction, with the potential of broader applicability to other antibody sequence liabilities.
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1. Introduction

Monoclonal antibodies (mAbs) represent one of the predominant classes of therapeutic
proteins; recently, more complex formats of antibodies, such as bispecific and multispe-
cific antibodies, and fusion proteins have debuted to treat various diseases in multiple
different therapeutic areas [1–4]. These therapeutic antibodies are engineered to bind
selectively to their target antigens, modulating the biological pathways to achieve the
therapeutic effects. However, during the development, manufacturing, and storage of the
therapeutic antibodies, various sequence liabilities may arise, potentially impacting their
safety, efficacy, and stability. An antibody sequence liability refers to the specific antibody
amino acid residues (namely, hot spots) undergoing chemical degradations, structural
alterations, or enzymatic modifications [5,6]. One of the most common and putatively
most concerning of the sequence liabilities of the therapeutic antibodies is deamidation,
a spontaneous chemical process particularly involving asparagine (N) and glutamine (Q)
residues, converting them into negatively charged aspartate (D) and glutamate (E) residues,
respectively, through several possible non-enzymatic pathways [7]. Deamidation has been
reported to compromise both in vivo and in vitro biological activities, structural integrity,
pharmacokinetics, antigen-binding affinity, and even the immunogenicity of diverse classes
of antibodies [5,7,8]. Therefore, identifying the liable sites for deamidations has become a
critical step.
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In particular, during the drug discovery phase, early access to antibody deamidation
liabilities is beneficial to de-risk the drug candidate selection process and accelerate drug
development. Typically, forced degradations by thermal and high pH stresses have been
employed to enrich the liable deamidated residues prior to any experimental measure-
ments [9]. Nevertheless, measuring deamidation, in particular, by assessing site-specific
deamidation information is challenging because (i) conventional reversed phase separation
techniques or charge-based separation methods (e.g., ion exchange chromatography and
capillary isoelectric focusing (cIEF)) lack the specificity to resolve interfering species that
co-elute or to localize deamidation at the amino acid level [10,11]; and (ii) intact or reduced
mass analysis cannot unambiguously detect deamidation owing to the small +0.98 Da mass
shift that easily falls in the assay variability [12]. The LC-MS/MS-based peptide mapping
method, which enzymatically dissociates the protein into smaller peptide pieces, spatially
separating those peptides followed by high-resolution MS detection, on the other hand, can
confidently detect, quantify, and localize the deamidations, providing site-specific deamida-
tion information [13,14]. Nevertheless, peptide mapping is intrinsically labor-intensive in
both the sample preparation and data processing. In addition, to accommodate the forced
degradation followed by the peptide mapping of the sample preparations, the amount of
purified antibody to initiate this task can be quite high. However, often, especially at the
earlier stages, the experimental assessment of deamidations via forced degradation and
peptide mapping is constrained by both the low availability of purified antibody material
and the high demand of FTE/instrument resources. Given these limitations, computa-
tional tools have become increasingly common for early antibody deamidation profiling,
because they eliminate the need for sample consumption and afford a fast turnaround and
potentially high throughput while requiring minimal cost [15–18].

Computational models for predicting deamidation occurrences have been around
for decades and have been undergoing continued evolvement [17–25]. Informed by prior
knowledge that flanking sequences, secondary and tertiary structures, solvent accessibility,
and structural rigidity can all impact antibody deamidations, these models can be largely
divided into two categories, namely, sequence-based models and structure-based models.
For example, to date, some sequence-based deamidation tools simply designate all deami-
dation “hot spots” based on the sequence motifs of NG and NS, determined from a model
that used pentapeptide surrogates to probe various deamidation rates [26]; however, in
reality even the same sequence motifs are likely to exhibit varied deamidation rates due
to changes in solvent accessibility and the high order structure. In general, conventional
sequence-based models are typically easy to use but suffer with respect to the accuracy
of their performance. By comparison, structure-based models typically perform better,
as additional descriptors, such as the secondary structure, tertiary structure, SASA, back-
bone, and side-chain dihedral angles, are taken into account. For example, in separate
studies, Jia et al. [21] and Delmar et al. [19] developed machine learning models for liable
Asn deamidation prediction by mining the structural parameters such as the backbone
nucleophilic attack distance, dihedral angles, side-chain dihedral angles, torsion angles,
etc., from crystal structures and 3D antibody structural homology models, respectively.
Hoffmann et al. [20] recently reported an effective QSAR model, factoring in the acces-
sible surface area (ASA) of the residue, the pKa value of the backbone amide, and the
root mean square deviations of both the alpha carbon and the side chain. As one would
expect, different structure-based models may require the different crafting and selection of
structural features. Despite these successes in structure-based approaches, a prerequisite
to enable the use of these models is either an experimental crystal structure or an in silico
structural homology model; in some cases, molecular dynamic (MD) simulations were
also required in order to compensate for flexible loop conformations [25]. This has limited
the ease of access to structure-based approaches. In addition, for more complex modal-
ities such as multispecific or fusion proteins, it is inherently challenging to even obtain
structural homologies.
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With the recent advancement of artificial intelligence and natural language processing
techniques, pretrained protein language models (pLMs) employing transformer archi-
tectures [27] have debuted as an increasingly widespread paradigm to extract contextual
information directly from sequences, enabling the effective amino acid-level representations
of various proteins, including therapeutic antibodies. Notable examples of pLMs include
ProtBert [28], ESM-1b [29], ESM-2 [30], and ProtT5 [31]. These models were pretrained
on massive sets of protein sequences in an unsupervised manner via the objectives of
masked language modeling and were shown to be capable of learning complex contextual
dependencies among residue properties and structural features. These learned representa-
tions of proteins, often manifested as vectors (also known as embeddings), are meaningful
“heuristic features” about proteins, potentially eliminating the need for structural homology,
feature engineering, evolutionary searches, and multiple sequence alignments (MSAs);
all of these processes are typically time consuming and computationally expensive. In-
deed, by simply taking protein sequences as the input, pLM embeddings can be used in
a broad range of tasks including protein 3D structure prediction [30,32,33], subcellular
localization [34], mutational impact prediction [35], and, more recently, post-translational
modifications [36,37].

