Therapeutic Advances in Psoriasis: From Biologics to Emerging Oral Small Molecules
Abstract
:1. Introduction
2. Currently Available Biologic Therapy for Psoriasis
2.1. TNF-α Inhibitors
2.2. IL-23 Inhibitors
2.3. IL-17 Inhibitors
2.4. Additional Interleukin Inhibitors Employed in Psoriasis
3. New and Emerging Oral Small Molecules
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brożyna, A.A.; Slominski, R.M.; Nedoszytko, B.; Zmijewski, M.A.; Slominski, A.T. Vitamin D Signaling in Psoriasis: Pathogenesis and Therapy. Int. J. Mol. Sci. 2022, 23, 8575. [Google Scholar] [CrossRef] [PubMed]
- Evans, C. Managed care aspects of psoriasis and psoriatic arthritis. Am. J Manag. Care 2016, 22 (Suppl. S8), s238–s243. [Google Scholar] [PubMed]
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M.; Global Psoriasis Atlas. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef] [PubMed]
- Damiani, G.; Bragazzi, N.L.; Aksut, C.K.; Wu, D.; Alicandro, G.; McGonagle, D.; Guo, C.; Dellavalle, R.; Grada, A.; Wong, P.; et al. The Global, Regional, and National Burden of Psoriasis: Results and Insights from the Global Burden of Disease 2019 Study. Front. Med. 2021, 8, 743180. [Google Scholar] [CrossRef]
- Cao, F.; Liu, Y.-C.; Ni, Q.-Y.; Chen, Y.; Wan, C.-H.; Liu, S.-Y.; Tao, L.-M.; Jiang, Z.-X.; Ni, J.; Pan, H.-F. Temporal trends in the prevalence of autoimmune diseases from 1990 to 2019. Autoimmun. Rev. 2023, 22, 103359. [Google Scholar] [CrossRef]
- Toledano, E.; García de Yébenes, M.J.; González-Álvaro, I.; Carmona, L. Severity indices in rheumatoid arthritis: A systematic review. Reumatol. Clin. 2019, 15, 146–151. [Google Scholar] [CrossRef]
- Eldjoudi, D.A.; Barreal, A.C.; Gonzalez-Rodríguez, M.; Ruiz-Fernández, C.; Farrag, Y.; Farrag, M.; Lago, F.; Capuozzo, M.; Gonzalez-Gay, M.A.; Varela, A.M.; et al. Leptin in Osteoarthritis and Rheumatoid Arthritis: Player or Bystander? Int. J. Mol. Sci. 2022, 23, 2859. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Read, C. Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA 2020, 323, 1945–1960. [Google Scholar] [CrossRef]
- Cassalia, F.; Cazzaniga, S.; Ofenloch, R.; Elsner, P.; Gonçalo, M.; Schuttelaar, M.-L.; Svensson, Å.; Pezzolo, E.; Bruze, M.; Naldi, L. Comparison of Perceptions of Skin Condition, Product Use and Allergen Reactivity Between People with Psoriasis and Controls in the European Dermato-Epidemiology Network (EDEN) Fragrance Study. Acta Derm.-Venereol. 2024, 104, adv23513. [Google Scholar] [CrossRef]
- Ghoreschi, K.; Balato, A.; Enerbäck, C.; Sabat, R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet 2021, 397, 754–766. [Google Scholar] [CrossRef]
- Boutet, M.-A.; Nerviani, A.; Gallo Afflitto, G.; Pitzalis, C. Role of the IL-23/IL-17 Axis in Psoriasis and Psoriatic Arthritis: The Clinical Importance of Its Divergence in Skin and Joints. Int. J. Mol. Sci. 2018, 19, 530. [Google Scholar] [CrossRef] [PubMed]
- Capuozzo, M.; Ottaiano, A.; Nava, E.; Cascone, S.; Fico, R.; Iaffaioli, R.V.; Cinque, C. Etanercept induces remission of polyarteritis nodosa: A case report. Front. Pharmacol. 2014, 5, 122. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ponce, M.; Cuesta-López, L.; Montilla, L.; Pérez-Sánchez, C.; Ortiz-Buitrago, P.; Barranco, A.; Gahete, M.D.; Herman-Sánchez, N.; Lucendo, A.; Navarro, P.; et al. Decoding clinical and molecular pathways of liver dysfunction in Psoriatic Arthritis: Impact of cumulative methotrexate doses. Biomed. Pharmacother. 2023, 168, 115779. [Google Scholar] [CrossRef]