In this study, we propose the use of embeddings from a state-of-the-art pLM, namely,
ESM-2, for the prediction of deamidation sites in therapeutic antibodies. The use of a pLM
has demonstrated a trail of success in predicting various domain-specific tasks. However,
to our best knowledge, the feasibility of using a pLM for deamidation predictions is yet
to have been explored. We present a novel, chimeric deep learning model that integrates
the contextual residue-level embeddings with the local amino acid sequence information.
Notably, we show that this method achieves state-of-the-art performance by directly taking
antibody sequences as the input with no requirement for handcrafted or manual feature
extractions. In addition, the method can also project the quantitative deamidation extents at
future time points. Last but not least, we underscore that the presented systematic workflow,
involving high-throughput automated peptide mapping followed by a pLM-fueled deep
learning framework, is applicable to other sequence liabilities of therapeutic antibodies.

2. Materials and Methods
2.1. Chemicals and Reagents

All antibodies described in this work, except for the NISTmAb antibody, were pro-
duced using Chinese hamster ovary (CHO) cell lines at Bristol Myers Squibb. The NISTmAb,
which is a humanized IgG1 monoclonal antibody, was obtained from Sigma-Aldrich (cat.
NIST8671, St. Louis, MO, USA). The trypsin was purchased from Promega (cat. V5280,
Madison, WI, USA) and the guanidine hydrochloride (8.0 M, Cat. 24115) and microdialysis
cassettes (cat. 88260) were purchased from Thermo Fisher Scientific (Waltham, MA, USA).
All the other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Accelerated Thermal Stress

A panel of 51 antibodies, including NISTmAb and 50 in-house antibodies of var-
ied modalities, including monoclonal antibody, bispecific antibody, and fusion protein,
were buffer-exchanged to 100 mM of Tris at a pH of 8.0 at 5.0 mg/mL, followed by in-
cubation at 40 ◦C for up to 8 weeks with interim time points after 1 week, 2 weeks, and
4 weeks (Figure 1). The samples were stored at −80 ◦C upon due time. For the t = 0
control, the samples were put in storage immediately after the buffer exchange. This gave
255 samples overall; these samples were then subjected to the peptide mapping protocol
and LC-MS/MS analysis.
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Figure 1. Development of a systematic workflow to predict therapeutic antibody deamidations.
Starting from forced degradation at 40 ◦C at a pH of 8.0 for 8 weeks with interim time points (t0,
1 week, 2 weeks, 4 weeks, and 8 weeks), antibody samples were subjected to high-throughput
automated peptide mapping followed by LC-MS/MS analysis. Machine learning models were
trained on a curated, deamidation site-specific dataset.

2.3. Automated Peptide Mapping

A high-throughput fully automated peptide mapping sample preparation platform
was developed by using the Lynx liquid handling robotic system (Dynamic Devices, Wilm-
ington, DE, USA). The robot was equipped with a plate gripper and an individually
addressable 96-channel pipetting arm; each channel had a maximum capacity of 1250 µL.
The plate gripper enabled the 96-well plate movements on the deck upon the method
initiation. The liquid handler deck was equipped with a BioShake Q1 (Q Instruments, Jena,
Germany) that enabled the heating, cooling, and shaking required in the protocol.

The detailed sample handling steps are described in the Supplemental Information.
Briefly, the Lynx robotic system performed the following procedures sequentially: the
protein sample concentration normalization, denaturation, disulfide bond reduction, free
cysteine alkylation, microdialysis-based buffer exchange, trypsin digestion, quenching of
the reaction, and cooling storage. Upon completion, the resulting plate containing the
quenched digests covered with a light protective lid was placed on the cooling block until
retrieval by the analyst.

2.4. LC-MS/MS Analysis

The Vanquish UHPLC module (Thermo Fisher Scientific) was configured to directly
take the resulting 96-well plate from the automated peptide mapping protocol. An aliquot
of peptide digests (6 µg) was loaded onto a reversed phase C18 column (130 Å, 1.7 µm,
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2.1 × 150 mm; Waters, Milford, MA, USA) and spatially separated using a linear gradient
from 0% to 40% in the mobile phase B, consisting of 0.02% (v/v) of TFA in acetonitrile at a
flow rate of 0.2 mL/min. The column temperature was maintained at 55 ◦C. The detection
was performed using an Exploris 480 mass spectrometer (Thermo Fisher Scientific), with
an electrospray ionization source operated in positive polarity at a spray voltage of 3.5 kV
and a capillary temperature of 320 ◦C. The mass range of the precursor ions was set at
250–2000 m/z with a high resolving power of 120,000. The data acquisition was performed
in the top 5 data-dependent acquisition mode, with the dynamic exclusion duration set for
5 s after each scan, in an attempt to further boost the MS/MS spectra even for lower abun-
dance species, facilitating site-specific modification assignment during the data analysis.
The details regarding the database searching and post-translational modification (PTM)
identification and quantification are described in the Supplemental Information.

3. Results
3.1. High-Throughput (HTP) Automated Peptide Mapping

The peptide mapping-rooted approach, recently dubbed the multi-attribute method
(MAM), employs mass spectrometry detection for the simultaneous identification and quan-
titation of many protein quality attributes including deamidations [13,14,38,39]. Although
peptide mapping is ideal in providing site-specific modification readouts, the throughput of
peptide mapping has long been a bottleneck limiting its practicality especially in the drug
discovery phase where the sample numbers are large and the expected throughputs are
high. To address this, we developed an automated peptide mapping sample preparation
protocol using the Lynx liquid handling system. The fully walk-off system processes a
96-well plate in 7 h with a high degree of reproducibility (Figure S1). The sample prepa-
rations for all the degradation samples included in this study (255 samples for a total of
51 antibodies; refer to the Material and Methods Section for details) were completed in
3 days using the described high-throughput peptide mapping platform (Figure 1). To
illustrate the method reproducibility, we show in Table S1 the PTM% comparisons among
the samples located at diagonal positions on a 96-well plate (A1 to H8). These site-specific
PTM percentages demonstrated good repeatability in terms of quantification across a wide
dynamic range (from 0.1% to 100%). Note that in addition to detecting deamidations,
the method can simultaneously measure and quantify a number of other PTMs including
oxidation, isomerization, N-/C-terminal modifications, succinimide formation, and glyco-
sylation (Figure 2a and Table S1). The levels of heavy-chain PENNY peptide deamidations
(i.e., N387 and N392) were less than 2% and the Met255 oxidation was ~3% (Table S1),
suggesting that our method did not generate artifact PTMs.

Another important metric evaluating an automated procedure is its comparability
to a manual procedure. We show that the automated procedure can be implemented
interchangeably with its manual protocol equivalent, as the tryptic digestion profiles gener-
ated from the automation platform notably resembled those from the manual workflow
(Figure S2). Furthermore, the PTM% obtained using the automated peptide mapping were
comparable to those obtained using the manual protocol. Take mAb-A as example, where
the samples were stressed at various time points (at 40 ◦C at a pH of 8.0) before submitting
to automated and manual peptide mapping (Figure 2a): the outcome demonstrated great
comparability for numerous PTMs, including deamidation, between the two protocols
over a wide quantitation range from 0.1% to 80%. Overall, the developed high-throughput
automated peptide mapping workflow significantly streamlined and expedited the sample
processing, generating a large amount of high-quality data at the amino acid level ready
for the subsequent machine learning endeavors.

Next, the processed peptide mapping data were further curated to concentrate on the
deamidation outcome. Essentially, each deamidation instance was manifested as a site-
specific, time-dependent profile consisting of five time points at t = 0, 1, 2, 4, and 8 weeks
(for instance, the heavy-chain Q3, N73, N83, N386, and N391 deamidations in Figure 2a).
In supervised machine learning, with the goal of classifying the deamidation sites into
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an active set (or hot spot) versus an inactive set (not liable or low risk), it is imperative
to carefully label the dataset instances. In this study, each deamidation site was labeled
by setting a fixed deamidation threshold. Specifically, for any site of interest (either N or
Q residues), it was labeled as an active set if the increment of the measured deamidation
extents from either the t0 to t1week or from t1week to t2week time points exceeded 1.0%. Any
remaining deamidation instances were labeled as inactive sites; these also included any N/Q
residues that did not give measurable deamidations during the peptide mapping analysis. Of
note, the LOQ in our peptide mapping assay was approximately 0.1%. For the training and
test dataset split, we allocated a full dataset corresponding to 45 in-house antibodies as the
training set and the remainder, including NISTmAb, as the independent test set.
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Figure 2. (a) The quantitation of the PTMs of various categories by automated peptide mapping (red)
for stressed mAb-A samples at five different time points (t = 0, 1, 2, 4, and 8 weeks); the same set
of samples were subjected to manual peptide mapping (blue) to demonstrate a good quantitation
comparability between the two protocols. (b) Bar graphs illustrating the imbalanced nature of the
final deamidation-specific training dataset (n = 2285). (c) The overall distribution of deamidation
binary labels (hot spot versus inactive) in the dataset along light-chain and heavy-chain sequences,
respectively. (d) The overall distribution of quantitative deamidation extents at t = 2-week, t = 4-week,
and t = 8-week time points compared with respect to the deamidation labels, indicating that the
sites labeled as hot spots gave a broader deamidation distribution and higher extents, whereas
sites labeled as inactive showed a narrower distribution centered at lower (<20%) deamidation
extents. (e) A histogram of the total quantitative deamidation in the dataset by three time points
(t = 2, 4, and 8 weeks), showing that the deamidation extents shift towards higher percentages over
the time course.
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The harvested training dataset revealed a pronounced imbalance, with 2285 labeled
deamidation instances, predominantly skewed towards negative labels. Specifically,
276 instances were designated as deamidation hot spots, while 2009 were classified as
inactive (Figure 2b). Notably, the distribution of deamidation hot spots was not confined to
specific regions along the protein sequences; instead, they were observed to span across
both the light and heavy chains (Figure 2c). Each deamidation instance in the dataset was
accompanied by a binary label indicating its deamidation status, along with the experi-
mental quantitative measurements of deamidation extents at t2week, t4week, and t8week. As
illustrated in Figure 2d and Figure S3, the sites labeled as inactive exhibited consistently
lower levels of deamidation compared to those identified as hot spots. The distribution of
quantitative deamidation extents also showed a notable shift towards higher percentages
over the course of the experiment (Figure 2e), corresponding to the gradually elevating
deamidation extents from t2week to t8week.