- Mease, P.J.; A Deodhar, A.; van der Heijde, D.; Behrens, F.; Kivitz, A.J.; Neal, J.; Kim, J.; Singhal, S.; Nowak, M.; Banerjee, S. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann. Rheum. Dis. 2022, 81, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Iwata, S.; Sonomoto, K.; Ueno, M.; Fujita, Y.; Anan, J.; Miyazaki, Y.; Ohkubo, N.; Sumikawa, M.H.; Todoroki, Y.; et al. mTOR activation in CD8+ cells contributes to disease activity of rheumatoid arthritis and increases therapeutic response to TNF inhibitors. Rheumatology 2022, 61, 3010–3022. [Google Scholar] [CrossRef]
- Nair, R.P.; Ruether, A.; Stuart, P.E.; Jenisch, S.; Tejasvi, T.; Hiremagalore, R.; Schreiber, S.; Kabelitz, D.; Lim, H.W.; Voorhees, J.J.; et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J. Investig. Dermatol. 2008, 128, 1653–1661. [Google Scholar] [CrossRef]
- Merola, J.F.; Landewé, R.; McInnes, I.B.; Mease, P.J.; Ritchlin, C.T.; Tanaka, Y.; Asahina, A.; Behrens, F.; Gladman, D.D.; Gossec, L.; et al. Bimekizumab in patients with active psoriatic arthritis and previous inadequate response or intolerance to tumour necrosis factor-α inhibitors: A randomised, double-blind, placebo-controlled, phase 3 trial (BE COMPLETE). Lancet 2023, 401, 38–48. [Google Scholar] [CrossRef]
- Mahmoud, A.M. Meta-analysis and GRADE assessment of randomized controlled trials on the efficacy and safety of bimekizumab in psoriatic arthritis patients. Curr. Med. Res. Opin. 2023, 39, 1031–1043. [Google Scholar] [CrossRef]
- Coates, L.C.; Landewé, R.; McInnes, I.B.; Mease, P.J.; Ritchlin, C.T.; Tanaka, Y.; Asahina, A.; Behrens, F.; Gladman, D.D.; Gossec, L.; et al. Bimekizumab treatment in patients with active psoriatic arthritis and prior inadequate response to tumour necrosis factor inhibitors: 52-week safety and efficacy from the phase III BE COMPLETE study and its open-label extension BE VITAL. RMD Open 2024, 10, e003855. [Google Scholar] [CrossRef]
- Lee, A.; Scott, L.J. Certolizumab Pegol: A Review in Moderate to Severe Plaque Psoriasis. BioDrugs 2020, 34, 235–244. [Google Scholar] [CrossRef]
- Daprà, V.; Ponti, R.; Curcio, G.L.; Archetti, M.; Dini, M.; Gavatorta, M.; Quaglino, P.; Fierro, M.T.; Bergallo, M. Functional study of TNF-α as a promoter of polymorphisms in psoriasis. Ital. J. Dermatol. Venereol. 2022, 157, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Sbidian, E.; Chaimani, A.; Garcia-Doval, I.; Do, G.; Hua, C.; Mazaud, C.; Droitcourt, C.; Hughes, C.; Ingram, J.R.; Naldi, L.; et al. Systemic pharmacological treatments for chronic plaque psoriasis: A network meta-analysis. Cochrane Database Syst. Rev. 2017, 12, CD011535. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Wang, M.; Gao, H.; Zheng, A.; Li, J.; Mu, D.; Tong, J. The Role of Helper T Cells in Psoriasis. Front. Immunol. 2021, 12, 788940. [Google Scholar] [CrossRef] [PubMed]
- Furiati, S.C.; Catarino, J.S.; Silva, M.V.; Silva, R.F.; Estevam, R.B.; Teodoro, R.B.; Pereira, S.L.; Ataide, M.; Rodrigues, V.; Rodrigues, D.B.R. Th1, Th17, and Treg Responses are Differently Modulated by TNF-α Inhibitors and Methotrexate in Psoriasis Patients. Sci. Rep. 2019, 9, 7526. [Google Scholar] [CrossRef]
- Psarras, A.; Antanaviciute, A.; Alase, A.; Carr, I.; Wittmann, M.; Emery, P.; Tsokos, G.C.; Vital, E.M. TNF-α Regulates Human Plasmacytoid Dendritic Cells by Suppressing IFN-α Production and Enhancing T Cell Activation. J. Immunol. 2021, 206, 785–796. [Google Scholar] [CrossRef]
- Elyoussfi, S.; Thomas, B.J.; Ciurtin, C. Tailored treatment options for patients with psoriatic arthritis and psoriasis: Review of established and new biologic and small molecule therapies. Rheumatol. Int. 2016, 36, 603–612. [Google Scholar] [CrossRef]
- Benezeder, T.; Bordag, N.; Woltsche, J.; Teufelberger, A.; Perchthaler, I.; Weger, W.; Salmhofer, W.; Gruber-Wackernagel, A.; Painsi, C.; Zhan, Q.; et al. Mast cells express IL17A, IL17F and RORC, are activated and persist with IL-17 production in resolved skin of patients with chronic plaque-type psoriasis. Preprint 2024, rs.3.rs-3958361. [Google Scholar] [CrossRef]