3.2. The Use of ESM-2 Embedding for Deamidation Site Prediction

Our objective was to construct models capable of classifying deamidation directly
as active (indicating a hot spot or potential liability) or inactive (representing a low risk)
for any site of interest (N or Q residues) within the antibody sequence, using only the
antibody sequences themselves as the input. To achieve this, it was essential to first encode
the antibody sequences into suitable representations prior to passing to downstream
learning tasks.

Among the various encoding schemes that extract vector representations (embeddings)
directly from protein sequences [40], pretrained protein language models (pLMs) have
emerged as particularly powerful tools. In our study, we employed protein language mod-
els to render latent, context-dependent embeddings. Specifically, the embeddings utilized
in our work were derived from a pretrained ESM-2 model, which was trained on approxi-
mately 65 million unique protein sequences sourced from the UniRef [41] protein sequence
database [30]. Of the many different sizes of pretrained ESM-2 models, which differ by the
number of parameters ranging from eight million to 15 billion, we selected the one with
33 layers and 650 million learnable parameters (esm2_t33_650m_UR50D), striking a balance
between the model performance, protein embedding sizes, and hardware constraints.

To leverage the pretrained ESM-2 model for encoding the sequence representations,
the model takes the entire antibody sequence, including the sites of interest, as the input
and returns the per residue representations of the full-length antibody. The outputs from
the ESM-2 consist of residue-level sequence embeddings with dimensions of n × 1280
(Figure 3a), where 1280 represents the dimension of the embeddings and n is the length of
the amino acid sequence. These embedding features were then fed into downstream neural
networks and trained to discriminate the antibody deamidation sites. This process, typically
referred to as transfer learning [42], capitalizes on the knowledge gained from a previous
task (in this case, the pretraining of the pLM) to improve the performance in new tasks
(such as deamidation prediction) by reusing the learned feature representations, especially
when the previous task was data-rich and the new tasks have limited labeled data. We
have applied transfer learning by using a simple deep neural network (DNN) to fine-tune
the downstream deamidation prediction task. The DNN comprises two hidden layers,
each followed by a dropout layer to prevent overfitting. The overall model architecture,
utilizing only ESM-2 embeddings as surrogate features for the deamidation site prediction,
is depicted in Figure 3a. The detailed parameters associated with this architecture are
provided in Table S2. Notably, concordant with previous findings [37,43,44], these pLM-
derived features do not require sophisticated architectures to be adapted to new predictions.

The performance metrics of this model architecture are listed in Table 1. With an
achieved accuracy of 94.4% and 0.798 and 0.728 for precision and recall, respectively, we
showcase the possibility of predicting antibody deamidation sites using the ESM-2 protein
language model taking only sequences as the input. Note that this is distinctly different
from conventional sequence-based computational approaches, which simply convert se-



Antibodies 2024, 13, 74 8 of 21

lected sequence segments into static matrices; herein, the pLM derives context-dependent
embeddings encompassing the intricate sequence–context relationships of the full-length
antibody sequence. For each site of interest (the N or Q residue), the representation is
transformed into a contextualized 1 × 1280 dimension vector, corresponding to 1280 mean-
ingfully assimilated descriptors about this residue learned from the pretrained pLM. The
effectiveness of complex unsupervised learned feature representations has also seen success
in several other domain-specific tasks [43,45–47], outperforming handcrafted descriptors
such as the one-hot encoding (OHE) of amino acids, k-mer motif counts, secondary struc-
tures, and backbone angles.
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Table 1. Performance metrics for models harnessing different sequence representations in the
prediction of deamidation using fivefold stratified cross validation on the training dataset.

Descriptors Accuracy Precision Recall Specificity F1-Score MCC

Local sequence only 0.932 ± 0.014 0.745 ± 0.044 0.679 ± 0.039 0.967 ± 0.019 0.710 ± 0.035 0.673 ± 0.030

Global embeddings only 0.944 ± 0.012 0.798 ± 0.049 0.728 ± 0.043 0.975 ± 0.016 0.761 ± 0.046 0.731 ± 0.027

Local + global embeddings 0.956 ± 0.014 0.835 ± 0.059 0.790 ± 0.036 0.979 ± 0.016 0.812 ± 0.031 0.787 ± 0.038
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3.3. Enhanced Prediction by Combining ESM-2 Embedding and Local Sequence Information

Prior studies have highlighted the role of the local structural environment [25] and
neighboring residues [48] in influencing the deamidation status of specific sites. Several
local sequence motifs, such as NG, NS, and NN, among others, have been identified as
correlating with the occurrence of antibody deamidations [18,49,50]. Recent investigations
have demonstrated that these local sequence motifs, when integrated with additional
structural or physicochemical property descriptors, can effectively predict deamidation hot
spots [19,21,24,25]. Drawing from these insights, our study integrates the local sequence
information with the global contextual information captured by the pretrained ESM-2
model. We trained a meta-classifier on the combined learned features. To transform the
local sequences into numerical inputs understandable by the model, we constructed local
sequence windows centered on the potential deamidation sites and then utilized supervised
word embedding to capture the localized interactions among the amino acids surrounding
the N/Q residues (Figure 3b). Subsequently, we employed bi-directional LSTM, a recurrent
neural network (RNN) sequence model, to extract the features reflecting the associations
and influences of neighboring amino acids within the defined sequence window.