- Tittes, J.; Brell, J.; Fritz, P.; Jonak, C.; Stary, G.; Ressler, J.M.; Künig, S.; Weninger, W.; Stöckl, J. Regulation of the Immune Cell Repertoire in Psoriasis Patients Upon Blockade of IL-17A or TNFα. Dermatol. Ther. 2024, 14, 613–626. [Google Scholar] [CrossRef]
- Kamata, M.; Tada, Y. Crosstalk: Keratinocytes and immune cells in psoriasis. Front. Immunol. 2023, 14, 1286344. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Wang, Y.; Chen, Y.; Hu, Y.; Guo, C.; Yu, Z.; Xu, P.; Ding, Y.; Mi, Q.-S.; et al. Abnormal lipid metabolism in epidermal Langerhans cells mediates psoriasis-like dermatitis. J. Clin. Investig. 2022, 7, e150223. [Google Scholar] [CrossRef]
- Ruggiero, A.; Megna, M.; Fabbrocini, G.; Ocampo-Garza, S.S. Anti-IL23 biologic therapies in the treatment of psoriasis: Real-world experience versus clinical trials data. Immunol. Res. 2023, 71, 328–355. [Google Scholar] [CrossRef]
- González-Rodríguez, M.; Edjoudi, D.A.; Barreal, A.C.; Ruiz-Fernández, C.; Farrag, M.; González-Rodríguez, B.; Lago, F.; Capuozzo, M.; Gonzalez-Gay, M.A.; Varela, A.M.; et al. Progranulin in Musculoskeletal Inflammatory and Degenerative Disorders, Focus on Rheumatoid Arthritis, Lupus and Intervertebral Disc Disease: A Systematic Review. Pharmaceuticals 2022, 15, 1544. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, X.; Ma, Y.; Hua, S. IL-23 and dendritic cells: What are the roles of their mutual attachment in immune response and immunotherapy? Cytokine 2019, 120, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, S.; Ying, S.; Tang, S.; Ding, Y.; Li, Y.; Qiao, J.; Fang, H. The IL-23/IL-17 Pathway in Inflammatory Skin Diseases: From Bench to Bedside. Front. Immunol. 2020, 11, 594735. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Wu, L.; Li, X. IL-17 family: Cytokines, receptors and signaling. Cytokine 2013, 64, 477–485. [Google Scholar] [CrossRef]
- Przepiórka-Kosińska, J.; Bartosińska, J.; Raczkiewicz, D.; Bojar, I.; Kosiński, J.; Krasowska, D.; Chodorowska, G. Serum concentration of osteopontin and interleukin 17 in psoriatic patients. Adv. Clin. Exp. Med. 2020, 29, 203–208. [Google Scholar] [CrossRef]
- Michalak-Stoma, A.; Bartosińska, J.; Kowal, M.; Raczkiewicz, D.; Krasowska, D.; Chodorowska, G. IL-17A in the Psoriatic Patients’ Serum and Plaque Scales as Potential Marker of the Diseases Severity and Obesity. Mediat. Inflamm. 2020, 2020, 7420823. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, R.; Zhang, Y.; Zhu, T.; Li, Q.; Zhang, W. Interleukin-17 as a potential therapeutic target for chronic pain. Front. Immunol. 2022, 13, 999407. [Google Scholar] [CrossRef]
- Fouser, L.A.; Wright, J.F.; Dunussi-Joannopoulos, K.; Collins, M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol. Rev. 2008, 226, 87–102. [Google Scholar] [CrossRef]
- Furue, M.; Furue, K.; Tsuji, G.; Nakahara, T. Interleukin-17A and Keratinocytes in Psoriasis. Int. J. Mol. Sci. 2020, 21, 1275. [Google Scholar] [CrossRef]
- Mercurio, L.; Failla, C.M.; Capriotti, L.; Scarponi, C.; Facchiano, F.; Morelli, M.; Rossi, S.; Pagnanelli, G.; Albanesi, C.; Cavani, A.; et al. Interleukin (IL)-17/IL-36 axis participates to the crosstalk between endothelial cells and keratinocytes during inflammatory skin responses. PLoS ONE 2020, 15, e0222969. [Google Scholar] [CrossRef]
- Chao, R.; Kavanaugh, A. Psoriatic Arthritis: Newer and Older Therapies. Curr. Rheumatol. Rep. 2019, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Hu, R.; Peng, L.; Liu, M.; Sun, Z. Efficacy and Safety of Adalimumab Biosimilars: Current Critical Clinical Data in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 638444. [Google Scholar] [CrossRef] [PubMed]
- Blauvelt, A.; Reich, K.; Lebwohl, M.; Burge, D.; Arendt, C.; Peterson, L.; Drew, J.; Rolleri, R.; Gottlieb, A.B. Certolizumab pegol for the treatment of patients with moderate-to-severe chronic plaque psoriasis: Pooled analysis of week 16 data from three randomized controlled trials. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Pelechas, E.; Drosos, A.A. Etanercept biosimilar SB-4. Expert Opin. Biol. Ther. 2019, 19, 173–179. [Google Scholar] [CrossRef]
- Madani, A.; Almuhaideb, Q. Adalimumab Therapy in a Patient with Psoriasis, Down Syndrome, and Concomitant Hepatitis B Virus Infection. Biologics 2021, 15, 375–378. [Google Scholar] [CrossRef]
- Carubbi, F.; Fidanza, R.; Palmieri, M.; Ventura, A.; Tambone, S.; Cipriani, P.; Giacomelli, R.; Fargnoli, M.C. Safety and efficacy of certolizumab pegol in a real-life cohort of patients with psoriasis and psoriatic arthritis. J. Dermatol. Treat. 2020, 31, 692–697. [Google Scholar] [CrossRef]
- Oldfield, V.; Plosker, G.L. Golimumab: In the treatment of rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. BioDrugs 2009, 23, 125–135. [Google Scholar] [CrossRef]
- Yuk, J.-M.; Kim, J.K.; Kim, I.S.; Jo, E.-K. TNF in Human Tuberculosis: A Double-Edged Sword. Immune Netw. 2024, 24, e4. [Google Scholar] [CrossRef]
- Markham, A. Guselkumab: First Global Approval. Drugs 2017, 77, 1487–1492. [Google Scholar] [CrossRef]
- Ritchlin, C.T.; Helliwell, P.S.; Boehncke, W.-H.; Soriano, E.R.; Hsia, E.C.; Kollmeier, A.P.; Chakravarty, S.D.; Zazzetti, F.; A Subramanian, R.; Xu, X.L.; et al. Guselkumab, an inhibitor of the IL-23p19 subunit, provides sustained improvement in signs and symptoms of active psoriatic arthritis: 1 year results of a phase III randomised study of patients who were biologic-naïve or TNFα inhibitor-experienced. RMD Open 2021, 7, e001457. [Google Scholar] [CrossRef]
- Sonkoly, E.; Maul, J.-T.; Megna, M.; Gorecki, P.; Crombag, E.; Buyze, J.; Savage, L. Guselkumab in Patients with Scalp Psoriasis: A post hoc Analysis of the VOYAGE 2 Phase III Randomized Clinical Trial. Acta Derm.-Venereol. 2024, 104, adv18672. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, M.G.; Leonardi, C.L.; Mehta, N.N.; Gottlieb, A.B.; Mendelsohn, A.M.; Parno, J.; Rozzo, S.J.; Menter, M.A. Tildrakizumab efficacy, drug survival, and safety are comparable in patients with psoriasis with and without metabolic syndrome: Long-term results from 2 phase 3 randomized controlled studies (reSURFACE 1 and reSURFACE 2). J. Am. Acad. Dermatol. 2021, 84, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhao, Y.; Carrico, J.; Brodtkorb, T.-H.; Mendelsohn, A.M.; Lowry, S.; Feldman, S.; Wu, J.J.; Armstrong, A.W. Cost-effectiveness of tildrakizumab for the treatment of moderate-to-severe psoriasis in the United States. J. Dermatol. Treat. 2022, 33, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Reich, K.; Gooderham, M.; Thaçi, D.; Crowley, J.J.; Ryan, C.; Krueger, J.G.; Tsai, T.-F.; Flack, M.; Gu, Y.; A Williams, D.; et al. Risankizumab compared with adalimumab in patients with moderate-to-severe plaque psoriasis (IMMvent): A randomised, double-blind, active-comparator-controlled phase 3 trial. Lancet 2019, 394, 576–586. [Google Scholar] [CrossRef]
- Sbidian, E.; Chaimani, A.; Guelimi, R.; Garcia-Doval, I.; Hua, C.; Hughes, C.; Naldi, L.; Kinberger, M.; Afach, S.; Le Cleach, L. Systemic pharmacological treatments for chronic plaque psoriasis: A network meta-analysis. Cochrane Database Syst. Rev. 2023, 2023, CD011535. [Google Scholar] [CrossRef]
- Krueger, J.G.; Wharton, K.A., Jr.; Schlitt, T.; Suprun, M.; Torene, R.I.; Jiang, X.; Wang, C.Q.; Fuentes-Duculan, J.; Hartmann, N.; Peters, T.; et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J. Allergy Clin. Immunol. 2019, 144, 750–763. [Google Scholar] [CrossRef]