Prior to incorporating the local sequence information into the ESM-2 embeddings,
it was crucial to determine the optimal size of the sequence window. To achieve this,
we processed various window sizes centered around the site of interest with an equal
number of neighboring amino acids ranging from three to sixty-one. These sequences
were forward-passed to the model through fivefold cross-validation using the deamidation
training dataset; the MCC score was used as the metric for identifying the optimal window
size. Of note, a window size of three corresponded to the 3-mer sequences incorporating
the immediate adjacent residues (before and after) of the potential deamidation site as the
input. In our study, a window size of three represented the minimal window sequence
size. We interrogated the predictive capabilities of these local sequences solely using
just the flanking sequences as the input to the base model depicted in Figure 3b without
additional descriptors by gradually increasing the number of neighboring residues while
maintaining an equal number of residues on both sides. The MCC values plotted against
different window sizes are illustrated in Figure S4a. Briefly, the model performance saw a
steady increase as the sequence window size was enlarged—a trend that was anticipated,
because excessively short windows are likely to convey limited local sequence information.
However, the MCC reached a plateau at approximately 31 amino acids. In Figure S4b–f,
we also visualize the effect of word embedding and window sizes, in terms of the model’s
ability to correctly distinguish a deamidation hot spot from an inactive set. With supervised
word embedding, a window size of thirty-one amino acids (Figure S4e) outperformed a
window size of three amino acids (Figure S4d); both performed significantly better than
when supervised word embedding was not used (Figure S4c, 3-mer LR regression). Given
all these, we selected a window size of 31 as optimal for the supervised word embedding.
Window sizes beyond 61 residues were not explored owing to the computational burden
associated with excessively long sequences. The detailed results for each window size
are provided in Table S3. Noteworthily, we also tested local sequence models of different
window sizes using an independent test set (Figure 5b); the outcome indicated that local
sequences alone as predictors may not be as effective as using ESM-2-generated embeddings
in terms of the deamidation prediction.

The final architecture highlights a “chimeric” model comprising two processing mod-
ules (Figure 4), namely a local module that learns sequence information from the localized,
windowed sequences and a global module that captures complex global contextual em-
beddings from the full-length protein sequences. Note that both modules directly take raw
protein sequences as the input: there is no additional requirement for sequence alignment
or handcrafted structural or physicochemical features. Each module independently en-
codes and processes the sequences, yielding 1-D vector as outputs. In order to integrate
the learned features by the two modules, we concatenated the vectors from both sources
and trained a fully connected (FC) neural network classification head as a meta-classifier
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(Figures 4 and S5). The output of the classifier yields a probabilistic distribution ranging
between 0 and 1, indicating the probability of being deamidated. This architecture was
selected following the fivefold stratified cross-validation. Essentially, during this process,
we ensured that each fold retained the same proportion of classes as the original dataset,
thereby minimizing bias and improving the reliability of the model evaluations. We ex-
plored various other model architectures such as logistic regression, random forest, ANN,
1D-CNN, and RNN, alongside different hyperparameters including hidden layer numbers,
neuron counts per layer, and optimizers. Moreover, we also implemented an early stopping
mechanism to optimize the training and prevent overfitting. The hyperparameters used in
the final architecture are listed in Table S4.
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Figure 4. The overall architecture of the chimeric model for enhanced deamidation site classifica-
tion. The architecture integrates the global module (ESM-2 embeddings) and local module (word
embeddings) and combines the two output vectors using a concatenation layer followed by a simple
DNN-based classification head. The detailed hyperparameters and layer settings are listed in the
Supplemental Information.

3.4. Performance Evaluation of Models

Given the imbalanced class distribution within the dataset, namely the prevalence of
inactive N/Q deamidation sites vastly outnumbering deamidation hot spots (Figure 2b),
the accuracy metric alone proved insufficient for assessing the classifier performance in
this study. In extreme cases, where the model simply designates every site of interest as
inactive, it may still achieve an 87.9% accuracy rate. Consequently, precision, recall, and
specificity metrics were incorporated to provide a more comprehensive evaluation of the
model performance. The metrics of precision and recall are particularly pertinent for an
imbalanced dataset. Precision quantifies the classifier’s ability to accurately predict positive
instances (i.e., the deamidation hot spot) relative to all predicted positive cases. Meanwhile,
recall (also known as the true positive rate or TPR) assesses the classifier’s success in
identifying deamidation hot spots among all the experimentally confirmed positives. In the
context of deamidation site classification, striving for high precision and recall is essential
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for understanding the model’s capacity to distinguish deamidation hot spots amidst the
predominant population of non-hot spots.

The evaluation of the chimeric model involved performing fivefold stratified cross-
validation on the training dataset and comparing it with the base models using either global
contextual embedding or local sequence windows. The model performance was assessed
using six metrics: accuracy, precision, recall, specificity, F1-score, and the Matthews correla-
tion coefficient (MCC). In addition, receiver operating characteristic (ROC) curves were
plotted for visualization purposes, with the area under the curve (AUC) calculated as an
additional metric. Further elaboration on the performance metrics and their corresponding
equations can be found in the Supplemental Information.

The comparative performance analysis (outlined in Table 1) revealed a notable dis-
tinction in the performance metrics. The mean MCC of the local sequence base model
stood at 0.673 ± 0.030, while the ESM-2 base model exhibited an improved performance
with a mean MCC of 0.731 ± 0.027. Remarkably, the chimeric meta-classifier exhibited a
mean MCC of 0.787 ± 0.038, alongside enhanced performance metrics, including a mean
accuracy of 0.956 ± 0.014, a mean precision of 0.836 ± 0.059, a mean recall of 0.789 ± 0.036,
and a mean F1-score of 0.812 ± 0.031.

To sum up, the chimeric model, which unites both global contextual embeddings
and local sequence information from the two base models, outperforms any individual
base model. Within the predominantly imbalanced training dataset containing 276 ac-
tive deamidation sites (hot spots) and 2009 inactive sites, the chimeric model accurately
identified 218 deamidation hot spots and 1966 inactive sites. Notably, approximately 84%
of the predicted deamidation hot spots were corroborated as active sites in the peptide
mapping experiments.