- Langley, R.G.; Sofen, H.; Dei-Cas, I.; Reich, K.; Sigurgeirsson, B.; Warren, R.B.; Paul, C.; Szepietowski, J.C.; Tsai, T.-F.; Hampele, I.; et al. Secukinumab long-term efficacy and safety in psoriasis through to year 5 of treatment: Results of a randomized extension of the phase III ERASURE and FIXTURE trials. Br. J. Dermatol. 2023, 188, 198–207. [Google Scholar] [CrossRef]
- Blauvelt, A.; Papp, K.A.; Griffiths, C.E.M.; Puig, L.; Weisman, J.; Dutronc, Y.; Kerr, L.F.; Ilo, D.; Mallbris, L.; Augustin, M. Efficacy and Safety of Switching to Ixekizumab in Etanercept Non-Responders: A Subanalysis from Two Phase III Randomized Clinical Trials in Moderate-to-Severe Plaque Psoriasis (UNCOVER-2 and -3). Am. J. Clin. Dermatol. 2017, 18, 273–280. [Google Scholar] [CrossRef]
- Menter, A.; Warren, R.; Langley, R.; Merola, J.; Kerr, L.; Dennehy, E.; Shrom, D.; Amato, D.; Okubo, Y.; Reich, K. Efficacy of ixekizumab compared to etanercept and placebo in patients with moderate-to-severe plaque psoriasis and non-pustular palmoplantar involvement: Results from three phase 3 trials (UNCOVER-1, UNCOVER-2 and UNCOVER-3). J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1686–1692. [Google Scholar] [CrossRef]
- McMichael, A.; Desai, S.R.; Qureshi, A.; Rastogi, S.; Alexis, A.F. Efficacy and Safety of Brodalumab in Patients with Moderate-to-Severe Plaque Psoriasis and Skin of Color: Results from the Pooled AMAGINE-2/-3 Randomized Trials. Am. J. Clin. Dermatol. 2019, 20, 267–276. [Google Scholar] [CrossRef]
- Gordon, K.B.; Foley, P.; Krueger, J.G.; Pinter, A.; Reich, K.; Vender, R.; Vanvoorden, V.; Madden, C.; White, K.; Cioffi, C.; et al. Bimekizumab efficacy and safety in moderate to severe plaque psoriasis (BE READY): A multicentre, double-blind, placebo-controlled, randomised withdrawal phase 3 trial. Lancet 2021, 397, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Reich, K.; Warren, R.B.; Lebwohl, M.; Gooderham, M.; Strober, B.; Langley, R.G.; Paul, C.; De Cuyper, D.; Vanvoorden, V.; Madden, C.; et al. Bimekizumab versus Secukinumab in Plaque Psoriasis. N. Engl. J. Med. 2021, 385, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.B.; Blauvelt, A.; Bagel, J.; Papp, K.A.; Yamauchi, P.; Armstrong, A.; Langley, R.G.; Vanvoorden, V.; De Cuyper, D.; Cioffi, C.; et al. Bimekizumab versus Adalimumab in Plaque Psoriasis. N. Engl. J. Med. 2021, 385, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Van De Kerkhof, P. Novel biologic therapies in development targeting IL-12/IL-23. J. Eur. Acad. Dermatol. Venereol. 2010, 24 (Suppl. S6), 5–9. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, C.L.; Kimball, A.B.; A Papp, K.; Yeilding, N.; Guzzo, C.; Wang, Y.; Li, S.; Dooley, L.T.; Gordon, K.B.; PHOENIX 1 study investigators. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008, 371, 1665–1674. [Google Scholar] [CrossRef]
- A Papp, K.; Langley, R.G.; Lebwohl, M.; Krueger, G.G.; Szapary, P.; Yeilding, N.; Guzzo, C.; Hsu, M.-C.; Wang, Y.; Li, S.; et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008, 371, 1675–1684. [Google Scholar] [CrossRef]
- A Alzahrani, S.; Alzamil, F.M.; Aljuhni, A.M.; A Al Thaqfan, N.; Alqahtani, N.Y.; A Alwarwari, S.; A Alkharashi, A.; A Alzabadin, R.; A Alzehairi, R.; A Alhajlah, A.; et al. A Systematic Review Evaluating the Effectiveness of Several Biological Therapies for the Treatment of Skin Psoriasis. Cureus 2023, 15, e50588. [Google Scholar] [CrossRef]
- Iznardo, H.; Puig, L. The interleukin-1 family cytokines in psoriasis: Pathogenetic role and therapeutic perspectives. Expert Rev. Clin. Immunol. 2021, 17, 187–199. [Google Scholar] [CrossRef]
- Burden, A.D. Spesolimab, an interleukin-36 receptor monoclonal antibody, for the treatment of generalized pustular psoriasis. Expert Rev. Clin. Immunol. 2023, 19, 473–481. [Google Scholar] [CrossRef]
- Tsai, T.-F.; Zheng, M.; Ding, Y.; Song, Z.; Liu, Q.; Chen, Y.; Hu, H.; Xu, J. Efficacy and Safety of Spesolimab in Patients with Generalized Pustular Psoriasis: A Subgroup Analysis of Chinese Patients in the Effisayil 1 Trial. Dermatol. Ther. 2023, 13, 3097–3110. [Google Scholar] [CrossRef]
- Fukaura, R.; Akiyama, M. Targeting IL-36 in Inflammatory Skin Diseases. BioDrugs 2023, 37, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Yatsuzuka, K.; Murakami, M. Response to the article by Naik et al. entitled “anakinra for refractory pustular psoriasis: A phase II, open label, dose-escalation trial”. J. Am. Acad. Dermatol. 2023, 88, e145–e146. [Google Scholar] [CrossRef] [PubMed]
- Seishima, M.; Fujii, K.; Mizutani, Y. Generalized Pustular Psoriasis in Pregnancy: Current and Future Treatments. Am. J. Clin. Dermatol. 2022, 23, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, B.; Kivelevitch, D.; Campa, M.; Menter, A. Palmoplantar pustular psoriasis unresponsive to the interleukin-1β antagonist canakinumab. Clin. Exp. Dermatol. 2016, 41, 324–326. [Google Scholar] [CrossRef]
- Ferrara, F.; Zovi, A.; Capuozzo, M.; Langella, R. Atopic dermatitis: Treatment and innovations in immunotherapy. Inflammopharmacology 2024, 32, 1777–1789. [Google Scholar] [CrossRef]
- Ferrara, F.; Zovi, A.; Capuozzo, M.; Montero, J.G.; Zavaleta-Monestel, E.; Langella, R. Innovative Immunotherapy for the Treatment of Atopic Dermatitis: Focus on the European and Latin American Regulatory Frameworks. Curr. Dermatol. Rep. 2024, 13, 55–66. [Google Scholar] [CrossRef]
- Kivitz, A.J.; FitzGerald, O.; Nash, P.; Pang, S.; Azevedo, V.F.; Wang, C.; Takiya, L. Efficacy and safety of tofacitinib by background methotrexate dose in psoriatic arthritis: Post hoc exploratory analysis from two phase III trials. Clin. Rheumatol. 2022, 41, 499–511. [Google Scholar] [CrossRef]
- Dai, Q.; Zhang, Y.; Liu, Q.; Zhang, C. Efficacy and safety of tofacitinib for chronic plaque psoriasis and psoriatic arthritis: A systematic review and meta-analysis of randomized controlled trials. Clin. Rheumatol. 2024, 43, 1605–1613. [Google Scholar] [CrossRef]
- Fleischmann, R.; Pangan, A.L.; Song, I.; Mysler, E.; Bessette, L.; Peterfy, C.; Durez, P.; Ostor, A.J.; Li, Y.; Zhou, Y.; et al. Upadacitinib Versus Placebo or Adalimumab in Patients with Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results of a Phase III, Double-Blind, Randomized Controlled Trial. Arthritis Rheumatol. 2019, 71, 1788–1800. [Google Scholar] [CrossRef]
- Conaghan, P.G.; Mysler, E.; Tanaka, Y.; Da Silva-Tillmann, B.; Shaw, T.; Liu, J.; Ferguson, R.; Enejosa, J.V.; Cohen, S.; Nash, P.; et al. Upadacitinib in Rheumatoid Arthritis: A Benefit–Risk Assessment Across a Phase III Program. Drug Saf. 2021, 44, 515–530. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Lin, W.; Lu, L.; Su, J.; Chen, X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct. Target. Ther. 2023, 8, 437. [Google Scholar] [CrossRef] [PubMed]
- Chimalakonda, A.; Burke, J.; Cheng, L.; Catlett, I.; Tagen, M.; Zhao, Q.; Patel, A.; Shen, J.; Girgis, I.G.; Banerjee, S.; et al. Selectivity Profile of the Tyrosine Kinase 2 Inhibitor Deucravacitinib Compared with Janus Kinase 1/2/3 Inhibitors. Dermatol. Ther. 2021, 11, 1763–1776. [Google Scholar] [CrossRef] [PubMed]
- Krueger, J.G.; McInnes, I.B.; Blauvelt, A. Tyrosine kinase 2 and Janus kinase—signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J. Am. Acad. Dermatol. 2022, 86, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Loo, W.J.; Turchin, I.; Prajapati, V.H.; Gooderham, M.J.; Grewal, P.; Hong, C.-H.; Sauder, M.; Vender, R.B.; Maari, C.; Papp, K.A. Clinical Implications of Targeting the JAK-STAT Pathway in Psoriatic Disease: Emphasis on the TYK2 Pathway. J. Cutan. Med. Surg. 2023, 27 (Suppl. S1), 3S–24S. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Gooderham, M.; Warren, R.B.; Papp, K.A.; Strober, B.; Thaçi, D.; Morita, A.; Szepietowski, J.C.; Imafuku, S.; Colston, E.; et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J. Am. Acad. Dermatol. 2023, 88, 29–39. [Google Scholar] [CrossRef]