3.5. Independent Dataset Predicting Deamidation Hot Spots

To rigorously test the “chimeric” model performance for deamidation hot spot predic-
tions, we used an independent dataset. The dataset composed of six antibodies, including
five in-house antibodies and NISTmAb, all of which were subjected to automated peptide
mapping following the identical handling and incubation at 40 ◦C at a pH of 8.0 for up
to 8 weeks as described in Figure 1. Of the 312 total potential deamidation sites in this
dataset involving N and Q residues, the chimeric model achieved an accuracy of 95%; 36
were labeled as true deamidation hot spots with the remaining 276 as inactive sites. The
chimeric model correctly identified 28 deamidation hot spots with only six false positive
cases among the deamidation inactive set; specifically, the model overpredicted six deami-
dation events that were not experimentally observed, while underpredicted eight cases
(Figure 5a). Interestingly, one true positive deamidation event, revolving around the CDR
N73 deamidation of antibody-2, captured by the chimeric model prediction was, however,
overlooked in the peptide mapping to begin with, owing to the short peptide generated
from tryptic digestion eluted with solvent front, causing the loss of sequence coverage,
which included the asparagine site of interest. A follow-up LysC-based peptide mapping
experiment confirmed this site as a true positive (Figure 5c). In Table S5, we show the pre-
diction outcomes for NISTmAb, antibody-1, and antibody-2 from this dataset and highlight
the deamidation hot spots. Additionally, we used the AUC value of the receiver operating
characteristic (ROC) curve to benchmark the chimeric model’s performance and compared
with other models such as the ESM-2 only (without the local module) model and several
local sequence models using different window sizes (Figure 5b). As shown, the chimeric
model demonstrated an AUC of 0.986, the highest among all the models evaluated.
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Figure 5. (a) Confusion matrix of the independent test dataset involving a total of 312 poten-
tial deamidation sites, with 276 experimentally confirmed inactive sites and 36 confirmed active
sites. Specifically, within the confusion matrix, the model assigned 270 actual inactive sites as non-
deamidated; the model identified 28 actual active sites as deamidation hot spots. Additionally, the
model mistakenly assigned six inactive sites as deamidation hot spots (overprediction); and the model
overlooked eight active sites and assigned them as inactive sites (underprediction). (b) The receiver
operating characteristic (ROC) curves and area under the curves (AUCs) for the independent test
set predictions with different models. The chimeric model outperformed the rest. (c) The extracted
ion chromatograms corresponding to the deamidated and unmodified peptides via LysC digestion
enabled experimental confirmation of the CDR N73 deamidation status.

Additionally, we also compared the performance of the chimeric model with other
published deamidation classifiers, in order to assess the relative performance. We computed
the performance metrics, including the accuracy, precision, recall, MCC, and specificity.
It was imperative that the same training and test datasets were used for all the classifiers
tested; herein, we applied to our independent dataset several different classifiers available
from the literature. These included the structure-based decision tree model by Yan et al. [25]
and a random forest model by Jia et al. [21]; we also included a sequence-based method
called NGOME [22] by using the web server that directly took the sequence input with the
default parameter settings [23]. Last but not least, we also compared all these approaches
to a simple empirical method, which simply flagged all the NG, NS, and NN motifs to
be deamidated.

In Table 2, the comparison results among these different approaches are listed. As
shown, the chimeric model achieved the highest MCC and accuracy. It did not achieve
the highest precision performance, but our model still performed well in terms of the
precision metric, only registering a lower value by 0.01 unit. Regarding the recall metric,
the canonical NG/NS/NN motif-based approach gave an exceptionally high recall score of
0.944; however, these motifs are not always liable to deamidation, because these canonical
motifs tend to overpredict deamidations, as evidenced by the significantly lower precision
score of 0.586.
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Table 2. Comparison of prediction performance using an independent test set. Values are rounded to
three decimal places; highest value in each performance metric is highlighted in bold.

Classifier Accuracy Precision Recall MCC Specificity

Decision tree model [25] 0.949 0.833 0.694 0.733 0.982

Random forest model [21] 0.952 0.818 0.750 0.757 0.978

NGOME [23] 0.942 0.781 0.694 0.705 0.975

NG, NS, and NN motifs 0.917 0.586 0.944 0.704 0.913

Chimeric model 0.955 0.823 0.778 0.775 0.978

3.6. Quantitative Deamidation Extents Prediction

We show that the described architecture can go beyond classifying binary deamidation
statuses to, further, quantitively predict the deamidation extents for future time points.
This requires a simple adjustment of the model output layers by adding a regression head,
which outputs three neurons corresponding to the three time points at t = 2, 4, and 8 weeks
(Figure S5), followed by supervised learning using the experimentally measured deami-
dation extents at each time point as labels. We were able to train the model to provide
quantitative deamidation information. In Figure 6a–c, we visualize the model performance
based on fivefold cross-validation using the training dataset, where the predicted deamida-
tion extents were plotted against the corresponding experimental deamidation percentages
at different time points. At each time point, we performed linear regression as denoted by
the solid red straight line, whereas the dotted lines represent the hypothetical 45◦ diagonal
line where the measured deamidation levels are equal to those predicted. Overall, the
regression model demonstrated good quantitative predictions for the deamidations.