- Martin, G. Novel Therapies in Plaque Psoriasis: A Review of Tyrosine Kinase 2 Inhibitors. Dermatol. Ther. 2023, 13, 417–435. [Google Scholar] [CrossRef]
- Singh, R.S.P.; Pradhan, V.; Roberts, E.S.; Scaramozza, M.; Kieras, E.; Gale, J.D.; Peeva, E.; Vincent, M.S.; Banerjee, A.; Fensome, A.; et al. Safety and Pharmacokinetics of the Oral TYK2 Inhibitor PF-06826647: A Phase I, Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Study. Clin. Transl. Sci. 2021, 14, 671–682. [Google Scholar] [CrossRef]
- Tehlirian, C.; Peeva, E.; Kieras, E.; Scaramozza, M.; Roberts, E.S.; Singh, R.S.P.; Pradhan, V.; Banerjee, A.; Garcet, S.; Xi, L.; et al. Safety, tolerability, efficacy, pharmacokinetics, and pharmacodynamics of the oral TYK2 inhibitor PF-06826647 in participants with plaque psoriasis: A phase 1, randomised, double-blind, placebo-controlled, parallel-group study. Lancet Rheumatol. 2021, 3, e204–e213. [Google Scholar] [CrossRef]
- Forman, S.B.; Pariser, D.M.; Poulin, Y.; Vincent, M.S.; Gilbert, S.A.; Kieras, E.M.; Qiu, R.; Yu, D.; Papacharalambous, J.; Tehlirian, C.; et al. TYK2/JAK1 Inhibitor PF-06700841 in Patients with Plaque Psoriasis: Phase IIa, Randomized, Double-Blind, Placebo-Controlled Trial. J. Investig. Dermatol. 2020, 140, 2359–2370.e5. [Google Scholar] [CrossRef]
- Papp, K.A.; Beyska-Rizova, S.; Gantcheva, M.L.; Simeonova, E.S.; Brezoev, P.; Celic, M.; Groppa, L.; Blicharski, T.; Selmanagic, A.; Kalicka-Dudzik, M.; et al. Efficacy and safety of piclidenoson in plaque psoriasis: Results from a randomized phase 3 clinical trial (COMFORT-1). J. Eur. Acad. Dermatol. Venereol. 2024, 38, 1112–1120. [Google Scholar] [CrossRef]
- Zanin-Zhorov, A.; Weiss, J.M.; Trzeciak, A.; Chen, W.; Zhang, J.; Nyuydzefe, M.S.; Arencibia, C.; Polimera, S.; Schueller, O.; Fuentes-Duculan, J.; et al. Cutting Edge: Selective Oral ROCK2 Inhibitor Reduces Clinical Scores in Patients with Psoriasis Vulgaris and Normalizes Skin Pathology via Concurrent Regulation of IL-17 and IL-10. J. Immunol. 2017, 198, 3809–3814. [Google Scholar] [CrossRef] [PubMed]
- Pandya, V.B.; Kumar, S.; Sachchidanand, S.; Sharma, R.; Desai, R.C. Combating Autoimmune Diseases with Retinoic Acid Receptor-Related Orphan Receptor-γ (RORγ or RORc) Inhibitors: Hits and Misses. J. Med. Chem. 2018, 61, 10976–10995. [Google Scholar] [CrossRef] [PubMed]
- Gege, C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases—Where are we presently? Expert Opin. Drug Discov. 2021, 16, 1517–1535. [Google Scholar] [CrossRef]
- Li, G.; He, D.; Cai, X.; Guan, W.; Zhang, Y.; Wu, J.-Q.; Yao, H. Advances in the development of phosphodiesterase-4 inhibitors. Eur. J. Med. Chem. 2023, 250, 115195. [Google Scholar] [CrossRef] [PubMed]
- Mease, P.J. Apremilast: A Phosphodiesterase 4 Inhibitor for the Treatment of Psoriatic Arthritis. Rheumatol. Ther. 2014, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Papp, K.; Reich, K.; Leonardi, C.L.; Kircik, L.; Chimenti, S.; Langley, R.G.; Hu, C.; Stevens, R.M.; Day, R.M.; Gordon, K.B.; et al. Apremilast, an oral phosphodiesterase 4 (PDE4) inhibitor, in patients with moderate to severe plaque psoriasis: Results of a phase III, randomized, controlled trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1). J. Am. Acad. Dermatol. 2015, 73, 37–49. [Google Scholar] [CrossRef]
- Bissonnette, R.; Pinter, A.; Ferris, L.K.; Gerdes, S.; Rich, P.; Vender, R.; Miller, M.; Shen, Y.-K.; Kannan, A.; Li, S.; et al. An Oral Interleukin-23–Receptor Antagonist Peptide for Plaque Psoriasis. N. Engl. J. Med. 2024, 390, 510–521. [Google Scholar] [CrossRef]