To further validate, we also tested using the same in-house independent test dataset
that contained five in-house antibodies and NISTmAb. Shown in Fig 6d are the compara-
tive results between the predicted deamidations for the hot spots and the actual peptide
mapping measured deamidations for Antibody-1, Antibody-2, and NISTmAb, where the
model accurately predicted the deamidation levels. For NISTmAb, the predicted deami-
dation extents for its designated three deamidation hot spots (N328, N387, and N392 of
the heavy chain) aligned well with the measured levels; despite the comparable values
among the prediction and experimental results, the model designated N328 as a hot spot,
whereas, in reality, the true label for N328 is inactive (Table S5). In Antibody-1, the model’s
quantitative predictions were in good agreement with the peptide mapping measurements
for all time points with one exception of a marginally overpredicted deamidation on the
heavy-chain N50. Although this site was labeled as inactive because it gave low deamida-
tions experimentally throughout the 8-week time course (Figure 6d), the model classified
it as a hot spot (Table S5); nevertheless, it is reassuring to see that the model’s regression
only assigned low levels of deamidations. Most interestingly for Antibody-2 was the CDR
deamidation of N73 on the heavy chain, while the model assigned this site as a deami-
dation hot spot and provided quite notable levels of deamidation predictions as shown
in Table S5; experimentally, zero deamidation was detected in the peptide mapping in
the first place owing to the sequence coverage loss by the small tryptic peptide (peptide
DN73SK, Figure 5c) generated from trypsin digestion—the peptide was eluted with solvent
front during the LC-MS; therefore, there was no coverage for N73 on the heavy chain.
Fortunately, we were able to confirm the N73 deamidation status by conducting a LysC
digestion peptide mapping, which rendered the peptide longer (namely, less hydrophilic
with better retention) carrying the site of interest (Figures 5c and 6d). By and large, this is
a rare but interesting scenario highlighting that the model-based approach can overcome
certain intrinsic limitations from the experimental approach.
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mentally determined deamidation extents for NISTmAb, antibody-1, and antibody-2 at time points
t = 2, 4, and 8 weeks.

3.7. Model Implementation for High-Throughput Screening Drug Candidates

In the drug discovery space, effective drug screening and triage play pivotal roles in
identifying the optimal drug candidate, bringing about early de-risking, and accelerating
the biologics design to development [51]. In addition to experimental screening approaches,
computational screening and triaging have become a disruptive technique enabling the
identification and optimization of drug candidates and advance lead selections [52,53].
In this work, we ran a pilot study involving 86 clones from different transfection pools
and fed only the FASTA sequences to the model framework for the deamidation hot
spots assignment and deamidation extents projection. All these clones shared a common
light chain, but the heavy-chain sequences were vastly different. The model was able
to project the deamidation extents and identified a panel of eight clones that potentially
exhibited lower deamidation liabilities, as can be seen from Figure 7a where the heavy-chain
sequences of these antibodies are predicted to carry less deamidation (<5%) even under 8
weeks of stressed conditions at a pH of 8.0 and 40 ◦C. The residue-specific deamidation
profiles of each sample were further elucidated as a heatmap (Figure 7b).
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Figure 7. (a) A pilot study involving 86 different clones of antibodies, where the model projected
the quantitative deamidation levels for each sample under the condition of a pH of 8.0 and 40 ◦C
for 2 weeks, 4 weeks, and 8 weeks by taking the FASTA sequence files as the input. The circled
region designates an identified panel of eight antibodies that exhibited a low deamidation liability on
the heavy chain. (b) Heatmap compiling the residue-specific, time-dependent deamidation extents
predicted by the model; each column refers to a specific N or Q residue (information masked) assigned
as a deamidation hot spot of the designated clone.

Notably, this screening process only took several minutes; in contrast, we estimate
it may take up to 4 months to harvest comparable information experimentally for the 86
clones, given the lengthy processes including the samples’ forced degradation treatment,
peptide mapping sample preparation, LC-MS/MS data acquisition, and data processing. In
fact, one may find that it is difficult to justify experimentally measuring all these samples in
the discovery phase considering the potential time and resources required to invest upfront.
Nevertheless, we demonstrate this model-based approach as a potential high-throughput
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screening and triage tool that facilitates the access of deamidation liability profiling, because
this information not only reduces experimental burdens but also, when in conjunction
with other experimental efforts, can potentially ensure more effective drug lead selection
and optimization.

4. Discussion and Conclusions

In this work, we showcase that it is possible to accurately predict antibody deamida-
tions by using the state-of-the-art protein language model (pLM) framework. We described
a systematic workflow capacitated by a novel high-throughput peptide mapping procedure,
followed by pLM-driven deep learning. The pLM used here was ESM-2. Our primary
objective was to highlight the potential of using protein language models to extract latent,
context-dependent information feasible for assimilated protein features and to implement
automated peptide mapping to generate a large amount of high-quality residue-specific
data to fulfill the need for task-specific, supervised machine learning. The automation
platform outlined here is an elaboration of a previously described workflow [54], with the
added functionality of automated sample concentration normalization.

Compared to conventional machine learning methodologies in the context of deami-
dation predictions that require various handcrafted descriptors from structural and/or
physicochemical aspects in addition to protein sequences as the input, the pLM-based
methodology greatly simplifies the input and only requires the primary sequences. For
optimal performance, we investigated several different model architectures and settled on
a chimeric design that incorporates two base models working cohesively, extracting global
sequence representations and local sequence information, respectively. The novelty of this
approach is to use a pretrained protein language model (ESM-2) harvesting the global
contextual embeddings for the sites in conjunction with the use of supervised word embed-
ding mining the local sequence dependencies. We demonstrated that the chimeric model
performed well in both deamidation classification and regression tasks. Additionally, these
findings may suggest that the information on the evolutionary context of a sequence, more
specifically, the potential rules pertinent to deamidation occurrences, is already embedded
in the large language model ESM-2.