Drug Name | Indication | Phase | NCT |
---|---|---|---|
Adalimumab | Plaque psoriasis | III | NCT05073315 |
Adalimumab | Moderate/severe plaque psoriasis | III | NCT02762955 |
Adalimumab | Plaque psoriasis | III | NCT03316781 |
Adalimumab | Chronic plaque psoriasis | III | NCT02581345 |
Adalimumab | Psoriasis, sleep apnea, obstructive | IV | NCT01181570 |
Adalimumab | Psoriasis, cardiovascular disease | IV | NCT01866592 |
Adalimumab | Psoriasis, cardiovascular disease | IV | NCT03082729 |
Certolizumab | Chronic plaque psoriasis, psoriasis | II | NCT00245765 |
Certolizumab | Chronic plaque psoriasis, psoriasis | II | NCT00329303 |
Etanercept | Psoriasis | IV | NCT01971346 |
Infliximab | Psoriatic arthritis | IV | NCT00432406 |
Drug Name | Indication | Phase | NCT |
---|---|---|---|
Guselkumab | Psoriasis | IV | NCT05858632 |
Guselkumab | Psoriasis | IV | NCT05004727 |
Mirikizumab | Plaque psoriasis | II | NCT02899988 |
Mirikizumab | Psoriasis | III | NCT03482011 |
Risankizumab | Psoriasis | II | NCT05283135 |
Risankizumab | Moderate to severe plaque psoriasis | III | NCT03255382 |
Risankizumab | Psoriasis | IV | NCT04630652 |
Tildrakizumab | Psoriasis vulgaris | IV | NCT04541329 |
Tildrakizumab | Psoriasis vulgaris | IV | NCT05390515 |
Tildrakizumab | Psoriasis | IV | NCT05110313 |
Tildrakizumab | Psoriasis | IV | NCT04271540 |
Drug Name | Indication | Phase | NCT |
---|---|---|---|
Bimekizumab | Psoriasis | IV | NCT04340076 |
Brodalumab | Psoriasis vulgaris | IV | NCT04306315 |
Brodalumab | Psoriasis vulgaris | IV | NCT03331835 |
Ixekizumab | Psoriasis (moderate to severe) | II | NCT01107457 |
Secukinumab | Psoriasis | II | NCT02483234 |
Secukinumab | Moderate to severe plaque-type psoriasis | III | NCT01365455 |
Secukinumab | Moderate to severe plaque-type psoriasis | III | NCT01544595 |
Drug Name | Indication | Phase | NCT |
---|---|---|---|
Abrocitinib | Plaque psoriasis | II | NCT02201524 |
Baricitinib | Plaque psoriasis | II | NCT01490632 |
Peficitinib | Plaque psoriasis | II | NCT01096862 |
Ruxolitinib | Plaque psoriasis | II | NCT00820950 |
Ruxolitinib | Plaque psoriasis | II | NCT00778700 |
Ruxolitinib | Plaque psoriasis | II | NCT00617994 |
Tofacitinib | Plaque psoriasis | II | NCT01710046 |
Tofacitinib | Psoriasis, psoriasis vulgaris | II | NCT01831466 |
Tofacitinib | Plaque psoriasis | III | NCT01815424 |
Tofacitinib | Plaque psoriasis | III | NCT01309737 |
Tofacitinib | Psoriasis | III | NCT01163253 |
Tofacitinib | Psoriasis | III | NCT01519089 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, F.; Verduci, C.; Laconi, E.; Mangione, A.; Dondi, C.; Del Vecchio, M.; Carlevatti, V.; Zovi, A.; Capuozzo, M.; Langella, R. Therapeutic Advances in Psoriasis: From Biologics to Emerging Oral Small Molecules. Antibodies 2024, 13, 76. https://doi.org/10.3390/antib13030076
Ferrara F, Verduci C, Laconi E, Mangione A, Dondi C, Del Vecchio M, Carlevatti V, Zovi A, Capuozzo M, Langella R. Therapeutic Advances in Psoriasis: From Biologics to Emerging Oral Small Molecules. Antibodies. 2024; 13(3):76. https://doi.org/10.3390/antib13030076
Chicago/Turabian StyleFerrara, Francesco, Chiara Verduci, Emanuela Laconi, Andrea Mangione, Chiara Dondi, Marta Del Vecchio, Veronica Carlevatti, Andrea Zovi, Maurizio Capuozzo, and Roberto Langella. 2024. "Therapeutic Advances in Psoriasis: From Biologics to Emerging Oral Small Molecules" Antibodies 13, no. 3: 76. https://doi.org/10.3390/antib13030076
APA StyleFerrara, F., Verduci, C., Laconi, E., Mangione, A., Dondi, C., Del Vecchio, M., Carlevatti, V., Zovi, A., Capuozzo, M., & Langella, R. (2024). Therapeutic Advances in Psoriasis: From Biologics to Emerging Oral Small Molecules. Antibodies, 13(3), 76. https://doi.org/10.3390/antib13030076