The improved performance of this model is most likely owing to the adoption of
contextual protein language models that extract features from the overall protein sequences
for the site of interest. These latent features have shown great flexibility and robustness
in domain-specific tasks, even with sparse datasets where transfer learning, which entails
training models on large datasets to study scarce datasets, becomes very useful [55]. In this
work, despite high-throughput automation, the available deamidation instances are still
relatively few, and the overall dataset is imbalanced. This, however, makes a good use case
for combining language model-based approaches in conjunction with transfer learning.
Specifically, the embeddings learned from the pretrained pLM (i.e., ESM-2) are essentially
distilled knowledge obtained through the data-rich pretraining objectives; this knowledge
was then used to improve the downstream deamidation prediction tasks by feeding it to
the existing deamidation dataset supervised by the peptide mapping-determined readouts.
To the best of our knowledge, this work is the first using the distilled knowledge gathered
from large pretrained pLMs for the prediction of deamidations; of note, pLMs have been
used for other post-translational modification predictions, such as succinylation [37] and
phosphorylation [36]. Our data suggest that the pLM-derived representations are versatile,
adaptive features; the analyses of the pLM representations have indicated that pLMs
intrinsically learn essential biologically relevant features [29]—a likely explanation why a
simple model architecture is sufficient to achieve competitive performances.

Despite the exceptional performance, an inevitable limitation of the outlined chimeric
approach is the lack of clear insights as to what specific features are crucial for the learning
and how they contribute to determining deamidations. This limitation echoes with the
inherent lack of interpretability of protein language models or any large language models
(LLMs); currently, a comprehensive understanding of the inner workings of large language
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models remains elusive. In contrast, take the local sequence base model as an example,
although it was less predictive compared to the chimeric model or to the ESM-2 base model
(Table 1): it is advantageous in that it is easily interpretable and provides insights regarding
the top sequence motifs learned that are most predictive of deamidations. For instance,
with the supervised word embedding using a window size of three amino acids, the local
sequence model found that the top three deamidation X+1 motifs are NG, NS, and NN,
in good agreement with previous findings that the canonical motifs NG, NS, and NN
are among the most common in deamidation degradation [8,17,18,56] and that glycine
and serine are critical residues affecting deamidation owing to their steric and catalytic
effects [56]. Interestingly, this local sequence model also identified sequence motifs such as
SN, EN, and WN as the top three X-1 motifs. Chelius et al. have, concordantly, reported the
highest level of deamidation in terms of X-1 motifs, including SN, EN, and LN [50].

Our model can serve as a surrogate for labor-intensive experiments, particularly
during the preclinical phases when managing substantial numbers of samples with diverse
sequences and complexities. This approach significantly conserves time and resources.
Additionally, following the screening campaign, the model can be deployed to assess the
lead antibody candidates, providing insights into the potential critical quality attributes
(pCQAs) that can guide drug developments and process optimizations. Notably, this
presented workflow is not limited to antibody deamidations but, with minimal adjustment,
is extendable to other sequence liabilities, such as Asp isomerization, Met and Trp oxidation,
Tyr sulfation, etc. In particular, Asp isomerization liability has been reported on antibodies
impacting their stability and potency [48,57]. Noteworthily, we also observed sporadic
isomerization modifications in our dataset under the condition of a pH of 8.0 and 40 ◦C;
however, Asp isomerization has a higher rate at a lower pH (<5.5) [48,58]. While extending
the protein language model-driven framework outlined here to Asp isomerization should
be straightforward, challenges lie in the mass spectrometric detection and curation of a
quality dataset as, unlike deamidations that render a +0.98 Da mass shift, isomerization has
no net molecular mass change; instead, the detection and quantification of isomerization
species largely depend on the chromatographic separation between isoAsp and Asp species.
The use of ETD, rather than CID or HCD, for tandem mass fragmentations may assist in
distinguishing isoAsp and Asp species and resolve residue-specific isomerization [59].

Considerations to further improve the performance of pLM-focused approaches
may involve the following aspects: (i) conducting the supervised fine-tuning (FT) [60]
or parameter-efficient fine-tuning (PEFT) [61] of the pretrained pLM to tailor the language
model to more efficient transfer learning, including adapting to downstream tasks; (ii) com-
bining pLM embeddings with additional descriptors, such as structural or physicochemical
features; and (iii) as with any machine learning model, increasing the dataset size to help
with accurate results.
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Abbreviations

Ab Antibody
ANN Artificial neural network
Asn Asparagine
Asp Aspartic acid
AUC Area under the curve
CDR Complementarity-determining region
CID Collision-induced dissociation
cIEF Capillary isoelectric focusing
CNN Convolutional neural network
Cys Cysteine
DNN Deep neural network
DTT Dithiothreitol
EDTA Ethylenediaminetetraacetic acid
ESM Evolutionary scale modeling
ETD Electron-transfer dissociation
FN False negative
FP False positive
FPR False positive rate
FTE Full-time employee
GdnHCl Guanidine hydrochloride
HCD Higher energy collision dissociation
HTP High-throughput
IAM Iodoacetamide
LC-MS Liquid chromatography–mass spectrometry
LSTM Long short-term memory
Lys Lysine
LysC Endoproteinase Lys-C enzyme
mAb Monoclonal antibody
MCC Matthews correlation coefficient
Met Methionine
MS/MS Tandem mass spectrometry
pCQA Potential critical quality attributes
pLM Protein language model
PTM Post-translational modification
QSAR Quantitative structure–activity relationship
ReLU Rectified linear unit
RNN Recurrent neural network
ROC Receiver operating characteristics
SASA Solvent-accessible surface area
SD Standard deviation
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TFA Trifluoroacetic acid
TN True negative
TP True positive
TPR True positive rate
Trp Tryptophan
Tyr Tyrosine
UV Ultraviolet
XIC Extracted ion chromatogram
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